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Abstract

Enhanced index tracking (EIT) problem is concerned with selecting a tracking portfolio to beat the benchmark on return
while having the minimum tracking error. This paper addresses the EIT problem based on uncertainty theory where stock
returns are treated as uncertain variables instead of random variables. Under the framework of uncertainty theory, the paper
proposes a new uncertain EIT model where the higher-order moment of the downside is used as the tracking error measure, as
higher-order moment makes the model more widely applicable and the downside risk is in line with investors’ perception of
risk. Besides, some realistic constraints are considered in the new uncertain EIT model. Then, the properties of the proposed
model are discussed. To solve the model, we proposed, which is a nonlinear integer programming problem, a meta-heuristic
algorithm presented. The efficiency of the algorithm and the applications of the proposed model are illustrated through
numerical experiments.

Keywords Portfolio selection - Enhanced index tracking optimization model - Uncertain programming - Higher-order

moment

1 Introduction

The enhanced index tracking strategy is to select a tracking
portfolio to beat the benchmark on return while having the
minimum tracking error. In recent years, the enhanced index
funds perform well and their scale grow rapidly (Jorion 2002;
Filippi et al. 2016), so the EIT strategy is highly praised in the
investment industry. In financial academia, the EIT problem
has also attracted scholars’ attention. One central research
question involves the definition of the tracking error and the
corresponding construction of the EIT model. In an important
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work, Roll (1992) first uses the variance of the difference
between tracking portfolio returns and benchmark returns
(TEV) as the tracking error measure and proposes the TEV
criterion to build the EIT model. Then, many scholars have
developed this approach further by, e.g., adding a constraint
on the tracking portfolio variance that investors can take to
reduce risk (Jorion 2003).

However, variance as the tracking error measure has been
challenged, as it implies that investors weigh the underper-
formance and overperformance of their tracking portfolios
relative to the benchmark equally. Actually, in the EIT strat-
egy, investors welcome the overperformance and do not
want the underperformance. So the symmetric tracking error
measures are no longer suitable. For this reason, some schol-
ars begin to use the downside risk measure. The downside
risk measure is consistent with the investor’s perception of
risk because most investors understand risk as the potential
underachievement of a target return by an asset (Mao 1970).
Among many downside risk measures, the absolute downside
deviation has become a popular one in the EIT problem. For
example, Rudolf et al. (1999) use the absolute downside devi-
ation as the tracking error measure to propose a linear EIT
model and compare it with EIT models using other tracking
error measures. Lejeune (2012) provides a game theoreti-
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cal formulation for the EIT problem in which the minimum
excess return over all allowable probability distributions is
maximized subject to the absolute downside deviation track-
ing error constraint. Gaustaroba et al. (2016) put forward an
EIT model in which they maximize the ratio of the upside
and downside deviations between the tracking portfolio and
the benchmark returns. In addition to the absolute downside
deviation tracking error measure, the higher-order moment
of the downside is also used as a tracking error measure in the
literature. Higher-order moment contains more information,
and it can make the model more widely applicable (Maringer
and Parpas 2009). At present, few studies focus on the EIT
problems involving the higher-order moment of the downside
as the tracking error measure. To the best of our knowledge,
we only find that Yu et al. (2006) have employed the higher-
order moment of the downside as a tracking error measure
in their model.

Realistic constraints are often considered when construct-
ing the EIT models. For example, Beasley et al. (2003)
take into account the transaction costs and the number
of stocks that can be purchased in their tracking model.
Strub and Baumann (2018) present a mixed-integer linear
programming formulation with constraints of the capital
budget, transaction costs, and the number of stocks that
can be purchased. Besides, Andriosopoulos and Nomikos
(2014) consider the realistic constraints of cardinality and
min./max.weight when reproducing the performance of a
geometric average Spot Energy Index. SantAnnaetal. (2017)
consider the realistic constraint of cardinality when investi-
gating the out-of-sample performance of cointegration and
correlation methods for the EIT strategies. When the EIT
models contain realistic constraints, it is difficult to give
the analytical solution of the proposed model. So scholars
use algorithms to solve their EIT models. Guastaroba and
Speranza (2012) present a heuristic framework called Ker-
nel Search to solve their mixed-integer linear programming
formulations for the EIT problem. Filippi et al. (2016) modify
the Kernel Search heuristic to solve the bi-objective program-
ming they proposed for the EIT problem.

In the above studies, probability theory is used as a main
mathematical tool. Though probability theory is a powerful
tool for helping people deal with indeterminate parameters,
its use is conditional upon there being enough valid data so
that obtained distributions from the data are close enough
to the real frequencies. Yet there exist situations in reality
where people have few data or the data are invalid due to
unexpected events in society. For example, the outbreak of
COVID-19 has led to a series of unexpected events so that
historical data cannot reflect the future effectively. Besides,
some empirical tests show that in many cases observed data
in the financial market are not random variables. By using the
two-sample Kolmogorov—Smirnov test, Ye and Liu (2022a)
show US Dollar to Chinese Yuan (USD-CNY) exchange rates
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cannot be treated as random variables because residuals from
different parts are neither from the same population nor white
noise in the sense of probability theory. Similar tests also
show that Alibaba stock prices (Liu and Liu 2022) and GDP
(Ye and Liu 2022b) are not suitable to be treated as random
variables. Therefore, there does exist a situation where prob-
ability theory is not applicable in reality.

To handle this problem, Liu (2007) proposes a new theory,
i.e., uncertainty theory. Uncertainty theory is a new branch of
mathematics and is developed based on four axioms. Nowa-
days, uncertainty theory has been applied in solving various
optimization problems (Liu 2010; Gao 2011). Particularly,
Huang (2010) is the first to use uncertainty theory to study
portfolio selection systematically. Subsequently, scholars
have studied many portfolio problems based on uncertainty
theory. Wang and Huang (2019) discuss the effect of options
on the portfolio performance and find that portfolios with
options gain higher expected returns than those without
options. Huang and Yang (2020) study how the background
risk affects investment decisions. They give properties of
the portfolio efficient frontier when stock and background
asset returns all take normal uncertainty distributions and tell
how background risk affects portfolio selection decisions. To
reflect different attitudes toward risk in one portfolio invest-
ment, Huang and Di (2020) apply mental accounts to an
uncertain optimization model. Besides, Ning et al. (2015)
consider triangular entropy in the uncertain portfolio selec-
tion problem. Qin et al. (2016) study the uncertain portfolio
adjusting problem. Zhang (2019), and Chen et al. (2019)
focus on multi-period uncertain portfolio selection problem.
Besides, scholars further discuss the performances of uncer-
tain portfolios. Studies show that the returns or the expected
returns of uncertain portfolios are higher than those of tra-
ditional portfolios in some situations. For example, Huang
and Yang (2020) present evidence that the return of the port-
folio got from the uncertain mean-variance model is greater
than that of traditional Markowitz’s mean-variance model
in volatile markets. Xue et al. (2019) find that the expected
return of the aggregate portfolio when security return rates
are uncertain variables is greater than the expected return
of the aggregate portfolio when security return rates are ran-
dom variables in the case of facing invalid data. It can be seen
from the above examples that the uncertain portfolio selec-
tion models have some advantages. Yet so far, no work deals
with the uncertain EIT problem. How to build the uncertain
EIT model? How does the uncertain EIT model perform? The
lack of research on these issues motivates us to do the study.

The rest of the paper is organized as follows. In Sect. 2,
we provide the necessary knowledge of uncertainty theory
for easy understanding of our paper. In Sect. 3, we propose
an uncertain EIT model with higher-order moment of the
downside and discuss its properties. In Sect.4, we present a
meta-heuristic algorithm for the proposed model. In Sect.5,
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we report the experimental results. Section 6 concludes the
paper.

2 Preliminaries

In this section, we review some necessary knowledge about
uncertainty theory.

Definition 1 (Liu 2007) Let I" be a nonempty set, and L a o-
algebra over I'. Each element A € L is called an event. A set
function M{A} is called an uncertain measure if it satisfies
the following four axioms: (i) Normality, (ii) Duality, (iii)
Subadditivity, (iv) Product Axiom.

Definition 2 (Liu 2007) An uncertain variable is a function
& from an uncertainty space (I', L, M) to the set of real
numbers such that {§ € B} is an event for any Borel set B of
real numbers.

An uncertain variable £ is called normal if it has a normal
uncertainty distributions

®(1) = <1+exp <”(e_t)>>] ren (1
a "B ) T

denoted by & ~ A (e, o) where e and o are real numbers and
o > 0.

Let & and n be uncertain variables. We say & > nif&(y) >
n(y) for almostall y € T'.

Definition 3 (Liu 2007) For any real number ¢, the uncer-
tainty distribution @ of an uncertain variable £ is defined
by

P(r) =M{§ <1}. @)

An uncertainty distribution @ (¢) is called regular if it is a
continuous and strictly increasing function with respectto ¢ at
which0 < ®(¢) < 1,and lim &) =0, Ilim &() =

t——00 t—+00
1. It is seen that normal uncertainty distribution is regular.

A regular uncertainty distribution ® has an inverse func-
tion ®~! (&) which is called the inverse uncertainty distribu-
tion.

The operational law is given as follows:

Theorem 1 (Liu 2010) Let &1, &, ...,&, be independent
uncertain variables with regular uncertainty distributions
Dy, Do, ..., O, respectively. If f(&1, &, ..., &) is strictly
decreasing withrespectto &y, &, ..., &, and strictly increas-
ing with respect to &p+1, Em+2, ..., En, then & = f(&1, &,
..., &) is an uncertain variable with inverse uncertainty dis-
tribution function

V) =f(@] A —a),..., 0, (1 —a),

-1 -1 @)
D (@), ..., P, (@), @<L

According to the operational law, the following theorem
can be obtained:

Theorem 2 (Liu2010) Let & and &, be independent normal
uncertain variables N (eq, 1) and N (e3, 07), respectively.
Then, the sum & + & is also a normal uncertain variable,
ie.,

Nei,01) + N(ez, 00) = N(ey + ez, 01 + 02). 4)

The product of a normal uncertain variable N (e, o) and a
scalar number k > 0 is also a normal uncertain variable,
Le.,

k-N(e, o) =N(ke, ko). (@)

The expected value and variance of an uncertain variable
are defined as follows:

Definition 4 (Liu2007) Let & be an uncertain variable. Then,
the expected value of & is defined by

00 0
El£] = / MiE = r}dr — / M(E < ridr ©)
0 —00

provided that at least one of the two integrals is finite.

Definition 5 (Liu 2007) Let £ be an uncertain variable with
finite expected value e. Then, the variance of £ is defined by

VI[E] = E[(£ — ). (7

Since operations of the uncertain variables are mainly
in the form of inverse uncertainty distributions, Liu (2010)
and Yao (2015) presented following formulas to calculate
the expected value and variance of an uncertain variable via
inverse uncertainty distributions.

1
E[£] = / >~ (@)da. (8)
0
1 2
V[g]:/ (qu(a)—e) da. ©)
0
For a normal uncertain variable £ ~ N(e, o), we can
calculate that its expected value E[§] = e and variance
Vgl =02

The moment of an uncertain variable is defined as follows:

Definition 6 (Liu 2010) Let £ be an uncertain variable and
let k be a positive integer. Then, E[£¥] is call the k — th
moment of &.
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3 The uncertain EIT model with higher-order
moment of the downside

In this section, we will provide an uncertain EIT model in
which the tracking error is measured by the higher-order
moment of the downside.

3.1 The assumptions and notations

Suppose there are n different stocks in the asset universe.
Short-selling is not allowed. Let Xy denote the benchmark
with the uncertain return r1. Let n x 1 vector Xp denote
the tracking portfolio with the uncertain return rp which is
independent of r1. For example, rp represents the return of
a portfolio from Shanghai Stock Exchange and ry represents
NASDAQ-100 Index return, and they can be converted into
independent variables by using the factor method in Huang
and Zhao (2014). Next we introduce the rest of the notations
used in this paper. For convenience, we show them in Table
1.

3.2 Higher-order moment of the downside

The goal of the EIT strategy is to track a benchmark
index closely while providing some excess returns. Gener-
ally speaking, the tracking portfolio’s return is not exactly
the same as the benchmark’s. There are positive or nega-
tive deviations between them. Investors welcome the positive
deviation and do not want the negative deviation. So in our
model, we will control the negative deviation.

Remember that rp and r| represent the uncertain returns of
tracking portfolio and benchmark, respectively. Then (rp —
r1)~ represents the negative deviation of rp with respect to
r1. For simplicity, we write (rp — r1)~ = min(rp — r1, 0).
According to Definition 6, the m-th moment of |(rp —ry) ~| is
E[|(rp—rp)~|"],m = 1, 2, ....Let ¥ denote the uncertainty
distributions of »p — . Then according to Definition 4, we
can have

+oo

E[|rp — D" |"1= M{|(rp —rp~ " = t}dt

0
- f M{rp — )~ ™ < }dt

~+00
= M{|(rp — )" = 1)dt
o (10)
= M{op—r) < -V
0

= [T (-¥)u

0
:m/ (=)™ "W (r)dr.

—00
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Equation (10) provides a method for calculating the higher
order moment of an uncertain variable.

3.3 The uncertain model

The uncertain EIT model with higher-order moment of the
downside is designed to maximize the expected excess return
over the benchmark subject with a fixed level of tracking
error. The expected excess return is

E[rp] — E[r] = E [ina} — Elnl. (1)
i=1

The tracking error is measured by the higher-order moment
of the negative deviation of rp with respect to ry, i.e.,

El|(rp — )~ "] (12)

So the uncertain EIT model with higher-order moment of the
downside is as follows:

max E ing,} — E[r1)

Li=1

subject to:
n

E <in&' - VI)
i=1

n

in =1

i=1

x>0,i=1,2,...,n,

m

< Dp, 13)

where D, is the investors’ tolerance level of the tracking
error. By varying the value of m, model (13) can be changed
into different uncertain EIT models that respond to different
risk preferences of the investors.

Next we extend model (13) to a general form by including
some realistic constraints. (i) The minimum transaction lots
constraint. Because some securities markets have a minimum
transaction lots limit, investors can only buy an integral multi-
ple of the minimum transaction lots instead of any number of
shares. To incorporate minimum transaction lots constraint,
let w; denote the number of transaction lots invested in stock
i and N; represent the number of units of stock i required as
the minimum quantity. So w; - N; represent the total quantity
to be invested on stock i.

(i1) The budget constraint. In real investment, investors
usually set budgets. Let P; denote the unit market price of
stock i. Thus, >/, w; - N; - P; represents the total amount
of money invested in n stocks.

(iii) The limits on holdings and cardinality constraint. The
first one is to make sure that each stock is allowed to be
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Table 1 Notations used in the

Notations Meanings
paper

Xp The tracking portfolio

Xi The weight on stock i in the tracking portfolio Xp

rp The uncertain return of the tracking portfolio Xp

r The uncertain return of the benchmark index Xy

& The uncertain return of stock i

w; The number of transaction lots invested in stock i

N; The number of units of stock i required as the minimum quantity

P; The price per share of stock i

l; The minimum proportion allocated to stock i if it is held

uj The maximum proportion allocated to stock i if it is held

(0] The number of stocks that investors wish to hold in the tracking portfolio
l=Q=n

Zi The binary variable. If stock i is included in the portfolio, then z; = 1
otherwise, z; = 0

B The amount of investment after paying transaction costs

invested in specific ranges, i.e., 0 < I; < x; < u; < 1. The
second one ensures that only in a specified number of stocks
the investment can be made, i.e., Z?:l z; = Q where z; €
{0, 1}. If z; = 1, then the stock i is chosen for investment;
otherwise not.

Based on the aforementioned discussions, the uncertain
EIT model with higher-order moment of the downside con-
sidering realistic constraints can be formulated as follows:

M n
max E | Y xi& | — Eln]
Li=1
subject to:
n —m
E in&' — I < D,
i=1
n
Z(z)i -N;-P;i <B
i=1 (14)
wj - Ni . P,'
Xi =y
X Nio P
n
D=0
i=1
li-zi <xi<uj-z
z; € {0, 1}
w; are integers, i =1,2,...,n.

3.4 Discussion on the proposed model

In this section, we compare our model (14) with other
uncertain EIT models. First, the comparison is conducted

between models with higher-order and lower-order moments.
In model (14), when m > 3, tracking error is measured by
the higher-order moment of the downside. Below we give an
uncertain EIT model in which the tracking error is measured
by the lower order moment of the downside, i.e., model (15):

n

max E ZX,E,' — E[r]
i=1

subject to:

n
E||[D x& —n

i=1

n

Za)i -N;- P <B
i=1 (15)
w; - Ni - P;

Y wi-Ni-Pi

Yu=0

i=1

X =

li-zi <xi<uj-z
zi € {0, 1}

w; are integers, i =

1,2,...,n.
We compare model (14) with model (15), and get the follow-
ing result.

Theorem 3 With the optimal portfolio produced by model
(15), either the expected return is no bigger or the tracking
error is higher than that with the optimal portfolio produced
by model (14).

@ Springer
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Proof Let Obj14 and Obj5 denote the objective functions of
models (14) and (15), respectively, the corresponding optimal
solutions are X4 and Xjs5. (1)X;5 does not satisfy the con-
straints in model (14), so X5 is infeasible for model (14).
This means that the tracking error is higher than that of model
(14). (ii)Therefore, we get Obj15(X15) < Obj1a(X14). This
means that the expected return is no bigger than that of model
(14). O

Theorem 3 implies that the expected return of the model
with higher order moment may be greater than that of the
model with lower order moment, which gives the advantage
of higher-order moment as the tracking error measure in the
EIT problems.

Then the comparison is conducted between models with
and without realistic constraints. We compare models (13)
and (14), and obtain the following result.

Theorem 4 The optimal objective value of the uncertain EIT
model with realistic constraints is smaller than that of the
model without realistic constraints.

Proof Suppose X3 and X4 are the optimal solutions of mod-
els (13) and (14), respectively, and their objective functions
are Obji13 and Obj14. Obviously, X4 is a feasible solution
of model (13) but X3 is not necessarily a feasible solution of
model (14). So X3 # Xj4. Since X3 is an optimal solution
of model (13) and X4 is a feasible one, we get Obj13(X14) <
0Obj13(X13). Since the objective functions of model (13)
and model (14) are the same, Obj13(X14) = Obj14(X14).
Therefore, Obj14(X14) < Obj13(X13). Thus, Theorem 4 is
proved. O

Though the optimal objective value of model (13) is rel-
atively big, there do exist some realistic constraints in the
real investment. Therefore, it is very necessary to consider
realistic constraints in modeling.

3.5 The deterministic form

To solve model (14), we give the deterministic form of the
model below.

Theorem 5 Suppose stock returns & and the benchmark
return ry have regular uncertainty distributions ®;,i =
1,2,...,n, and ®y, respectively. Then model (14) is equiv-
alent to the following model:

@ Springer

1 n 1
max/ inCIDi_l(oe)da—f @;l(a)da
(e 0

subject to:

0
m/ (=)™ "W (r)dr < D,,

Ul =) x® (@) - o) (1 —a)
i=1

n
Zwi'Ni'PifB (16)
i=1
w; - N; - P;
Xi =S
2=y @i Ni- P

Zzl' =0
i—1

lizi <xi <uj-z
z; € {0, 1}

w; are integers, i =1,2,...,n.

Proof (i) Since x; > 0 and &; have regular uncertainty distri-
butions ®;, according to Theorem 1, the inverse uncertainty
distribution of 3", x;& is Y__, x;®; ' (). Then according
to Eq. (8), we have

1 n

E |:in§,-:| =/ Zx,-@;l(a)doc
i=1 0 =1

1
Elr] = / @, H(a)da.
0

(i) Letn = >/, x;& — r1 and W denote the uncertainty
distribution of 1. Since we suppose that &; is independent of
r1, according to Theorem 1, we can have the inverse uncer-
tainty distribution of 7 is W~ (a) = Y/ x®; (@) —
<I>;1 (1 — «). Then according to Eq. (10), we have

n - 0
E [| (iné;i —n) |’"} =m/ (=" W (@)de
i=1 -

where U~ (@) = Y7 5@ @) — @' (1 —a). O

When stock returns all take normal uncertainty distribu-
tions, we further give the deterministic of model (16).

Theorem 6 Suppose stock returns & and the benchmark
return ry take normal uncertainty distributions, i.e., & ~
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N(e;, 0;) andry ~ N (ey, o7), respectively. Then model (16)
can be transformed into the following form:

n
maxe,-e,- —er
i=1
subject to:
-1
0 n
" xijei—e; —t
m/ (=" 1+exp M dt < Dy, ()
—00 \/g(zizl xjoj +o7)

n

Zw;~Ni~PiSB (I
i=1

wi - Ni - Fi ()

Xi= =

XiwiNio P

n

Yu=0 av)
i=1
li-zi <xi <uj-zi V)
zi €{0, 1} (VD
w; are integers, i =1,2,...,n. (VID)

a7

Proof (i) As x; > 0 and &; take normal uncertainty distribu-
tions, according to Theorem 2, we can proof that Y »_; x;&;
takes a normal uncertainty distributions, i.e.,

n n n
inéi ’VN Zx,-e,-, indi .
i=1 i=1 i=1

For a normal uncertain variable £ ~ A'(e, o), we can
calculated that its expected value E[§] = e. So we have
E [Zz"l:l xié,-] =", xie; and E[r[] = e;.

(i) Similarly, according to Theorem 2, we can prove that
Z?: 1 Xi&; — 1 also takes a normal uncertainty distributions,
ie.,

n n n
iné,'—rl’\'/\/ inei—eI, Z)C,’O‘l'—i-O'] .

So we can get the uncertainty distribution of >/, x;& — ry.
Then according to Eq. (10), we have

E |: (inéi —rl) i|
i=1
0 n -1
m—1 7)o xiej —er —1)
= _— 1 d .
m/;oo( & < +exp< V3, xioi 4+ o1) )) t

O

4 Solving method based on discrete artificial
bee colony algorithm

Model (17) is an NP-hard optimization problem that is diffi-
cult to obtain an optimal solution with accurate algorithms.
Due to this difficulty, meta-heuristic algorithms have become
popular in this context because they can obtain an acceptable
optimal solution within an allowable time for the NP-hard
optimization problem. As one of the meta-heuristic algo-
rithms, the artificial bee colony (ABC) algorithm (Karaboga
2005; Karaboga and Basturk 2007) is simple to implement
and has strong robustness. The literature shows that the ABC
algorithm performs well not only in continuous optimization
problems but also in many discrete optimization problems
such as economic maintenance planning problem (Chen et al.
2020), flow shop scheduling problem (Xuan et al. 2019) and
clustering problem (Masdari et al. 2019). Therefore, in this
paper, we will use the discrete ABC algorithm for solving
the proposed optimization model (17).

4.1 Solution feasibility analysis of proposed model

In this section, we conduct the solution feasibility analysis
of model (17). The constraints mentioned below are all from
model (17).

First, we give “parameter conditions." From constraint
(II) we get Y, x; = 1. Then by summing constraint (V)
with respect to i, we have Y ', lizi < 1 < Y37 uiz.
Obviously, if Y/ iz > 1 or Y/ ujzi < 1, then the
feasible solution does not exist. Thus, “parameter conditions"
are as follows:

@) Z?:l lizi < 1.
() Y7 uizi > L.

Then, we give “solution generating conditions." From con-
straint (IV) we know that the number of z; which equals 1
value is Q and the number of z; which equals O value is
(n — Q). From constraints (II) and (V), we can get that if
zi = 0, then w; = 0. The upper limit of w; is obtained
from constraints (II), (IIT), and (V). So “solution generating
conditions" are as follows:

() Yz = 0.z €{0,1}.
(1) If z; = 0, then w; = 0.
(i) If z; = 1, then w; < %, w; are positive integers.

If z; and w; are generated so that the solution generating con-
ditions are satisfied, the optimization problem to be solved
is to obtain a solution that maximizes the objective function
under constraints (I), (I), and (V). We improve the exploita-
tion ability of the algorithm by ensuring that the above three
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z, | z, z

X

wo|ow, w

Fig.1 Solution coding structure

constraints are satisfied when generating and updating solu-
tions in our discrete ABC algorithm.

4.2.2 Population initialization

The SN initial solutions to compose the population are ran-
domly generated while satisfying the solution generating
conditions in Sect.4.1. The pseudo-code for generating each
solution X ;, j = 1,2, ..., SN, in the initialization phase is
shown in Algorithm 1.

Algorithm 1
Random generation of solution

Input: problem parameters (n, Q, B, N;, P;, l;, u;)

Output: a generated solution (X)

01: select randomly Q stocks i,i € I /* I is a set of Q distinct stocks */
02: fori =1 : n /* Determination of z; and w;

03: if i € I then according to the solution generating

04: z; = 1 conditions */

05: w; is equal to a random positive
integer not larger than ,ﬁ_ L}",I_

06: else

07: zi=0

08: w; =0

09: endif

10: end for

11: generate X

4.2 Discrete ABC algorithm for proposed model

The ABC algorithm is a meta-heuristic algorithm inspired
by the behavior of bees. In the ABC algorithm, bees are
divided into three classes: employed bees, onlooker bees,
and scouts. The employed bees use the previous food source
information to find new food sources and share the infor-
mation with onlooker bees who wait in the hive and look
for new food sources according to the information shared by
employed bees. The task of scouts is to find a new valuable
food source. They randomly look for a food source near the
hive. The goal of the whole colony is to find the nectar source
with the largest amount of nectar.

Combining the basic principles of the ABC algorithm with
the uncertain EIT model, the main steps of the algorithm for
solving the proposed model (17) are as follows.

4.2.1 Solution coding method

The optimization problem to be solved is described by
the binary variables z; and the integer variables w;, i =
1,2, ..., n. Inthe algorithm, a solution X is codedas a2 x n
matrix in which the first row consists of z; and the second
row consists of w; as shown in Fig. 1.

@ Springer

4.2.3 Crossover and Mutation

In the employed bee phase and the onlooker bee phase, the
solution is updated through crossover and mutation. In the
algorithm, we implement two-point crossover and two-point
mutation and make sure that the solution generating condi-
tions are satisfied. In the two-point crossover process, first,
we find the positions where the numbers of 1 value are the
same from 1 to that position in X ; and X. Let H be the set of
such positions. Now we give an example in which the param-
eter settings are n=9 and Q=5. As shown in Fig.2, there are
two solutions X; and X. At the position i = 3, both X
and X contain two 1’s in (1:3) slices, so i = 3 becomes
an element of H. After constructing H in the same way, we
select two random positions i; and i» in H and get that the
slices (i1 + 1 : i2) of X; and X contain the same number
of 1’s. Then we replace the slices (i; + 1 : i) of X; and Xj
with each other to generate new solutions X{°¥ and X7°% as
shown in Fig. 2.

The two-point mutation method is as follows. Let the set of
positions where z; takes 1 value be Hj and the set of positions
where z; takes 0 value be H; in the solution X;. First, we
select randomly the positions /| and i; from sets H| and H,
respectively. Then we invert the values of z;, and z;, at the
i1 and ip positions. We give the w;, value as 0 and w;, as

o Bu; .
a random positive integer not larger than uﬁ, . Repeat this
n'n

mutation process py X n times as shown in Fig. 3. From the




A new uncertain enhanced index tracking model with higher-order moment of the downside

11387

new solutions obtained by crossover and mutation, the best
solution is selected according to the tournament selection
rule. Algorithm 2 shows the process of generating a new
solution by crossover and mutation.

(D), (I), and (V) need to be considered when calculating the
fitness value.

The probability that the onlooker bee goes to the jth food
source is determined by the following equation:

Algorithm 2
Generation of new solution by Crossover and Mutation

Input: solution (X ;) and its neighborhood (Xy)
Output: new solution (X*")

01: find the positions i where the numbers of 1s are /* Two-point crossover */

the same in X; and Xy, i € H /* H is a set of those positions */
02: choose randomly two positions, i1 and i, in H

03: generate X{“" by replacing (i; + 1 : i) elements /* See Fig. 2. */

of X ; with ones of X
04: generate X7° by replacing (i1 + 1 : i) elements
of Xy with ones of X ;
05: X’ = X /* Mutation */
06:fort =1:py xn
07: select randomly a position i; among 1 elements in X’
08: z; =0

09: w;; =0
10:  select randomly a position iy among 0 elements in X ;
11: z i = 1
12: wj, is equal to a random positive integer not
larger than "2
g Ni, Piy

13:  generate X5 by replacing (i1,i2) elements of /* See Fig. 3.*/
X’ with the above
14: X' = X5
5: end for
16: take out the best solution X" by tournament
selection with X7, X7¢* and X3¢V

4.2.4 Fitness function

The fitness values are used to evaluate the best solution in the
tournament selection and to calculate the probability that the
onlooker bees select a specific food source (solution) in the
onlooker bee phase. The higher the fitness value, the better
the solution, and the greater the probability that onlooker
bees will choose the solution. The fitness fit; of solution X;
is determined by the following equations:

L
Fi=—rX)=Y aX) (18)
=1
1 .
fit; = 1 75 F; =0 (19)
" 1+ abs(Fy). i Fj <0

where f(X) is the objective value at X; and g;(X;) is the

[th constraint violation value at X; which is normalized so

that max g;(X;) = 1. L is the number of constraints (I), (II)
j

and (V) of model (17), that is, L = 2n + 2. In our algorithm,
all solutions in the population are generated and updated to
satisfy the solution generating conditions, so only constraints

P fit; (20)
J T &SN g,
Zj:l ﬁt]
H:o 3 4 6 9
Y 0 1 1 0 0 i 0 1 1
! Wi | Wi | Wis e | Wis | Wi | Wiz | Wig | Wy
be 1 1 0 0 i 0 1 i 0
U Wi | Wea | Was | Waa | Was | Wi | Wer | Wis | Wio
xrer 0 1 1 0 1 0 0 1 1
1
Wit | Wia | Wis | Wiy | Wis | Wi | Wiz | Wis | W)o
X 1 1 0 0 0 1 1 i 0
2
Wit | Wia | Wis | Wia | Wis | Wi | Wir | Wis | Wio

Y 0 1 1 0 0 1 0 1 1
TA Wy E Wi | Wis | Wiy | Ws | Wis | Wi | Wy | Wy
1 0 0 1 1 0 1 1 1 0
X — —
W, Wi | Wy | Wis | Wi | W5 | W

Fig.3 Mutation with probability py,
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4.2.5 Scout bee strategy

In the algorithm, the employed bee of food source (solu-
tion) that is not updated more than Limits cycles becomes
a scout bee. The scout bee discards the original food source
and randomly searches for a new one. A new solution is
generated according to Algorithm 1 to satisfy the solution
generating conditions in Sect.4.1. The pseudo-code of the
total algorithm is listed in Algorithm 3. In Algorithm 3,
MC N indicates the maximum number of cycles.

Table2 Codes and Prices of 10 stocks in the investor’s asset universe

Stock i Stock code Price Stock i Stock code Price
1 600929 6.61 6 601698 11.55
2 603214 42.75 7 601330 10.75
3 601990 13.16 8 002371 93

4 000034 20.59 9 600841 741
5 002032 77.89 10 603712 25.15

The unit of stock price is RMB

Algorithm 3
Discrete ABC algorithm for proposed model

Input: common parameters (MCN, SN, Limits, pm),
problem parameters (n, Q, etc),
objective function ( f (X)),

constraint violation function (g;(X),/ =1, ..., 2n 4+ 2) /* Constraints (I), (I)

and (V) of model (17) */
Output: best solution (Xpes;)

01: if parameter conditions are not satisfied, then return /* Parameter conditions

are in Section 4.1 */

02: for j = 1: SN /* Initialization of
population */

03:  generate solution X; by using Algorithm 1
04: end for

05: cycle =1

06: while cycle < MCN

07: for j = 1:SN /* Employed bee phase */

08: select randomly X; as neighborhood solution

09: generate new solution X’J’.e"’ by using Algorithm 2
with X; and X

10: update/maintain X; by tournament selection
with X; and X;ew

11:  end for

12:  calculate probability { P} for onlookers (s = 1 : SN) /* Onlooker bee phase */

13: for j =1:SN

14: select X; for jth onlooker bee by roulette selection
with probability { P}

15: select randomly X as neighborhood

16: generate new solution X7“"’ by using Algorithm 2
with X; and Xj
17: update/maintain X; by tournament selection
with X; and X%
18: end for
19: if solution X* is not updated more than Limits, /* Scout bee phase */
20: generate new solution X" by using Algorithm 1
and replace X* with X"¢"
21: endif

22: cycle = cycle + 1
23: end while
24: take out the best solution Xpeg;
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Table 3 Uncertainty annual

returns of 10 stocks in the year Stock i Distribution Stock i Distribution

2020 1 N(0.0560, 0.0890) 6 N(0.1760, 0.2670)
2 N (0.0890, 0.1200) 7 N(0.1990, 0.2990)
3 N (0.1000, 0.1500) 8 N (0.2100, 0.3000)
4 N(0.1200, 0.2100) 9 N(0.2300, 0.3100)
5 N(0.1560, 0.2400) 10 N(0.2500, 0.3400)

Table 4 Resul.ts‘of objective SN MCN LC o Max Min Mean Std

values under different

parameters 20 3000 30 0.1 0.049819993 0.039279792 0.044999299 0.003400342
50 10,000 50 0.1 0.053265103 0.045712645 0.050131270 0.002987591
20 3000 30 0.2 0.056482236 0.052386886 0.053965506 0.001400843
30 3000 30 0.2 0.056475331 0.053662966 0.055081435 0.000886998
50 3000 30 0.2 0.056822179 0.052532265 0.055262735 0.001215924
20 5000 30 0.2 0.056904570 0.052722858 0.054909519 0.001352166
30 5000 30 0.2 0.056101794 0.052746888 0.054526161 0.001106524
50 5000 30 0.2 0.057563928 0.053874579 0.055820492 0.001022906
20 10,000 30 0.2 0.056835820 0.052537029 0.054975260 0.001244287
30 10,000 30 0.2 0.057209390 0.054099047 0.055546643 0.001058245
50 10,000 30 0.2 0.057446022 0.054819683 0.056078805 0.000788396
20 3000 50 0.2 0.055979326 0.050200949 0.054170810 0.001598595
30 3000 50 0.2 0.056502468 0.049824471 0.054070642 0.002249976
50 3000 50 0.2 0.056377331 0.053255532 0.055173151 0.001211683
20 5000 50 0.2 0.056075492 0.051490290 0.054140908 0.001502307
30 5000 50 0.2 0.056647327 0.052077561 0.055367282 0.001428254
50 5000 50 0.2 0.056978496 0.053878936 0.055729771 0.001031324
20 10,000 50 0.2 0.057294428 0.052376487 0.055535992 0.001452142
30 10,000 50 0.2 0.056482289 0.054397561 0.055686587 0.000810668
50 10,000 50 0.2 0.056722580 0.053431789 0.055515924 0.000969643
20 3000 30 0.3 0.056665311 0.052942662 0.054948114 0.001439609
20 3000 30 0.4 0.055967714 0.051401768 0.053364756 0.001496180
20 3000 30 0.6 0.055271474 0.048776630 0.051372146 0.001930273

5 Numerical examples

To clearly illustrate the modeling idea and the designed algo-
rithm, we present some numerical examples. In our examples,
stock returns are treated as uncertain variables. Moreover, the
algorithms are run in MATLAB and all experiments are con-
ducted on a PC with a 3.6 GHz processor and 8 GB RAM.

5.1 Computational results of the tracking portfolio
5.1.1 Data

An investor wants to track the SSE50 index whose return
distribution is A/(0.130, 0.220). The parameter m in model
(17) is set at 3. According to three prospectuses of enhanced
index funds coded 005,850, 009,059, and 161,037 in China’s

securities market, the annual tracking error should not exceed
8%. So we set the tolerance level of the tracking error at 8%
in our proposed model. The investor selects 10 stocks from
Shanghai Stock Exchange and Shenzhen Stock Exchange as
his/her asset universe. The investment period is set from Jan-
uary 2, 2020 to December 31, 2020. Stock codes and the
prices of stocks on January 2, 2020, are shown in Table 2.
Stock annual return distributions in the investment period
are shown in Table 3. The amount of investment after paying
transaction costs is B = 1, 000, 000. The tracking portfo-
lio is supposed to contain 6 stocks, i.e., @ = 6 and each
stock’s minimum proportions are l; = 5%,i = 1,2, ..., 10,
respectively. The minimum transaction lots for each stocks
are N; =100,i =1,2,...,10.
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Table 5 Optimal tracking

portfolio Stocki  w; Stocki  w;
1 9% 6 0
2 32 7 0
3 66 8
4 0 9 582
5 0 10 61

5.1.2 Stability of algorithm

The stability of calculation results depends on the setting
of parameters, namely the size of the population (SN), the
maximum number of cycles (MCN), Limits cycles (LC), and
mutation probability (pn). Here, a series of experiments are
conducted to determine these four parameters. We perform 20
times tests for each set of parameter settings. Table 4 gives the
minimum, maximum, mean, and standard deviation of the 20
objective values under different parameters, where the best
results are highlighted in boldface. According to the result,
the best parameter setting is SN = 50, MCN = 10, 000,
LC = 30, and py, = 0.2. Besides, in Table 4, it can be seen
that the standard deviations of the 20 optimal objective values
for every set of parameters are all very small, which indicates
the robustness of the proposed algorithm.

5.1.3 The optimal tracking portfolio

In this section, we provide the computational result of model
(17), which is conducted 20 times, and the best result is
reported. Table 5 shows that the optimal tracking portfolio
contains stocks 1, 2, 3, 8, 9, and 10, and the corresponding
transaction lots are 96, 32, 66, 5, 582, and 61, respectively.
The expected return of the optimal tracking portfolio is
E[rg] = 0.1870, and the variance is V[rg] = 0.0654. The
total investment is 918,289 RMB.

5.2 Sensitivity analysis

In this section, we change some parameters to test their
effects on the investment decision. Note that each time only
one parameter changes. Similarly, we do the experiments 20
times and select the best result.

(1) Sensitivity analysis w.r.t the parameter m. According to
Eq. (10), the change of m means changing the order-moment
of the downside. When changing m from 1 to 3, model (17)
can be changed into three models. Figure4 shows the rela-
tionship between the objective value and the tracking error
tolerance level D,, in these three models. The abscissa rep-
resents D,, and the ordinate represents the objective value.
When model (17) has no solution, the objective value is dis-
played as zero. As seen in Fig. 4, no matter how m changes, it

@ Springer

does not affect the objective value. But one thing is worthy to
note. When m = 1, model (17) has a solution in the interval
of D; € [0.16, 0.2]; when m = 2, model (17) has a solution
in the interval of D, € [0.08, 0.2]; when m = 3, model (17)
has a solution in the interval of D3 € [0.04, 0.2]. It can be
seen that when m = 3, model (17) is solvable in a larger
range of the tracking error tolerance. This is why we use the
higher order moment which makes the proposed model more
widely applicable. However, the increase in m also increases
the complexity of model solving, so m is selected as 3 in our
experiment.

(ii) Sensitivity analysis w.r.t the parameter D3. When
m = 3, the investor’s tracking error tolerance level is rep-
resented by D3 in model (17). We change the value of D3
from 0.05 to 0.15. Figure 5 shows the relationship between
the tracking error tolerance level and the expected return of
the optimal tracking portfolio. Note that when D3 increases
from 0.05 to 0.11, the expected return increases; when D3
increases from 0.11 to 0.15, the expected return remains
unchanged. Figure 5 implies that when the tracking error tol-
erance level is within a certain range, the tracking portfolio’s
expected return increases with an increase in the tracking
error tolerance level. However, when the tracking error tol-
erance level exceeds a certain range, the tracking portfolio’s
expected return is unchanged.

(iii) Sensitivity analysis w.r.t the parameter Q. The param-
eter Q represents the number of stocks that the investor wants
to hold in the tracking portfolio. We change the value of
the parameter Q from 4 to 8. The corresponding results
are shown in Table 6. In Table 6, when Q = 4, the opti-
mal tracking portfolio’s expected return and variance are
E[rg] = 0.1904 and V[r§] = 0.0664. As Q increases to
8, the optimal tracking portfolio’s expected return and vari-
ance are E[rg] = 0.1839 and V[rf] = 0.0646. It can be
seen that return and risk become small as Q increases. This
is consistent with the result that diversification reduces the
risk, and also reduces the return.

(iv) Sensitivity analysis w.r.t the parameter B. This param-
eter denotes the upper limit of the budget after paying
transaction costs. We calculate the expected return and vari-
ance of the tracking portfolio with different B levels and show
them in Table 7. As seen in Table 7, the tracking portfolio’s
expected return and variance change little when B increases.
From the above experiments, it is found that the parameter
B can hardly affect the optimal tracking portfolio’s expected
return and variance.

(v) Sensitivity analysis w.r.t the parameter /; and ;. These
two parameters denote the minimum and maximum propor-
tions allocated to stock i if it is held. Table 8 shows how /;
affect the tracking portfolio. In Table 8, when /; = 0.01, the
return and risk of the tracking portfolio are E[rp] = 0.1898
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and V[rf] = 0.0662; when /; increase to 0.15, the return
and risk of the tracking portfolio are E[rj] = 0.1795 and
V[rp] = 0.0634. As the increase in the minimum propor-
tion allocated to stock i if it is held, the return and risk of the
tracking portfolio both decrease. Table 9 shows how u; affect
the tracking portfolio. As seen in table 9, when u; increase
from 0.2 to 0.4, the returns of the tracking portfolio increase
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Table 7 Sensitivity analysis B Elrf) Virg)
w.r.t the parameter B
1100000 0.1870 0.0655
1200000 0.1872 0.0655
1300000 0.1871 0.0655
1400000 0.1869 0.0654
1500000 0.1875 0.0656
Table 8 Sensitivity analysis I; E[rg] VIrg]
w.r.t the parameter /;
0.01 0.1898 0.0662
0.05 0.1870 0.0655
0.10 0.1847 0.0648
0.15 0.1794 0.0634

from E[rg] = 0.1813 to E[rg] = 0.1871, and the risk
of the tracking portfolio increase from V[rg] = 0.0639 to
V[rp] = 0.0655. However, when u; increase from 0.4 t0 0.9,
the return and risk of the tracking portfolio are unchanged.
This is because when u; € (0.2, 0.4), the constraint (V) is
active; and when u; € (0.4,0.9), the constraint (V) is not
active.

T;E:et:e s;r;?;t;\t/;ygnalySIS Q  Elrpl Virgl wi w w3 w4 @5 we w7 @3 w9 wio
4 0.1904 0.0664 85 48 0 0 0 0 0 0 822 28
5 0.1887 0.0659 81 51 0 0 0 0 0 7 630 53
6 0.1870 0.0654 79 39 68 0 0 0 0 6 529 81
7 0.1845 0.0648 137 37 41 0 0 43 0 9 389 100
8 0.1839 0.0646 70 41 41 0 6 40 0 6 385 85
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Table9 Sensitivity analysis

w.r.t the parameter u; 4 Elrp] Vel
0.2 0.1813 0.0639
0.3 0.1863 0.0653
0.4 0.1871 0.0655
0.5 0.1870 0.0655
0.6 0.1870 0.0655
0.7 0.1870 0.0655
0.8 0.1870 0.0655
0.9 0.1870 0.0655

5.3 Applicability and effectiveness in large-scale
problems

To test the applicability and effectiveness of our algorithm in
large-scale problems, we do more experiments. In Sections
5.1 and 5.2, we have solved the model for 10 stocks. Next,
we will solve the model for 50 stocks. Table 10 shows the
uncertain returns of the 50 stocks, and Table 11 shows the
results of the experiments. This problem has been solved with
the restriction that there should be an investment in at least

25 stocks with at least a 2% allocation in each stock. Table 11
shows the optimal tracking portfolios for different values of
tracking error tolerance in dealing with 50 stocks. When D3
increases to 0.15 or greater, the objective value converges to
the near-same value. It is seen that our algorithm is effective
in large-scale problems.

6 Conclusions

In reality, financial markets are often affected by unexpected
events, which can lead to historical data failing to predict the
future effectively. In this case, we employ uncertain variables
to describe the stock returns.

Under uncertainty theory framework, this paper has stud-
ied the EIT problem. We have proposed an uncertain EIT
model with higher order moment of the downside, in which
the realistic constraints of minimum transaction lots, invest-
ment budget, and the limits on holdings and cardinality are
considered simultaneously. To solve the proposed model, we
have given the deterministic equivalents of the model. Then
we have developed a meta-heuristic algorithm to solve the
proposed nonlinear integer programming. Experiment results

Table 10 Uncertainty returns of
the 50 stocks
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Stock i Distribution Stock i Distribution

1 N(0.0560, 0.0890) 26 N(0.1690, 0.2580)
2 N(0.0890, 0.1200) 27 N(0.3340, 0.4450)
3 N (0.1000, 0.1500) 28 N(0.2370, 0.3260)
4 N(0.1200, 0.2100) 29 N(0.3530, 0.4650)
5 N(0.1560, 0.2400) 30 N(0.1430, 0.2200)
6 N(0.1760, 0.2670) 31 N(0.0650, 0.1040)
7 N(0.1990, 0.2990) 32 N(0.1230, 0.2140)
8 N(0.2100, 0.3000) 33 N(0.2210, 0.3090)
9 N(0.2300, 0.3100) 34 N(0.2340, 0.3240)
10 N(0.2500, 0.3400) 35 N(0.3680, 0.4710)
11 N(0.1440, 0.2260) 36 N(0.2610, 0.3570)
12 N(0.1790, 0.2890) 37 N(0.2550, 0.3450)
13 N(0.1520, 0.2320) 38 N(0.3880, 0.4870)
14 N(0.2330, 0.3230) 39 N(0.0740, 0.1100)
15 N(0.1350, 0.2180) 40 N(0.3140, 0.4240)
16 N(0.1810, 0.2900) 41 N(0.1540, 0.2350)
17 N(0.2170, 0.3070) 42 N(0.3610, 0.4690)
18 N(0.1870, 0.2980) 43 N(0.2420, 0.3350)
19 N(0.2320, 0.3140) 44 N(0.0900, 0.1290)
20 N(0.2510, 0.3440) 45 N(0.1850, 0.2970)
21 N(0.2150, 0.3050) 46 N(0.2390, 0.3330)
22 N(0.3990, 0.4940) 47 N(0.3690, 0.4750)
23 N(0.0440, 0.0750) 48 N(0.3700, 0.4300)
24 N(0.0880, 0.1190) 49 N(0.3490, 0.4500)
25 N(0.3380, 0.4470) 50 N(0.1680, 0.2530)
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show that (i) higher-order moment makes the proposed model
more widely applicable; (ii) the proposed model and the cor-
responding algorithm are effective.
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