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Abstract

Parameter estimation is always the focus of constructing differential equations to simulate dynamic

systems. In order to solve the unknown parameters of multi-factor uncertain differential equations, a

class of updated multi-factor uncertain differential equations is proposed. According to its uncertainty

distribution, the concept of residual is proposed and its specific expression is given. Based on the

characteristic that the residuals obey the linear uncertainty distribution, moment estimation and

generalized moment estimation are performed on the unknown parameters. Some numerical examples

are given to demonstrate.

Keywords: uncertainty theory, multi-factor uncertain differential equation, parameter

estimation, residual

1 Introduction

In 1944, Ito [1] proposed a stochastic differential equation driven by the Wiener process to simulate

dynamic systems affected by random noise. Afterwards, stochastic differential equations have been widely

used in many fields and have been studied in depth by scholars. For example, in the aspect of parameter

estimation of stochastic differential equations, scholars have proposed estimation methods such as the

least square method (Kailath [2]), maximum likelihood estimation (Strasser [3]), moment estimation

(Gallant [4]), etc. When faced with some unexpected events or lack of samples, using the framework of

probability theory to deal with problems may not be applicable. In 2007, Liu [5] proposed the uncertainty

theory based on normality, duality, subadditivity and product axiom in order to solve expert reliability,

another factor affecting system uncertainty. Later, in the in-depth study of uncertainty theory, Liu [6]

proposed the Liu process.

Uncertain differential equation (UDE) was proposed by Liu [7] in 2008 to model and analyze dynamical

systems subject to uncertain factors. Subsequently, many scholars focused their attention on UDE. In
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terms of the properties of UDE, the stability theorem (Yao, Gao and Gao [8]), stability in p-th moment

(Sheng and Wang [10]) and stability in mean (Yao, Ke and Sheng [9]) have been proved successively.

Different types of UDE have been proposed one after another. Zhu and Ge [11] proposed the backward

uncertain differential equations and proved the existence theorems of the solutions of these equations.

Yao [12] proved proved the completely unique solution of the uncertain differential equation with jumps

driven by the update process and the Liu process and its uncertainty measure in the sense of stability. Li,

Peng and Zhang [13] proposed a multi-factor uncertain differential equation and a numerical method to

solve the general multi-factor uncertain differential equation. Yao [14] proposed the high-order uncertain

differential equations with high-order derivatives.

Parameter estimation has always been a hot research field of UDE. Sheng et al. [15] presented a least

squares estimation method for estimating unknown parameters. Yao and Liu [16] proposed a moment

estimation method based on a difference form. In order to solve the case that the equation system obtained

by moment estimation has no solution, Liu [17] proposed a generalized moment estimation method to

solve such problems with the idea of solving for the optimal value. In addition, Lio et al. [18] proposed the

uncertain maximum likelihood method. Later, Yang et al. [19] proposed a method to estimate unknown

parameters of UDEs from discrete sampling data. Sheng and Zhang [20] also introduced three methods

for parameter estimation based on different types of solutions. Liu et al. [21] first proposed the definition

of residual error of uncertain differential equations and used residual error to solve unknown parameters.

Zhang et al. [22] also estimated the parameters of high-order uncertain differential equations. In the

study of unknown parameters of multi-factor uncertain differential equation, Zhang et al. [23] proposed a

weighted method for moment estimation and least squares estimation of unknown parameters. However,

that paper did not give a specific judgment on how to determine the rationality of the weighting method.

In order to avoid complicated weighting and discuss the rationality of weighting, a new method based on

residuals for estimating unknown parameters of multi-factor uncertain differential equations is proposed

in this paper.

This paper introduces the idea of residuals into parameter estimation of multi-factor uncertain dif-

ferential equation. The definition of residual is proposed and it is deduced that the residual obeys the

linear uncertainty distribution L(0, 1). The moment estimation and generalized moment estimation are

performed on the unknown parameters from the residuals as samples from the linear uncertainty distri-

bution. Section 2, we will introduce some basic definitions and theorems of uncertainty theory. Section

3, the concept of residuals of multi-factor uncertain differential equations is proposed, and the analytical

expressions of residuals are deduced and demonstrated with examples. Section 4, based on the property

that the residuals follow the linear uncertainty distribution L(0, 1), the residual data are treated as a set

of sample data from a linear distribution, and then the unknown parameters are estimated by moment

estimation or generalized moment estimation. Section 5, an example of a multi-factor pharmacokinetic
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model and real data are given to demonstrate the feasibility of the estimation method proposed above.

Section 6 is the summary of this paper.

2 Preliminary

In this section, some necessary definitions and theorems in uncertainty theory are introduced to help

readers understand what follows.

Definition 1. (Liu [5, 6]) Let L be a σ-algebra on a nonempty set Γ. A set function M : L → [0, 1] is

called an uncertainty measure if the four following axioms are satisfied:

Axiom 1: (normality Axiom) M{Γ} = 1 for the universal set Γ.

Axiom 2: (duality Axiom) M{Λ}+M{Λc} = 1 for any event Λ.

Axiom 3: (subadditivity Axiom) For every countable sequence of events Λ1,Λ2, · · · , we have

M

{

∞
⋃

i=1

Λi

}

≤
∞
∑

i=1

M {Λi} .

The triplet (Γ,L,M) is called an uncertainty space. Besides, the product uncertain measure on the

product σ-algebra L was defined by Liu as follows:

Axiom 4: (product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, · · · , the product uncertain
measure M is an uncertain measure satisfying

M

{

∞
∏

k=1

Λk

}

=

∞
∧

k=0

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.

Definition 2. (Liu [6]) An uncertain process Ct is called a Liu process if

(i) C0 = 0 and almost all sample paths are Lipschitz continuous,

(ii) Ct has stationary and independent increments,

(iii) the increment Cs+t − Cs has a normal uncertainty distribution

Φt(x) =

(

1 + exp

(

− πx√
3t

))−1

, x ∈ ℜ.

Definition 3. (Liu [5]) Let ξ be an uncertain variable and its uncertainty distribution is defined by

Φ(x) = M{ξ ≤ x}

for any real number x.

Common uncertainty distributions include linear uncertainty distributions L(a, b), zigzag uncertainty

distributions Z(a, b, c) and normal uncertainty differentials N (e, σ). For example, suppose the uncertain

variable ξ(x) = x, it follows L(0, 1) uncertainty distribution
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Φ(x) =























0, if x ≤ 0

x, if 0 < x < 1

1, if x ≥ 1

.

Definition 4. (Li, Peng and Zhang [13]) Let C1t,C2t,· · · ,Cnt be independent Liu processes, and f and

g1, g2, · · · , gn are given functions. The multi-factor uncertain differential equation with respect to Cjt

(i = 1, 2, · · · , n)
dXt = f(t,Xt)dt+

n
∑

j=1

gj(t,Xt)dCjt

is said to have an α−path Xα
t if it solves the corresponding ordinary differential equation

dXα
t = f(t,Xα

t )dt+

n
∑

j=1

|g(t,Xα
t )|Φ−1(α)dt

where

Φ−1(α) =

√
3

π
ln

α

1− α
, α ∈ (0, 1).

3 Residuals of Multi-factor Uncertain Differential Equations

In this section, the definition of the residuals of multi-factor uncertain differential equation is proposed,

and the analytical formulas that are convenient for calculation are given to prepare for the estimation of

unknown parameters.

Consider a multi-factor uncertain differential equation with n observations (ti, xti) (i = 1, 2, · · · , n)

dXt = f(t,Xt)dt+

n
∑

j=1

gj(t,Xt)dCjt (1)

where f and gj (j = 1, 2, · · · , n) are given continuous functions and Cjt (j = 1, 2, · · · , n) is the Liu

process.

From Equation (1) and its observations, the i-th corresponding updated uncertain differential equation

can be obtained:


















dXt = f(t,Xt)dt+

n
∑

j=1

gj(t,Xt)dCjt

Xti−1
= xti−1

(2)

where 2 ≤ i ≤ n and xti−1
is the new initial value at the new initial time ti−1. The analytical formula

of the uncertainty distribution Φti(Xi) of Xti can be obtained by Equation (2), and the specific value

Φti(xi) can be obtained by replacing Xti with the observed value xti .

Definition 5. For any multi-factor uncertain differential equation with discrete observations (ti, xti)

(i = 1, 2, · · · , n), the i-th residual is defined as εi and can be obtained by the uncertainty distribution
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Φti(Xi) of the uncertain variables Xi in Equation (2),

εi = Φti(xi)

where 2 ≤ i ≤ n.

The residuals of the multi-factor uncertain differential equations proposed above have the following

two important properties.

Property 1. The uncertainty distribution Φti(Xi) (2 ≤ i ≤ n) is also an uncertain variable and

0 ≤ Φti(Xi) ≤ 1. For any 0 < x < 1, we can always get

M{Φti(Xti) ≤ x} = M{Xti ≤ Φ−1(x)} = Φti(Φ
−1
ti

(x)) = x.

Obviously, the distribution of Φti(Xi) is as follows

Φ(x) =























0, if x ≤ 0

x, if 0 < x < 1

1, if x ≥ 1

.

Therefore, the uncertain variable Φti(Xi) follows a linear uncertainty distribution L(0, 1), and the discrete

data εi, (i = 1, 2, · · · , n) can be used as a set of sample data from the linear uncertainty distribution

L(0, 1).

Property 2. According to Equation (2), we can obtain the corresponding updated ordinary differential

equations


















dXα
t = f(t,Xα

t )dt+ |
n
∑

j=1

gj(t,X
α
t )|Φ−1(α)dt

Xα
ti−1

= xti−1

, (3)

where

Φ−1(α) =

√
3

π
ln

α

1− α
, α ∈ (0, 1),

and Xα
ti

as the α−path of Xti can be obtained by solving Equation (3).

Since for any α ∈ (0, 1), we have

M{Xti ≤ Φ−1(α)} = Φti(Φ
−1
ti

(α)) = α,

then there must be an inverse uncertainty distribution Φ−1
ti

of Xti .

Writing x = Φ−1
ti

(α), we can get α = Φti and

M{Xti ≤ x} = α = Φti(Xi).

Therefore, εi can be regarded as the corresponding α value of α−path Xα
ti

at time ti.
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3.1 Analytical Expressions for Residuals

For some special multi-factor uncertain differential equations, we can get the analytical expressions of

uncertain variables by solving the equations. Some examples will be given below.

Example 1. Consider a multi-factor uncertain differential equation with discrete observations (ti, xti)

(i = 1, 2, · · · , n),
dXt = µdt+

m
∑

j=1

σjdCjt

where µ and σj are constants. By solving the i-th multi-factor updated uncertain differential equation

below (2 < i < n)


















dXt = µdt+
m
∑

j=1

σjdCjt

Xti−1
= xti−1

,

we can get the solution

Xti = Xti−1
+ µ(ti − ti−1) +

m
∑

j=1

σj(Cti − Cti−1
)

and the uncertainty distribution of Xti

Φti(x) =









1 + exp

(

π(xti−1
+ µ(ti − ti−1)− x)

√
3

m
∑

j=1

σj(ti − ti−1)

)









−1

.

By Definition 5, we get the i-th residual corresponding to Φti(xi)

εi =









1 + exp

(

π(xti−1
+ µ(ti − ti−1)− xi)

√
3

m
∑

j=1

σj(ti − ti−1)

)









−1

.

Example 2. Consider a multi-factor uncertain differential equation with discrete observations (ti, xti)

(i = 1, 2, · · · , n),
dXt = µXtdt+

m
∑

j=1

σjXtdCjt

where µ and σj are constants. By solving the i-th multi-factor updated uncertain differential equation

below (2 < i < n)


















dXt = µXtdt+

m
∑

j=1

σjXtdCjt

Xti−1
= xti−1

,

we can get

lnXti = lnXti−1
+ µ(ti − ti−1) +

m
∑

j=1

σj(Cti − Cti−1
)
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and the uncertainty distribution of Xti

Φti(x) =









1 + exp

(

π(lnxti−1
+ µ(ti − ti−1)− lnx)

√
3

m
∑

j=1

σj(ti − ti−1)

)









−1

.

By Definition 5, we get the i-th residual corresponding to Φti(xi)

εi =









1 + exp

(

π(lnxti−1
+ µ(ti − ti−1)− lnxi)

√
3

m
∑

j=1

σj(ti − ti−1)

)









−1

.

Example 3. Consider a multi-factor uncertain differential equation with discrete observations (ti, xti)

(i = 1, 2, · · · , n)
dXt = µtXtdt+

m
∑

j=1

σjtXtdCjt

where µ and σj are constants. By solving the i-th multi-factor updated uncertain differential equation

below (2 < i < n)


















dXt = µtXtdt+

m
∑

j=1

σjtXtdCjt

Xti−1
= xti−1

,

we can get

lnXti = lnXti−1
+ µ(

t2i − t2i−1

2
) +

m
∑

j=1

σj

∫ ti

ti−1

tdCjt.

Since the Liu integral
∫ ti

ti−1

tdCjt ∼ N (0,
t2i − t2i−1

2
)

we can get the uncertainty distribution of Xti

Φti(x) =









1 + exp

(

π(lnxti−1
+ µ(

t2
i
−t2

i−1

2 )− lnx)
√
3

m
∑

j=1

σj(
t2
i
−t2

i−1

2 )

)









−1

.

By Definition 5, we get the i-th residual corresponding to Φti(xi)

εi =









1 + exp

(

π(lnxti−1
+ µ(

t2
i
−t2

i−1

2 )− lnxi)
√
3

m
∑

j=1

σj(
t2
i
−t2

i−1

2 )

)









−1

.

Example 4. Consider a multi-factor uncertain differential equation with discrete observations (ti, xti)

(i = 1, 2, · · · , n)
dXt = µdt+ σ1tdC1t + σ2(2 + t)(−α)dC2t
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where µ, σj and α (0 < α < 1) are constants. By solving the i-th multi-factor updated uncertain

differential equation below (2 < i < n)











dXt = µdt+ σ1tdC1t + σ2(2 + t)(−α)dC2t

Xti−1
= xti−1

,

we can get

Xti = Xti−1
+ µ(ti − ti−1) + σ1

∫ ti−1

ti

tdC1t + σ2

∫ ti−1

ti

(2 + t)(−α)dC2t

Since the Liu integrals

∫ ti

ti−1

tdCjt ∼ N (0,
t2i − t2i−1

2
) and

∫ ti

ti−1

(2− t)(−α)dCjt ∼ N (0,
(2 + ti)

(1−α) − (2 + ti−1)
(1−α)

1− α
)

we can get the uncertainty distribution of Xti

Φti(x) =



1 + exp

(

π(xti−1
+ µ(ti − ti−1)− x)

√
3(σ1

t2
i
−t2

i−1

2 + σ2
(2+ti)1−α−(2+ti−1)1−α

1−α
)

)





−1

.

By Definition 5, we get the i-th residual corresponding to Φti(xi)

εi =



1 + exp

(

π(xti−1
+ µ(ti − ti−1)− x)

√
3(σ1

t2
i
−t2

i−1

2 + σ2
(2+ti)1−α−(2+ti−1)1−α

1−α
)

)





−1

.

3.2 Approximate analytical expression of residuals

For a general multi-factor uncertain differential equation, if the uncertainty distribution cannot be ob-

tained by solving the equation, the approximate expression of the residual can be obtained by the following

method.

According to Equation (2), we can obtain the corresponding updated ordinary differential equations



















dXα
t = f(t,Xα

t )dt+ |
n
∑

j=1

gj(t,X
α
t )|Φ−1(α)dt

Xα
ti−1

= xti−1

.

By using the Euler differential method, Xα
ti

can be expressed as

Xα
ti
= Xα

ti−1
+ f(t,Xα

ti
)(ti − ti−1) + |

n
∑

j=1

gj(t,X
α
ti
)|Φ−1(α)(ti − ti−1), (4)

where

Φ−1(α) =

√
3

π
ln

α

1− α
.

Since the α satisfies the following minimization problem

min
α

| Xα
ti
−Xti |
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and the α is equivalent to εi from Property 2, so we get εi satisfying Xα
ti
≈ Xti .

Using the approximate relationship between Xα
ti

and Xti , we can transform the Equation (4) into

Xti = Xti−1
+ f(t,Xti)(ti − ti−1) + |

n
∑

j=1

gj(t,Xti)|
√
3

π
ln

εi

1− εi
(ti − ti−1).

After tidying up, the expression for the residuals εi is

εi = 1−













1 + exp

(

π(Xti −Xti−1
− f(t,Xt)(ti − ti−1))

√
3

∣

∣

∣

∣

∣

n
∑

j=1

gj(t,Xt)

∣

∣

∣

∣

∣

(ti − ti−1)

)













−1

.

Example 5. Assuming a multi-factor uncertain differential equation,

dXt = 0.0305tdt+ 0.7441tdC1t + 0.5000(2 + t)(−2)dC2t,

the updated uncertain differential equation can be obtained










dXt = 0.0305tdt+ 0.7441tdC1t + 0.5000(2 + t)(−2)dC2t

Xti−1
= xti−1

.

The corresponding updated ordinary differential equation is














dXα
t = 0.0305tdt+

∣

∣

∣
0.7441t+ 0.5000(2 + t)(−2)

∣

∣

∣

√
3

π
ln

εi

1− εi
dt

Xα
ti−1

= xti−1

.

Using the method described above, we can get

εi = 1−
(

1 + exp

(

π(Xti −Xti−1
− 0.0305ti(ti − ti−1))√

3
∣

∣0.7441ti + 0.5000(2 + ti)(−2)
∣

∣ (ti − ti−1)

)

)−1

.

Therefore, when we have observational data, we can substitute it into the solution. The observed data

of Example 5 and its residual calculation results are shown in Table 1.

Example 6. Assuming a multi-factor uncertain differential equation,

dXt =
Xt

2 + t
dt+ t2dC1t + (2 + t)(−2)dC2t.

The updated uncertain differential equation can be obtained










dXt =
Xt

2 + t
dt+ t2dC1t + (2 + t)(−2)dC2t

Xti−1
= xti−1

.

The corresponding updated ordinary differential equation is











dXα
t =

Xα

t

2+t
dt+

∣

∣t2 + (2 + t)(−2)
∣

∣

√
3

π
ln εi

1−εi
dt

Xα
ti−1

= xti−1
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Table 1 The observed datas and residual result in Example 5

n 1 2 3 4 5 6 7 8 9 10

i 0.1169 0.3421 0.4445 0.4697 0.7393 0.8870 0.9491 1.0323 1.0488 1.0499

xti
3.5697 3.7697 3.9586 4.1011 5.0433 5.7954 6.0219 6.5893 6.7863 6.8925

εi 0.4504 0.5217 0.8384 0.5554 0.6118 0.5078 0.6594 0.8521 0.9832 0.5194

i 1.1867 1.2444 1.2751 1.6349 1.6967 1.7208 1.7555 1.8354 1.9544 2.0314

xti
7.5486 8.0173 8.5121 10.8996 11.3680 12.0230 12.8299 13.4825 14.5079 15.2054

εi 0.6580 0.8885 0.5209 0.5450 0.9462 0.9059 0.5442 0.5419 0.5449 0.4503

i 2.3141 2.3796 2.4114 2.8449 2.9213 3.2041 3.6195 3.6935 3.7154 3.9190

xti
17.0852 19.6936 20.2691 25.2093 27.0489 31.1364 39.5616 41.5116 42.1558 46.0395

εi 0.9581 0.7136 0.5181 0.7495 0.5486 0.6130 0.6966 0.7352 0.5700

and the residual expression is

εi = 1−
(

1 + exp

(

π(Xti −Xti−1
− Xti

2+ti
)(ti − ti−1))√

3
∣

∣t2i + (2 + ti)(−2)
∣

∣ (ti − ti−1)

)

)−1

.

Using the above residual expression and known discrete data, the specific residual data can be easily

obtained and the results are shown in Table 2.

Table 2 The observed datas and residual result in Example 6

n 1 2 3 4 5 6 7 8 9 10

i 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

xti
15.5138 16.1254 16.7455 17.3758 18.0180 18.6738 19.2449 20.0330 20.7399 21.4674

εi 0.4924 0.4999 0.5105 0.5234 0.5377 0.4444 0.6706 0.5823 0.5963 0.6093

i 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

xti
22.2172 22.9911 23.7909 24.6184 25.4755 26.3639 27.2856 28.2423 29.2359 30.2682

εi 0.6214 0.6326 0.6427 0.6521 0.6605 0.6682 0.6752 0.6815 0.6873 0.6925

i 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4

xti
31.3412 32.4567 33.6165 34.8226 36.0768 37.3810 38.7372 40.1471 41.6128 43.1360

εi 0.6973 0.7017 0.7057 0.7094 0.7127 0.7158 0.7186 0.7213 0.7237

4 Parameter Estimation

In this section, we use moment estimation and generalized moment estimation methods to estimate un-

known parameters of multi-factor uncertain differential equation by exploiting the property that residuals

follow L(0, 1).
Assume a multi-factor uncertain differential equation with unknown parameters driven by multiple
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Liu process

dXt = f(t,Xt;µ)dt+
n
∑

j=1

gj(t,Xt;σj)dCjt (5)

where µ and σj(j = 1, 2, · · · , n) are the parameters to be estimated. For Equation (5), we have the

observed values x1, x2, · · · , xn at time t1, t2, · · · , tn, respectively.
Through the analytical and numerical methods of residuals εi mentioned in Section 3, we can obtain

a series of residuals ε1, ε2, · · · , εn−1 and this set of data can be used as samples of the uncertainty

distribution L(0, 1).
According to the method of moments, the p-th sample moments is

1

N − 1

N−1
∑

i=1

εi(µ;σ1, σ2, · · · , σn)
p

and the corresponding p-th population moments

1

p+ 1

where p = 1, 2, · · · ,K (K is the number of unknown parameters). According to the principle of moment

estimation method, we can obtain the following equations:











































1
N−1

N−1
∑

i=1

εi(µ;σ1, σ2, · · · , σn) =
1

1+1

1
N−1

N−1
∑

i=1

(εi(µ;σ1, σ2, · · · , σn))
2 = 1

2+1

· · ·
1

N−1

N−1
∑

i=1

(εi(µ;σ1, σ2, · · · , σn))
K = 1

K+1

. (6)

The estimated value (µ̂; σ̂1, σ̂2, · · · , σ̂n) of unknown parameters can be obtained by solving the equations.

However, with some observations, the moment estimation method is no longer applicable when the

Equation system (6) based on moment estimation has no solution. In this case, the unknown parameters

can be obtained by solving the following minimization problem based on the generalized estimation of

moments principle:

min
(µ;σ1,σ2,··· ,σn)

p
∑

p=1

(

1

N − 1

N−1
∑

i=1

εi(µ;σ1, σ2, · · · , σn)
p − 1

p+ 1

)2

. (7)

Example 7. Consider a multi-factor uncertain differential equation with parameters µ, σ1 and σ2

dXt = µtXtdt+ σ1tXtdC1t + σ2tXtdC2t.

Then we can get the related updated multi-factor uncertain differential equation











dXt = µdt+ σ1dC1t + σ2dC1t

Xti−1
= xti−1

,
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By solving the uncertain variable Xti and its uncertainty distribution Φ(Xti), the residual can be ex-

pressed as

εi(µ, σ1, σ2) =



1 + exp

(

π(lnxti−1
+ µ(

t2
i
−t2

i−1

2 )− lnxi)
√
3(σ1(

t2
i
−t2

i−1

2 ) + σ2(
t2
i
−t2

i−1

2 ))

)





−1

,

and εi ∼ L(0, 1). The observed data are shown in Table 3.

Table 3 The observed datas in Example 7

n 1 2 3 4 5 6 7 8 9 10

i 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

xti
2.8674 4.2431 5.9619 7.1445 9.6730 16.7927 18.2922 23.9932 47.1088 47.9922

i 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

xti
48.9901 50.0472 52.1650 57.6722 60.9867 61.7666 68.1972 71.2694 80.5489 81.7547

i 2.5 2.6 2.7 2.8 2.9

xti
81.8149 85.9442 88.6512 90.4722 97.8681

According to the principle of the moment estimation, we obtain the following equations






























1
N−1

N−1
∑

i=1

εi(µ;σ1, σ2) =
1
2

1
N−1

N−1
∑

i=1

(εi(µ;σ1, σ2))
2 = 1

3

1
N−1

N−1
∑

i=1

(εi(µ;σ1, σ2))
3 = 1

4

.

By solving the above system of equations, the unknown parameter results are obtained

µ̂ = −7.0861, σ̂1 = −3.2052 and σ̂2 = 2.9596.

Finally, the multi-factor uncertain differential equation is obtained

dXt = −7.0861tXtdt− 3.2052tXtdC1t + 2.9596tXtdC2t.

Example 8. Assuming a multi-factor uncertain differential equation,

dXt =
Xt

σ1 + t
dt+ t2dC1t + (σ2 + t)(−2)dC2t,

where σ1, σ2 are unknown parameter. The observed data are shown in Table 4. The updated uncertain

differential equation can be obtained










dXt =
Xt

σ1 + t
dt+ t2dC1t + (σ2 + t)(−2)dC2t

Xti−1
= xti−1

.

The corresponding updated ordinary differential equation is










dXα
t =

Xα

t

σ1+t
dt+

∣

∣t2 + (σ2 + t)(−2)
∣

∣

√
3

π
ln α

1−α
dt

Xα
ti−1

= xti−1
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and the residual expression is

εi(σ1, σ2) = 1−
(

1 + exp

(

π(Xti −Xti−1
− Xti

σ1+t
)(ti − ti−1))√

3
∣

∣t2i + (σ2 + ti)(−2)
∣

∣ (ti − ti−1)

)

)−1

.

According to the principle of the moment estimation, we obtain the following equations















1
N−1

N−1
∑

i=1

εi(σ1, σ2) =
1
2

1
N−1

N−1
∑

i=1

(εi(σ1, σ2))
2 = 1

3

.

By solving the above system of equations, we can obtain the estimated results of the unknown parameters

σ̂1 = 0.0011 and σ̂2 = 0.0010,

and the multi-factor uncertain differential equation is

dXt =
Xt

0.0011 + t
dt+ t2dC1t + (0.0010 + t)(−2)dC2t.

Table 4 The observed datas in Example 8

n 1 2 3 4 5 6 7 8 9 10

i 1 2 3 4 5 6 7 8 9 10

xti
50.6495 51.3515 52.6250 55.4185 56.7131 60.4231 62.2069 64.4992 66.5161 67.2648

i 11 12 13 14 15 16 17 18 19 20

xti
68.5184 69.8204 71.2035 72.8185 73.6952 74.3754 75.0168 76.3934 77.3171 79.7374

5 Numerical example

In this section, a meaningful model and actual data are presented to implement the proposed method.

Example 9. Considering a multi-factor uncertain pharmacokinetic model with unknown parameters

proposed by Liu and Yang [24] is as follows:

dXt = (k0 − k1Xt)dt+ σ1XtdC1t + σ2dC2t

where Xt is the drug concentration at time t and k0, k1, σ1, σ2 are the unknown constant parameters.

The research data of the JNJ-53718678 drug by Huntjens, D.R.H et al. [25] was cited as the discrete

data for the model. JNJ-53718678 is a small molecule fusion inhibitor for the treatment of respiratory

diseases. A single injection of 250 mg of JNJ-53718678 was administered, and the plasma drug concen-

tration was measured before injection and at 0.5h, 1.0h, 1.5h, 2.0h, 3.0h, 4.0h, 6.0h, 8.0h, 12.0h, 16.0h

and 24.0h after injection. The specific data is shown in Table 5.
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Table 5 Plasma drug concentration data at each time point in Example 9

n 1 2 3 4 5 6

T ime(h) 0.0 0.5 1.0 1.5 2.0 3.0

Drugconcentration(ng/ml) 0.0 878.6 1967.2 1783.4 1678.8 1223.5

T ime(h) 4.0 6.0 8.0 12.0 16.0 24.0

Drugconcentration(ng/ml) 1109.2 686.7 503.9 438.6 275.3 136.4

The corresponding updated multi-factor uncertain differential equation is










dXt = (k0 − k1Xt)dt+ σ1XtdC1t + σ2dC2t

Xti−1
= xti−1

(8)

and the corresponding updated ordinary differential equation is














dXα
t = (k0 − k1X

α
t )dt+ |σ1X

α
t + σ2|

√
3

π
ln

α

1− α
dt

Xα
ti−1

= xti−1

. (9)

Therefore, the residual expression can be obtained as

εi(k0, k1, σ1, σ2) = 1−
(

1 + exp

(

π(Xti −Xti−1
− k0 + k1Xti)(ti − ti−1))√

3 |σ1Xti + σ2| (ti − ti−1)

))−1

.

According to the principle of the moment estimation, we obtain the following equations















































1
N−1

N−1
∑

i=1

εi(k0, k1, σ1, σ2) =
1
2

1
N−1

N−1
∑

i=1

(εi(k0, k1, σ1, σ2))
2 = 1

3

1
N−1

N−1
∑

i=1

(εi(k0, k1, σ1, σ2))
3 = 1

4

1
N−1

N−1
∑

i=1

(εi(k0, k1, σ1, σ2))
4 = 1

5

.

By solving the above system of equations, the moment estimates of the unknown parameters are:

k̂0 = 0.9780, k̂1 = 0.3177, σ̂1 = 0.5830 and σ̂2 = 0.7134.

We obtained the multi-factor uncertain pharmacokinetic model equation as

dXt = (0.9780− 0.3177Xt)dt+ 0.5830XtdC1t + 0.7134dC2t.

6 Conclusion

In this paper, the concept of residual of uncertain differential equations with multiple factors is proposed.

For the multi-factor uncertain differential equation, which can obtain the uncertainty distribution direct-

ly, the concrete expression of the residual is given. When the uncertainty distribution cannot be obtained
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directly, the approximate expression of the residual is obtained by using the corresponding updated or-

dinary differential equation. Then, the unknown parameters are obtained by moment estimation and

generalized moment estimation, which is based on the characteristic that the residual obeies the linear

uncertainty distribution L(0, 1). An example of multi-factor pharmacokinetics is given to verify the feasi-

bility of residual method. Compared with previously proposed estimation methods, the residual method

does not need to weight and normalize the unknown parameters. When the time interval is relatively

large and the difference method is not applicable, residual method can also be used for estimation. In the

future, the residual method can be used to estimate the parameters of high-order uncertain differential

equations or multi-dimensional uncertain differential equations.
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