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Abstract

This paper deals with obtaining some sufficient conditions for oscilla-
tion of high order neutral fractional integro-differential equations. The
obtained results are mentioned for the first time in the literature for the
oscillation of Caputo-Fabrizio fractional integro-differential equations.
Finally, an illustrative example is given to verify our main results.
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1 Introduction

The theory of fractional differential equations has become very important
in recent years due to the increasing effects of their applications in various
fields of science.For the fractional derivative, we refer the reader to the related
books (Kilbas et al. 1996; Podlubny 1998; Samko et al. 1993). Other than the
different areas of pure mathematics, fractional differential equations can be
considered in modeling diverse areas of engineering and science such as self
similar dynamical processes, viscoelasticity, fluid flows, electrochemistry, elec-
tromagnetic theory, control theory, and many other disciplines. To find out
the details, see ( Singh et al. 2019; Luo et al. 2018; Failla and Zingales 2020;
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Sierociuk et al. 2013; Baleanu et al. 2020; Khan et al. 2019; Lazopoulos et al.
2016; Bushnaq et al. 2018; Owolabi 2019).
The Riemann-Liouville type is the most widely used definition for the fractional
derivative and has many applications. But this type of fractional differential
equation had some disadvantages. For example, the derivative of the constant
function is not zero, and we need the initial values in practical examples. The
disadvantages given above do not apply to the Caputo fractional derivative,
and this is why it is considered one of the most influential definitions of frac-
tional derivative. Therefore, it is applied in the fields of science and engineering.
Following these studies, Caputo and Fabrizio introduced a new definition with
all the characteristics of the old definitions (Caputo and Fabrizio 2015; Al-
Refai and Pal 2019; Caputo and Fabrizio 2016). It supposes two different
representations for the spatial and temporal variables. Caputo gives the classic
definition, especially suitable for mechanical phenomena related to plasticity,
fatigue, damage. They asserted that using Caputo-Fabrizio is more convenient
than Caputo if such effects are not available. The essential advantage of the
Caputo-Fabrizio method is the boundary conditions that admits the same form
as for the integer-order differential equations.
It is well known that the oscillation theory is one of the most important top-
ics for differential equations and dynamic equations. This theory first emerged
thanks to the Sturm- Liouville theorems. Together with the spectral theory,
these theorems have become quite worthy of the scientific world’s attention.
These days, there is a lack of studies on these topics in the literature ( Zhang
et al. 2012; Grace et al. 2010; Li et al. 2011; Öcalan and Öztürk 2015; Öcalan
and Öztürk 2018; Öcalan et al. 2020; Cesarano and Bazighifan 2019; Tunc and
Bazighifan 2019). In other words, in this regard, comprehensive studies have
not been carried out yet. Furthermore, as it is known, the role of fractional
differential equations in the theory of oscillation has started to increase consid-
erably in the last few years (Yalçın Uzun et al. 2019; Yalçın Uzun 2020; Grace
et al. 2012; Abdalla and Abdeljawad 2019; Bayram et al. 2016). In particular,
many articles have appeared on fractional integrodifferential equations with
Riemann-Liouville, Caputo and Caputo-Fabrizio types. Nonetheless, there are
many open problems with developing the oscillation theory of fractional inte-
grodifferential equations for such types (Aslıyüce et al. 2017; Feng and Sun
2022; Restrepo and Suragan 2020; Restrepo and Suragan 2021).
Cesarano and Bazighifan (2019) studied the oscillation of fourth-order func-
tional differential equations with distributed delay

[

µ(x) (η′′′(x))
λ
]

′

+

∫ d

c

γ(x, ξ)f (y (δ(x, ξ))) dξ = 0, x ≥ x0.
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Tunç and Bazighifan (2019) have considered the fourth order neutral differen-
tial equation with a continuously distributed delay

[

µ(x) (η′′′(x))
λ
]

′

+

∫ d

c

γ(x, ξ)f (y (δ(x, ξ))) dξ = 0, x ≥ x0.

Restrepo and Suragan (2020), studied a high order neutral differential
fractional equation with a continuously distributed delay

CD
α,ψ
a+

(

µ (.)
(

(η′′′ (.))
λ
))

(x) +

∫ d

c

γ(x, ξ)h (y (δ (x, ξ))) dξ = 0

where CDα,ψ
a+ is Caputo fractional derivative with respect to another function.

Restrepo and Suragan (2021) focused on a high order neutral differential
fractional equation with a continuously distributed delay of the form

CDα
θ,β,ω; a+

(

µ (.)
(

(η′′′ (.))
λ
))

(x) +

∫ d

c

γ(x, ξ)h (y (δ (x, ξ))) dξ = 0

where CDα
θ,β,ω; a+ is regularized Prabhakar derivative. And also they con-

sidered similar higher-order neutral differential equation with a continuously
distributed delay for AtanganaBaleanu-Caputo fractional derivative operator.

ABCDα
a+

(

µ (.)
(

(η′′′ (.))
λ
))

(x) +

∫ d

c

γ(x, ξ)h (y (δ (x, ξ))) dξ = 0.

This paper aims to obtain oscillation criteria for solutions of high order neu-
tral Caputo-Fabrizio fractional differential equations with a distributed delay.
For our proofs, we use techniques from the literature ( Restrepo and Sura-
gan 2020; Restrepo and Suragan 2021; Tunc and Bazighifan 2019; Cesarano
and Bazighifan 2019). The paper organized as follows: In Section 2 we focus
on some basic definitions and lemmas, and auxiliary results about fractional
calculus. Section 3 is dedicated to obtain of oscillation criteria for the solu-
tions of Caputo-Fabrizio fractional integrodifferential equations and a concrete
example is given to conclude the paper.

2 Preliminaries

This section will briefly focus on some basic definitions and auxiliary results
about fractional calculus.

Definition 1 ( Caputo and Fabrizio 2015) Let x be a function H1(a, b), b > a and
λ ∈ [0, 1] then the Caputo-Fabrizio fractional derivative (CFD) of order λ is defined
as

CFDα
a x(t) =

M(α)

1− α

∫ t

a
x′(τ ) exp

[

−
α(t− τ )

1− α

]

dτ (1)
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where M(α) is normalization function such that M(0) = M(1) = 1.

Definition 2 Let a, b, α ∈ R such that 0 < α < 1. The Caputo-Fabrizio fractional
integral of order α of a function x ∈ H1[a, b] is a linear operator defined by

CF Iαa x(t) =
(1− α)

M(α)
x(t) +

α

M(α)

∫ t

a
x(τ )dτ. (2)

Lemma 1 (Nchama 2020) Let x ∈ H1(a, b), a < b and 0 < α < 1. Then

CF Iαa

(

CFDα
a

)

x(t) = x(t)− x(a). (3)

Losada and Nieto (2015) modified CFD as

CFDα
a =

(2− α)M(α)

2(1− α)

∫ t

a

x′(τ) exp

[

−
α(t− τ)

1− α

]

dτ (4)

and defined the fractional integral associated to the CFD as

Definition 3 Assume 0 < λ < 1. The fractional integral of order λ of a function is
defined by

CF Iαa x(t) =
2(1− α)

(2− α)M(α)
x(t) +

2α

(2− α)M(α)

∫ t

a
x(τ )dτ, t ≥ 0. (5)

We consider high order neutral fractional integro-differential equation

CFDα
a

(

µ (.)
(

(η′′′ (.))
λ
))

(x) +

∫ d

c

γ(x, ξ)h (y (δ (x, ξ))) dξ = 0 (6)

with the condition
∫ +∞

a

dx

µ1/λ(x)
= +∞ (7)

where a ≥ 0, h : R+ → R
+, 0 < α < 1 and

η(x) = y(x) +

∫ x1

x0

ρ (x, τ) y (ω (x, τ)) dτ,

and the conditions below are met.

(i) λ is a quotient of odd positive integers.
(ii) µ(x) ∈ C ([a,+∞) ,R+) and µ′(x) ≥ 0.
(iii) ρ(x, τ), ω(x, τ) ∈ C ([a,+∞)× [x0, x1] ,R

+),
(iv) γ(x, ξ), δ(x, ξ) ∈ C ([a,+∞)× [c, d] ,R+), δ(x, ξ) is nondecreasing in ξ, a ≤

δ(x, ξ) ≤ x for any x ∈ [a,+∞).
(v) for any x 6= 0 and κ > 0, h(x) ≥ κxλ.
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A solution y(x) of (6), is a nontrivial real function in C ([x̃,+∞) ,R), x̃ ≥ a and

provides the Eq. (6) on [x̃,+∞), such that η(x), η′(x), η′′(x), µ(x) (η′′′(x))
λ
∈

C ([x̃,+∞)).

Lemma 2 Let z ∈ Cm
(

[a,∞),R+) be a function with z(m)(x) ≤ 0 for x ∈ [a,∞)
and not identically zero on any interval [b,+∞), b ≥ a. Then there exists an integer
k, 0 ≤ k ≤ m− 1, with k +m odd and such that for some b ≥ a, we have

(−1)k+iz(i) > 0 on [b,+∞) , i = 1, . . . ,m− 1,

z(j) > 0 on [b,+∞) , j = 1, . . . , k − 1, when k > 1.

Lemma 3 If h satisfies h(k)(x) > 0 and h(m+1)(x) < 0 for any k = 0, 1, . . . ,m and
x ∈ [a,∞), then

kh(x) ≥ xh′(x), x ∈ [a,∞).

Lemma 4 Let h ∈ Cm ([a,∞)). Assume that h(m) is of fixed sign and not identically

zero on [a,+∞). If h(x) > 0, h(m−1)(x)h(m)(x) ≤ 0 and limx→+∞ f(x) 6= 0, then
for every α ∈ (0, 1), there exist xα ≥ a such that

h(x) ≥
α

(m− 1)!
xm−1|h(m−1)|, x ∈ [xα,+∞).

3 Main Results

Theorem 1 Let λ be a quotient of odd positive integers. Suppose that the conditions
(7) and (I)-(V) satisfy and α ∈ (0, 1) and 0 < ν ≤ 1/3. For arbitrarily large values
of xν such that xν > a and xν ≤ δ(x, c) ≤ x, if the following equation holds

lim sup
x→+∞

CF Iαa

(

δλ/ν(x, c)

xλ/ν
γ̄(x)

)

= +∞, x ∈ [xν ,+∞), (8)

where γ̄(x) =
∫ d
c γ(x, ξ)dξ, then all the solutions of Eq. (6) are oscillatory.

Proof From the supposition (8), we have

lim sup
x→+∞

CF Iαa

(

δ3λ(x, c)

x3λ
γ̄(x)

)

= +∞, (9)

since 3λ ≤ λ/ν and δ(x, c)/x ≤ 1 for any x ∈ [a,+∞). Now, we consider that y(x)
is an non-oscillatory solution of Eq. (6) over [a,+∞). With no loos of generality, we
suppose that y(x) is eventually positive. In view of (6) with the initial conditions,
we obtain

CFDα
a

(

µ (.)
(

(

η′′′ (.)
)λ
))

(x) = −

∫ d

c
γ(x, ξ)h (y (δ (x, ξ))) dξ < 0.

For any ξ ≥ a, the above equation implies that
(

µ(ξ)
(

η′′′(ξ)
)λ
)

′

< 0. Let us assume
(

µ(ξ)
(

η′′′(ξ)
)λ
)

′

≥ 0. Then multiplying by some positive additional terms and
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integrating we can obtain CFDα
a

(

µ (.)
(

(

η′′′ (.)
)λ
))

(x) ≥ 0. So this leads us to a

contradiction. For any ξ ≥ a, we have µ(ξ)
(

η′′′(ξ)
)λ

≤ µ(a)
(

η′′′(a)
)λ

. We prove
that η′′′(ξ) > 0 holds for any ξ ≥ a under the condition (7). Thus, we assume the
contrary, i.e. η′′′(ξ) < 0. Hence, it is obvious that η′′(ξ) is decreasing. In addition,
we can write

η′′(ξ)− η′′(a) =

∫ ξ

a
η′′′(t)dt ≤ µ1/λ(a)η′′′(a)

∫ ξ

a

dt

µ1/λ(t)
,

or what is the same as

η′′(a)− η′′(ξ) ≥ µ1/λ(a)
(

−η′′′(a)
)

∫ ξ

a

dt

µ1/λ(t)
.

Letting ξ → +∞ and by using (7) we get contradiction. Thus we have η′′′(ξ) > 0 for

any ξ ≥ a. Notice that η(4)(ξ) < 0 since
(

µ(ξ)
(

η′′′(ξ)
)λ
)

′

< 0, µ(ξ) ≥ 0, µ′(ξ) ≥ 0

and η′′′(s) > 0. By Lemma 2, we have one of the two following cases:

η′(ξ) > 0, η′′(ξ) < 0, η′′′(ξ) > 0, η(4)(ξ) < 0,
(

µ(ξ)
(

η′′′(ξ)
)λ
)′

< 0, (10)

η′(ξ) > 0, η′′(ξ) > 0, η′′′(ξ) > 0, η(4)(ξ) < 0,
(

µ(ξ)
(

η′′′(ξ)
)λ
)′

< 0, (11)

for any ξ ≥ a. First let us consider the case (11). Not that η(x) is eventually increasing
since η′(x) > 0. Also, ω(x, τ ) ≤ ω(x, x1) due to τ < x1 and ω(x, τ ) is a nondecreasing
function with respect to the variable τ . Hence, −η (ω(x, τ )) ≥ −η (ω(x, x1)). More-
over, ω(x, τ ) ≤ x, hence −η (ω(x,x1)) ≥ −η(x). By the estimates −y(x) > −η(x),
−η (ω(x, τ )) ≥ −η (ω(x, x1)), −η (ω(x, x1)) ≥ −η(x) and −

∫ x1

x0
ρ(x, τ )dτ ≥ −P , it

follows that

y(x) = η(x)−

∫ x1

x0

ρ(x, τ )y (ω(x, τ )) dτ ≥ η(x)−

∫ x1

x0

ρ(x, τ )η (ω(x, τ )) dτ

≥ η(x)− η (ω(x, x1))

∫ x1

x0

ρ(x, τ )dτ ≥ η(x)

(

1−

∫ x1

x0

ρ(x, τ )dτ

)

≥ η(x)(1− P ).

(12)

Eq. (6) and the condition h(x) ≥ κxλ (x 6== 0) yield

CFDα
a

(

µ (.)
(

(

η′′′ (.)
)λ
))

(x) = −

∫ d

c
γ(x, ξ)h (y (δ (x, ξ))) dξ

≤ −κ

∫ d

c
γ(x, ξ)yλ (δ(x, ξ)) dξ.

Combining this with (12) we get

CFDα
a

(

µ (.)
(

(

η′′′ (.)
)λ
))

(x) ≤ −κ (1− P )λ
∫ d

c
γ(x, ξ)ηλ (δ(x, ξ)) dξ, x ≥ a.

Since δ(x, ξ) is a nondecreasing function with respect to the variable ξ, we have
δ(x, ξ) ≥ δ(x, c). Hence −η (δ(x, ξ)) ≤ −η (δ(x, c)). We then obtain

CFDα
a

(

µ (.)
(

(

η′′′ (.)
)λ
))

(x) ≤ −κ (1− P )λ
∫ d

c
γ(x, ξ)ηλ (δ(x, ξ)) dξ

= −κ (1− P )λ ηλ (δ(x, c)) γ̄(x), x ≥ a.

(13)
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By Lemma 3, it follows that η(ξ) ≥ ξ
3η

′(ξ) on [a,+∞), so we have

3

ξ
≥

η′(ξ)

η(ξ)
⇒ 3

∫ x

δ(x,c)

dξ

ξ
≥

∫ x

δ(x,c)

η′(ξ)dξ

η(ξ)
⇒

η (δ(x, c))

η(x)
≥

δ3(x, c)

x3
, (14)

for any x ∈ [a,+∞) in (13), we arrive at

CFDα
a

(

µ (.)
(

(

η′′′ (.)
)λ
))

(x) ≤ −κ (1− P )λ ηλ(a)
δ3λ(x, c)

x3λ
γ̄(x), x ∈ [a,+∞).

Thus, we have

CF Iαa

(

CFDα
a

(

µ (.)
(

(

η′′′ (.)
)λ
)))

(x) ≤ −κ (1− P )λ ηλ(a)CF Iαa

(

δ3λ(x, c)

x3λ
γ̄(x)

)

.

µ(x)
(

η′′′(x)
)λ

− µ(a)
(

η′′′(a)
)λ

≤ −κ (1− P )λ ηλ(a)CF Iαa

(

δ3λ(x, c)

x3λ
γ̄(x)

)

.

Hence, we obtain

µ(a)
(

η′′′(a)
)λ

≥ κ (1− P )λ ηλ(a)CF Iαa

(

δ3λ(x, c)

x3λ
γ̄(x)

)

. (15)

This gives a contradiction to (9). Now, considering the case (10). By the help of Eq.
(6), we have

µ(x)
(

η′′′(x)
)λ

− µ(a)
(

η′′′(a)
)λ

= −CF Iαa

(

∫ d

c
γ(x, ξ)h (y (δ(x, ξ))) dξ

)

.

Since h(x) ≥ κxλ (x 6= 0), it follows that

µ(x)
(

η′′′(x)
)λ

− µ(a)
(

η′′′(a)
)λ

≤ −κ CF Iαa

(

∫ d

c
γ(x, ξ)yλ (δ(x, ξ)) dξ

)

.

Moreover we noted that inequality (12) can be obtained similarly under the case (10)
by using only used the η(x) function that is to be eventually increased (η′(x) > 0).
Thus, using inequality (12) and the fact that η (δ(x, c)) ≤ η (δ(x, ξ)) for any c ≤ ξ,
we obtain

µ(x)
(

η′′′(x)
)λ

− µ(a)
(

η′′′(a)
)λ

≤ −κ (1− P )λ CF Iαa

(

ηλ (δ(x, c))
)

γ̄(x).

due to ν ∈ (0, 1/3], by Lemma 4, there exists xθ ≥ a such that η(x) ≥ νxη′(x) for
any x ∈ [xθ,+∞). Hence

η (δ(x, c))

η(x)
≥

δ1/ν(x, c)

x1/ν
, x ∈ [xν ,+∞),

since x ≥ δ(x, c) ≥ xν ≥ xθ. Therefore, we have

µ(a)
(

η′′′(a)
)λ

≥ µ(a)
(

η′′′(a)
)λ

− µ(x)
(

η′′′(x)
)λ

≥ κ (1− P )λ CF Iαa

(

ηλ (δ(x, c))
)

γ̄(x)

≥ κ (1− P )λ CF Iαa

(

ηλ(x)
δλ/ν(x, c)

xλ/ν
γ̄(x)

)

≥ κ (1− P )λ ηλ(a)CF Iαa

(

δλ/ν(x, c)

xλ/ν
γ̄(x)

)

due to ηλ(x) ≥ ηλ(a) for any x ∈ [a,+∞), which contradicts (8). Finally, this ends
the proof. �
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Theorem 2 Let us assume that the conditions (7) and (i)-(v) satisfy, where λ is a
quotient of odd positive integers, α ∈ (0, 1) and 1/3 < ν ≤ 1. If

lim sup
x→+∞

CF Iαa

(

δ3λ(x, c)

x3λ
γ̄(t)

)

= +∞, x ∈ [xν ,+∞), (16)

for some large values of xν such that xν > a and xν ≤ δ(x, c) ≤ x, where γ̄(x) =
∫ d
c γ(x, ξ)dξ, then all the solutions of Eq. (6) are oscillatory.

Proof Form (16), we find that

lim sup
x→+∞

CF Iαa

(

δλ/ν(x, c)

xλ/ν
γ̄(x)

)

= +∞, x ∈ [xν ,+∞) (17)

where 3λ > λ/ν and δ(x, c)/x ≤ 1 for any x ∈ [xν ,+∞). If we suppose that y(x) is
eventually positive and a nonoscillatory solution of the Eq. (6) over [a,+∞), then
we arrive at two possible cases using the same methodology to prove Theorem 1. In
this case, we reach the desired result thanks to the contradictory arguments to be
obtained. �

3.1 Example

Example 1 We consider the fractional integro-differential equation given below:

CFDα
(

(

η′′′(x)
)3
)

+

∫ 1

0

ξ

x
y3
(

xξ2

4

)

dξ = 0 (18)

for any x ∈ [a,+∞), where

η(x) = y(x) +

∫ 2

1

1

x
y

(

x+ ξ

3

)

dξ

and α ∈ (0, 1). For µ(x) = 1, h(x) = x3, δ(x, ξ) = xξ2/4, γ(x, ξ) = ξ/x, ρ(x, ξ) = 1/x,

ω(x, ξ) = x+ξ
3 and ξ ∈ [1, 2]. It is easily seen that conditions (I)-(V) are met, and

condition (7) is valid. Seeing that δ(x, ξ) = xξ2/4, let us show that the condition (8)
is held for some 0 < ν ≤ 1/3. Namely, we have

lim sup
x→+∞

CF Iα
(

(

xc2

4

)λ/ν
1

xλ/ν
1

2x

)

= +∞, x ∈ [a,+∞).

There, from Theorem 1 all solutions of the Eq. (18) are oscillatory.
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