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Abstract The graph coloring problem is an NP-hard
problem. Currently, the most effective method to solve

the problem is the hybrid algorithm. This paper pro-
poses a hybrid evolutionary algorithm NERS HEAD

with a new elite replacement strategy. In NERS HEAD,

a method to detect the local optimal state is proposed

so that the evolutionary process can jump out of the

local optimal by introducing diversity on time. A new

elite structure and replacement strategy are designed
to increase the diversity of the evolutionary popula-
tion so that the evolution process can not only con-
verge quickly but also jump out of the local optimum

in time. Experiments based on 34 instances of the DI-

MACS benchmark show that compared with the cur-

rent excellent graph coloring algorithm, NERS HEAD

can reduce the evolutionary generation by an average of
28.3% and the calculation time by 22.11%. Especially in
the instance dsjc500.1, NERS HEAD can reduce 56% of

evolution generations and 40% of computing time; On

the r1000.1c instance, it can reduce the evolution gen-

erations by 82.30% and the calculation time by 73.45%.

Keywords Graph coloring problem · Hybrid evo-
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1 Introduction

The graph coloring problem (GCP) is a typical com-

binatorial optimization problem that has been applied

to many issues, such as: printed circuit boards testing

(Garey et al., 1975), frequency assignment in mobile ra-
dio telephone systems(Gamst, 1986), compiler register

allocation(Briggs, 1995), noise reduction in Very Large

Scale Integration (VLSI) Circuits(Woo et al., 2002) and

resource allocation in the bus networks(Maitra et al.,

2010), minimize the maximum vertex interference in
wifi channel assignment(David et al., 2018), efficient re-

flection string analysis (Grech, 2018).

The GCP is a well-known NP-hard problem, and

there are many approaches to solve it. The greedy heuris-

tic is one of these methods: assign different colors to

each vertex in a specific or random order of vertices

and ensure that no conflicts occur, forming a K-coloring

scheme step by step. Such a method is swift, but it does

not give the minimum number of colors in most cases.

Some efficient greedy heuristics are DSATUR (Bré and

laz, 1979)and RLF (Leighton, 1979).

Local search algorithms are also widely used in GCP.
A random scheme with conflicting edges is generated for

a fixed number of colors (e.g., the chromatic number).

Then the conflicting edges are reduced by iteratively

adjusting the vertex color in the neighbourhood. Hertz

and Werra proposed the TabuCol (Hertz and Werra,

1987), which introduces the short-term memory mech-
anism of the tabu list. It records the last vertex color

change in the tabu list and does not make the same

color change within a certain tabu tenure, effectively

preventing loops. In 2006, Ivo Blöchliger and Nicolas

Zufferey (BlöChliger and Zufferey, 2008)proposed two

improved strategies for partial schemes and a reactive

tabu tenure, achieving good results on complex bench-
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mark graphs. Other local search algorithms include sim-

ulated annealing algorithm(Chams et al., 1987), quan-
tum annealing(Titiloye and Crispin, 2011b), improv-

ing probability learning based local search(Zhou et al.,

2018), etc.

Population-based evolutionary algorithms are also
an effective approach to solve GCP. In 1991, Davis

(Mitchell, 1998) introduces the genetic algorithm in de-
tail. In 1996, Fleurent (Fleurent and Ferland, 1996)

et al. improved the genetic algorithm to solve GCP.

In 2013, Marappan (Marappan and Sethumadhavan,
2013)et al. proposed uniparental conflict gene crossover

and conflict gene mutation operators to make the ge-
netic algorithm more effective. In 1999, Galinier and

Hao (Galinier and Hao, 1999) introduced the hybrid

evolutionary algorithm (HEA) by combining the tabu

search algorithm with the evolutionary algorithm frame-

work. In 2008, Galinier and Hertz (A et al., 2008) pro-

posed an adaptive memory algorithm based on recom-
bination operators to achieve the same results as the
HEA. However, this algorithm is more flexible than

the HEA. In 2010, Lü and Hao (Lü and Hao, 2010)et

al. proposed an adaptive multi-parent crossover oper-

ator and a pool updating strategies. In 2012, Titiloye

(Titiloye and Crispin, 2011a)et al. combined an evolu-

tionary algorithm and an improved simulated annealing
algorithm to form a distributed hybrid quantum an-

nealing algorithm, which led to further improvements
in the results on the test dataset. For large graphs with
high density and a large number of vertices, Wu and
Hao (Wu and Hao, 2012) et al. first used a preprocess-

ing method to extract larger independent sets. They

then used a memetic algorithm to color the residual

graphs, achieving improved results on the test dataset.

In 2015, Moalic and Alexandre (Moalic and Gondran,

2015) proposed a hybrid evolutionary algorithm based

on two individuals (HEAD), which reduced computa-

tion time. In 2017, Moalic and Alexandre(Moalic and

Gondran, 2017)introduced random crossover and un-

balanced crossover in HEAD to improve the perfor-
mance of the algorithm. Goudet and Duval (Goudet

et al., 2020)et al. proposed a population-based weight
learning framework to solve the GCP. Prakash(Prakash

et al., 2020) et al. proposed a tree-based maximum in-

dependent set extraction method in two steps to solve

the GCP, obtaining some reasonable experimental re-

sults.
Reducing the computation time and increasing the

success rate are the goals of GCP improvement. For

example, hybrid evolutionary algorithms use the tabu

search to improve the obtained schemes locally and then

use crossover operators to provide good diversity glob-

ally. Inspired by HEAD, we propose a hybrid evolution-

ary algorithm NERS HEAD for solving GCP. The main

innovations include:
1) Propose strategy 1: a method for judging local

optimal state in the evolutionary process that can in-

troduce diversity at the right time;

2) Propose strategy 2: a new method for managing
diversity to make elite individuals more diverse;

3) The strategies of 1 and 2 are combined to form
NERS HEAD to improve the efficiency of solving GCP.

The organization of this paper is as follows: Sec-

tion 2 presents some necessary knowledge needed for

the GCP and the basic framework of the hybrid evo-

lutionary algorithm. Section 3 focuses on the new elite
individual replacement strategy proposed in this paper.

Experimental results are given in Section 4, and the nec-

essary analysis of the experimental results is presented.

Section 5 presents the conclusion and possible future

improvements.

2 Related work

This section introduces some concepts and some basic
algorithms that need to be used when solving GCP with
hybrid evolutionary algorithms and the basic frame-

work of the HEAD algorithm referenced in this paper.

2.1 Schemes and objective function

Given an undirected graph G = (V,E), the graph color-

ing problem(GCP) can be described as divide the ver-

tex set V into K subsets V1, V2, · · · , VK and Vi ∩ Vj =

∅(i 6= j),V = V1∪V2∪· · ·∪VK , The vertices in each sub-
set are assigned the same color, the vertices in different

subsets are assigned different colors. Each such divi-
sion is called a K-coloring scheme (also called scheme).
If the K-coloring scheme s = {V1, V2, · · · , VK} makes

∀u, v ∈ V, e(u, v) ∈ E, and u and v have different col-

ors, then s is called a K-coloring solution (solution) of

the GCP.
For a K-coloring scheme s, the objective function

can be defined as for formula (1).

f(s) =
∑

Vi∈S

∑

u,v∈Vi

δuv (1)

where

δuv =

{

1 〈u, v〉 ∈ E,

0 otherwise .

Obviously, f(s) ≥ 0. In this way, only f(s) = 0, the

scheme s is the solution of GCP. Therefore, GCP can

be expressed as an optimization problem, as shown in

formula (2):
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s = argmin
s∈S

f(s). (2)

Where S is all possible schemes.

Solving GCP is finding (searching) K-coloring schemes

to reduce the value of the objective function f to 0. The

K-coloring scheme s1 is better than s2 means f(s1) <

f(s2).

2.2 The tabu search algorithm Tabucol

Tabu search algorithm has been widely used since it was
proposed in 1987 (Hertz and Werra, 1987). Algorithm

1 gives a typical tabu search algorithm for solving the

GCP(Galinier and Hao, 1999). Since the Tabu search

does not depend on the quality of the initial scheme, an

initial scheme is generally initialized at random: each

vertex is assigned a color no greater than K to obtain a

scheme with conflicting edges as the input to the algo-

rithm. Resets the number of iterations and create the

s∗ to save the gbest scheme(lines 1-2). Line 3 is the

termination condition. The size of the MaxIter is de-

termined by the experiment. In line 5, the color of the

vertices is changed to minimize the objective function

value(using a one-step move strategy, see Section 2.3).
In line 6, the tabu list is introduced to avoid making

the same vertex color transformation within a certain
number of iterations, and it is a two-dimensional list.
One dimension is the vertices, and the other dimension
is the colors. When a color transformation is performed,

it is recorded in the tabu list, and the same operation

cannot be performed again within a certain tabu tenure

tl. Line 9 updates the gbest scheme s∗. In line 12, after

reaching the number of iterations, the gbest scheme s∗

is output.

In tabu search, the parameter tl is called tabu tenure.

Its size directly affects the search effect on the neigh-

bourhood schemes, a longer tabu tenure can explore

a large search space, but if it is set too long, it will

not play the role of tabu, if the tabu tenure is short,

the search will be limited to a smaller range. A bet-
ter method was obtained in (Galinier and Hao, 1999)

using formula (3) to generate the tabu tenure in a semi-

random manner.

tl = random(A) + ∂ ∗ f(s) (3)

where the range of the parameter A is [0,9], ∂ = 0.6,

and f(s) represents the number of conflicting edges (ob-

jective function value) of the current scheme s. In this

paper, we also adopt such a configuration. Meanwhile,

static, dynamic and reactive tabu tenure change strate-

gies are introduced in (BlöChliger and Zufferey, 2008).

Algorithm 1 :TabuCol; // The tabu search algorithm

Input: A graph G = {V,E}, scheme s0;
Output: the gbest scheme s∗;
1: s← s0; Iter ← 0;
2: Let s∗ be the gbest scheme; /* s∗ represents the scheme

with the smallest objective function in the whole iterative
process */

3: while Iter! = MaxIter do

4: Iter ← Iter + 1;
5: Choose a best authorized move (v, i);
6: Introduce move (v, s(v)) in the Tabu list for tl itera-

tions;
7: Perform the move (v, s(v)) in s;
8: if f(s) < f(s∗) then

9: s∗ ← s;
10: end if

11: end while

12: return s∗;

2.3 Distance between schemes

For any two schemes s1 = {V 1
1 , . . . , V

1
K} and s2 =

{V 2
1 , . . . , V

2
K}. Changing the color of a vertex, e.g. chang-

ing the color of vertex u in s1 to j , is a move of vertex

u from V 1
i to V 1

j , called a one-step move. The distance

between schemes s1 and s2 is defined as the number of

moves in one-step needed to convert schemes s1 to s2 ,

denoted as d(s1, s2), obviously d(s1, s2) = d(s2, s1).
When the distance between two schemes is 1, they

are said to be neighbours of each other. s1 and s2 in

Fig.1(a) are neighbours of each other, and when the

vertex G ∈ V 2
3 move to V 2

2 , s2 is the same as s1, and

the transformation between them requires only one-step

move, d(s1, s2) = 1, The distance between schemes is

only related to the division of vertices. In Fig.1(b), the

colors of the vertices in s1 and s2 are different, but the

vertex division is exactly the same. So, d(s1, s2) = 0.

The distance between the schemes can be solved us-
ing the bipartite graph maximum weight matching. The

schemes s1 and s2 as two disjoint sets, color subsets

in each scheme are considered as the vertices of the

bipartite graph, and the number of matches between

the color subsets of the s1 and s2 is the weight. The

distance between s1 and s2 is equal to the number of
vertices reduced by the maximum matching number.

Fig.2 gives an example of converting two schemes to

a bipartite graph and calculating the distance between

schemes. Fig.2(b) is the bipartite graph abstracted from

Fig.2(a). The number of vertices in Fig.2(a) is 10, and
the bigraph shows that the maximum matching num-

ber is 6(3+2+1), then the distance = 4 between s1 and
s2 in Fig.2.
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Fig. 1: Example of the distance between schemes

Fig. 2: Example of calculating for distance

2.4 Greedy Partition Crossover GPX

The Greedy Partition Crossover is a crossover opera-

tor. The two parents (schemes) s1 = {V 1
1 , . . . , V

1
K} and

s2 = {V 2
1 , . . . , V

2
K}, partition the vertices into K subsets

according to color, such as V 1
i in s1, where 1 represents

parent 1, i represents color i. All vertices in this sub-

set are assigned color i. Algorithm 2 will get a new off-

spring combining the two parents. Alternately selecting
the large color subset of the two parents in turn (lines
2-7). Then assign this subset to the offspring, and this

subset in both parents is removed (lines 8-9), until all

subsets in the parents have been selected. In line 11, the

vertices that have not yet been assigned are randomly

assigned to the subset of the offspring.

Algorithm 2 :GPX; // The GPX algorithm

Input: scheme s1 = {V 1

1
, . . . , V 1

K} and s2 = {V 2

1
, . . . , V 2

K};
Output: scheme s = {V1, . . . , VK};
1: for l(l ≤ l ≤ K) do

2: if l is odd then

3: A = 1;
4: else

5: A = 2;
6: end if

7: Choose i such that V A
i has a large color subset;

8: Vl = V A
l ;

9: remove the vertices of V A
l from s1 and s2;

10: end for

11: Assign colors to the vertices V −(V1∪· · ·∪VK) randomly;
12: return s;

2.5 hybrid evolutionary algorithm in Duet HEAD

Hybrid evolutionary algorithms are a class of algorithms

that combine local search algorithms with evolution-

ary algorithms and are often used to solve optimization

problems. In 2017, Moalic et al. gave a hybrid evolution-

ary algorithm HEAD (Moalic and Gondran, 2017), as
in Algorithm 3. HEAD removes the complex selection

and update operators from the evolutionary algorithm
and uses an elite strategy to manage population diver-
sity.

Algorithm 3 randomly initializes two parents(P1,P2),

Algorithm 3 :HEAD; // HEA in Duet

Input: K is the number of colors, IterTC is the number of
Tabucol iterations, Itercycle = 10 is the number of gen-
erations into one cycle, Maxgeneration is the maximum
number of generation;

Output: the gbest K-coloring scheme s; /* gbest represents
the scheme with smallest objective function during the
whole evolutionary process*/

1: P = {P1, P2, elite1, elite2, gbest} ← init(); /* Each ver-
tex is randomly assigned a color no greater than K to
obtain a scheme */

2: generation ← 0;
3: while f(gbest) > 0 and P1 6= P2 and generation < Max-

generation do

4: offspring1 ← GPX(P1, P2);
5: offspring2 ← GPX(P2, P1);
6: P1 ← Tabucol(offspring1, IterTC);
7: P2 ← Tabucol(offspring2, IterTC);
8: elite1 ← saveBest(P1, P2, elite1) /* Compare the ob-

jective function value in the three schemes and return the
scheme with the smallest objective function value*/

9: gbest ← saveBest(P1, P2, gbest);
10: if generation%Itercycle = 0 then

11: P1 ← elite2; /* elite2 is the individual with the
smallest objective function value in previous cycle*/

12: elite2 ← elite1; /* elite1 is the individual with the
smallest objective function value in current cycle*/

13: elite1 ← init();
14: end if

15: generation++;
16: end while

17: return the gbest scheme s

elite individuals(elite1,elite2) and the gbest(line 1). The

GPX was used to generate two different offspring, and

then the Tabucol was used to improve the two offspring

to replace the two parents (lines 4-7). The gbest and the

elite1 are updated in lines 8 and 9. After each genera-
tion cycle (Itercycle=10), the elite2 from the previous

generation cycle replaces the P1 (line 11). The final out-

put is the gbest scheme.

Because the population uses only two individuals,

there is no redundant selection, and each individual

is involved in the evolutionary process. Experiments
show that it can quickly find the solution of small and
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medium-sized graphs. However, the introduction of the

elite individual with a fixed generation cycle is not flex-

ible. Moreover, there are fewer options for elite indi-

viduals, which sometimes do not effectively provide di-

versity. So this paper proposes a new elite individual

replacement strategy to improve the HEAD algorithm.

3 hybrid evolutionary algorithm

(NERS HEAD)

This section discusses the hybrid evolutionary algorithm
NERS HEAD proposed in this paper to solve GCP and

the replacement strategy of its elite individuals. Includ-
ing:(1) The framework of NERS HEAD (section 3.1);
(2)The local optimal state detection method based on

the change of objective function value(section 3.2); (3)

the elite construction method and fitness function for

selecting elite individual replacements (section 3.3).

3.1 NERS HEAD framework

Inspired by HEAD, we give a hybrid evolutionary algo-

rithm NERS HEAD with a new elite replacement strat-
egy, as Algorithm 4.

In Algorithm 4, six schemes are randomly gener-
ated, which are two parents (P1,P2), two elite individu-

als (elite1,elite2), temp is the individual with the small-

est objective function in each generation period and the

gbest is the individual with the smallest objective func-

tion during the whole Evolutionary process(line 1). The

GPX was used to generate two different offspring, and

then the Tabucol was used to improve the two offspring
to replace the two parents (lines 4-7). Update temp and

gbest (lines 8-9). During evolution, the change of the

objective function value is used to determine whether
it falls into a local optimal state (lines 10-13) (Section

3.2). If trapped in the local optimal state, a new scheme

is obtained by MPX of elite individuals from the pre-

vious two periods(line 15). Then the scheme is added

to the elite pool after the Tabucol (line 16) (Section
3.3). The fitness between elite and parents is calculated,

and the smallest fitness is selected for elite replacement

(lines 17-21) (Section 3.3). Finally, update the elite in-

dividual and the generations (lines 22-27). Output the

gbest(line29).

3.2 Method of detecting local optimal state

Moalic and Alexandre proposed two versions of HEAD

(Moalic and Gondran, 2017), the first version without

the strategy of adding elite individuals, which allows

Algorithm 4 :NERS HEAD; // HEAD with new elite

replacement strategy

Input: K is the number of colors, IterTC is the number of
Tabucol iterations, generation is the number of evolutive
generations, Maxgeneration is the maximum number of
evolutive generations, ϕ = 5, ε = 0.1;

Output: the gbest scheme s;
1: P = {P1, P2, elite1, elite2, temp, gbest} ← init();
2: generation ← 0;fpre ← 999;fcurr ← 0;
3: while f(gbest) > 0 and P1 6= P2 and generation < Max-

generation do

4: offspring1 ← GPX(P1, P2);
5: offspring2 ← GPX(P2, P1);
6: P1 ← Tabucol(offspring1, IterTC);
7: P2 ← Tabucol(offspring2, IterTC);
8: temp ← saveBest(P1, P2, temp);
9: gbest ← saveBest(P1, P2, gbest);
10: if generation%ϕ = 0 then

11: fcurr = f(gbest);
12: ∆ = fpre − fcurr; /*(section 3.2)*/
13: fpre = fcurr;
14: if ∆ = 0 or d(P1, P2) < ε ∗ n then /*(section

3.3)*/
15: elite3 ←MPX(elite1, elite2);
16: elite3 ← Tabucol(elite3, 0.1 ∗ IterTC);
17: for i=1,2,3, j=1,2 do
18: P(i,j) ← fit(i,j) /*according to Eq.(4)*/
19: end for
20: (i,j)=agrmin{P(i,j)| i=1,2,3,j=1,2};
21: Pj ← elitei;
22: elite2 ← elite1;
23: elite1 ← temp;
24: temp← init();
25: end if

26: end if

27: generation ++;
28: end while

29: return the gbest scheme s;

the population to converge quickly but with a low suc-

cess rate. The second version introduces elite individu-

als according to a fixed number of generations, which

improves the success rate but reduces the efficiency.

Inspired by these two versions, in NERS HEAD, only

P1 and P2 are used to participate in evolution so that
the evolution process can converge faster. At the same

time, after every ϕ generation of evolution, it is judged

whether the evolution process falls into a local opti-

mal state. If it is, it needs to jump out in time. This

section discusses the judgment method of whether the

evolution process is in a local optimal state, and the

strategy of jumping out of the local optimal state is

discussed in section 3.3.

In NERS HEAD, the change of the objective func-

tion value and the distance between P1 and P2 are used

to detect whether the evolutionary process falls into a

local optimal state.

First, we believe that the objective function values

after ϕ generations are equal means that the evolution-
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ary process has fallen into a local optimal state. For

scheme s, searching for a feasible scheme according to
Eq.(1) is the process of searching for the objective func-

tion value f(s) that decreases to 0. Every ϕ generations,

the objective function value of the gbest is recorded in

fcurr(Algorithm 4, line 11). The fpre records the ob-
jective function value of the gbest in the last ϕ genera-

tions(Algorithm 4, line 13). ∆ is equal to the difference
between fpre and fcurr (Algorithm 4, lines 12). If ∆ = 0

means the population fall into a local optimal state. The

number of the generation period ϕ is determined exper-

imentally (section 4.2).

Second, when the d(P1, P2) < ε ∗ n means that the
evolutionary process is trapped in a local optimal state.

n is the number of the vertices, ε is 0.1. This condition

is to prevent the algorithm from stopping if the first

condition is not satisfied since the algorithm ends when

the distance between the parents is 0.

3.3 Strategy for jumping out of local optimal state

In the process of finding the gbest scheme, HEAD can

achieve fast convergence in the early stage, and after

falling into a local optimal state, it is challenging to

jump out. If the structure of the scheme is completely

broken to increase diversity will lead to worse results,
and too little diversity cannot be jumped out in time.
Hence, it is crucial to introduce proper diversity.

Since there are only two individuals, as much diver-

sity as possible is obtained using the elite individuals in
the pre-generation period. This paper proposes saving

the elite individuals in the first two generation periods

and combining two elites using multi-parental crossover

(MPX) to be added to the elite pool. It can add more di-

versity while preserving the structure of most schemes.

This paper uses MPX for the case of 2 parents (m=2),

and the pseudo-code is as Algorithm 5. The input of

the algorithm is two schemes (parents), and the out-

put is one scheme (offspring), which first selects the
large color subset among the parents, assigns it to the
offspring, and then removes all the vertices containing
this subset from the parents (lines 2-4). After all the K

color subsets are selected, the vertices in the offspring

that are not assigned a color are randomly assigned a

color (line 6). MPX(m=2) differs from GPX. Instead

of alternating the selection of both parents, the large
color subsets is selected in both parents each time. The
color subsets of the same parent can be chosen con-

secutively and simultaneously. Since crossover does not

improve the objective function value, but on the con-

trary, random coloring in the last step will also increase

the objective function value, so this offspring has to

be improved by Tabucol and then added to the elite

pool (Algorithm 4, line 16). The Tabucol is more time-

consuming, so we set the number of the iteration to be
0.1* IterTC . Because the purpose of this step is not to

find the solution but to reduce the number of conflicts
generated in the last step. In this way, the elite pool

contains the elite individuals (elite1 and elite2) from

the first two generation periods and the newly gener-
ated individuals(elite3) from MPX.

Meanwhile, this paper proposes a new approach to

Algorithm 5 :MPX(m=2) // The MPX (m=2) algo-

rithm

Input: solution s1 = {V 1

1
, . . . , V 1

K} and s2 = {V 2

1
, . . . , V 2

K};
Output: solution s = {V1, . . . , VK};
1: for l(l ≤ l ≤ K) do

2: Choose i such that V A
i (A = 1 or 2) has a large color

subset;
3: Vl = V A

l ;
4: remove the vertices of V A

l from s1 and s2;
5: end for

6: Assign colors to the vertices V −(V1∪· · ·∪VK) randomly;
7: return S;

choose the elite for replacement, which calculates the

fitness between the elite individuals(elite1,elite2,elite3)

and the parents (P1,P2) based on the objective function

and distance, as in formula (4).

fit(i, j) = f
1

2

ij + exp
dij
β∗n (4)

where fit(i, j) represents the fitness value of i and j, i

represents elite individuals, j represents parents. fij rep-

resents the difference between the objective functions

vaule of i and j, dij represents the distance between i
and j, β is 0.15, and n is the number of vertices. The

proposed fitness calculation method combines distance

and objective function.

According to the experiment (Section 4.5), the dif-

ference of the objective function can reflect the degree

of similarity between two individuals to some extent. If
the difference is larger, the less similar the two individ-
uals are. But dij is more responsive to the similarity

of two individuals than fij because when the distance

of two individuals is 0, these two individuals must be
the same. Still, if fij is 0, it cannot be judged that two

individuals must be the same. So the value of fij is

weakened by opening the root sign on the fitness value.
Adjusting the ratio of β can influence the degree of

distance on the fitness value. The smaller the value of

β, the greater the influence of distance on the fitness

value, and the larger the value of β, the smaller the in-

fluence on the fitness value. The idea of the formula is

to find out the smallest fitness between elite individuals

and parents, that is, the more similar individuals. Two
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variables are used so that similar individuals can still

be selected when one variable is the same.
The purpose of increasing diversity is to prevent

gradual homogenization between individuals. Replac-

ing j with i corresponding to the minimum fitness value

fit(i, j) prevents the two individuals after replacement
from being too similar.

4 Experimental and analysis

This section will introduce the experiment datasets and
the parameter settings of the experiments, and the de-

tailed results and analysis. Experiments on the effec-
tiveness of using strategy 2 are given in Section 4.3. A

comparison with the result of the excellent current al-

gorithms will also be made to verify the effectiveness of

the algorithm improvements(section 4.5).

4.1 Dataset and experimental environment

The datasets used in our experiments comes from the

DIMACS challenge benchmark dataset, most of which

are random or quasi-random. There are a total of 34

datasets, which can be divided roughly into four cate-

gories by name. These datasets are widely used in the
research of graph coloring algorithms.

The dataset details are shown in Table 1, where the

chromatic number is marked as χ(G), ‘?’ means that the

chromatic number has not been found yet. The Edge

destiny is 2m/n(n-1), where m and n are the number of

edges and vertices of the graph, respectively.

NERS HEAD algorithm is coded in c++. The ex-
perimental environment is windows 10, and the proces-

sor is Intel Xeon Platinum 8369HC 3.3GHz processer-4

cores and 8GB of RAM. Since HEAD is open source,

we run the HEAD algorithm and NERS HEAD under

the same experimental conditions to compare the ex-

perimental results.

4.2 Local optimal state detection period ϕ

During the evolution of NERS HEAD, every ϕ genera-

tion will detect whether the algorithm falls into a local
optimal state. Two examples, dsjc1000.1 and dsjc500.5,
are used to determine a more suitable value for the lo-

cal optimal state detection period ϕ . The experiment

results are shown in Fig.3, where the horizontal coordi-

nates are the size of the period ϕ, ranging from 1 to 15.

Each value runs the example 50 times, the left vertical

coordinate indicates the number of generations, and the

Table 1: The details of datasets

Instances Vertex Edge Edge destiny χ(G)

dsjc125.1 125 736 0.1 5
dsjc125.5 125 3891 0.5 17
dsjc125.9 125 6961 0.9 44
dsjc250.1 250 3218 0.1 ?
dsjc250.5 250 15668 0.5 ?
dsjc250.9 250 27897 0.9 ?
dsjc500.1 500 12458 0.1 ?
dsjc500.5 500 62624 0.5 ?
dsjc500.9 500 112437 0.9 ?
dsjc1000.1 1000 49629 0.1 ?
dsjc1000.5 1000 249826 0.5 ?
dsjc1000.9 1000 449449 0.9 ?
le450 5a 450 5714 0.06 5
le450 5b 450 5734 0.06 5
le450 5c 450 9803 0.1 5
le450 5d 450 9757 0.1 5
le450 15a 450 8168 0.08 15
le450 15b 450 8169 0.08 15
le450 15c 450 16680 0.17 15
le450 15d 450 16750 0.17 15
le450 25a 450 8260 0.08 25
le450 25b 450 8263 0.08 25
le450 25c 450 17343 0.17 25
le450 25d 450 17425 0.17 25
flat300 28 0 300 21695 0.48 28
flat1000 50 0 1000 245000 0.49 50
flat1000 60 0 1000 245830 0.49 60
flat1000 76 0 1000 246708 0.49 76
dsjr500.1c 500 121275 0.97 ?
r250.5 250 14849 0.48 65
r1000.1c 1000 485090 0.97 ?
r1000.5 1000 238267 0.48 ?
c2000.5 2000 999836 0.5 ?
c4000.5 4000 4000268 0.5 ?

right vertical coordinate indicates the success rate.
As ϕ increases, the success rate tends to a stable

value, but the average number of generations increases

gradually and takes more time. Therefore, ϕ = 5 is cho-

sen as the local optimal state detection period for the

final experiment because the success rate is high and

the number of generations is low at this point.

4.3 Elite individual replacement effectiveness

experiment

Fig.4 gives a comparison of the average evolutionary

generations solved using the elite replacement of strat-
egy 2 and the elite replacement strategy of HEAD.
NERS HEAD can reduce the number of generations in

most instances. Fig.4(a) gives instances for the gener-

ations less than 2000 and Fig.4(b) gives instances for

the generations greater than 2000.

If better quality elites can be selected to provide

diversity during the evolutionary process, it can reduce
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(a) Success rate and average number of generations of dsjc1000.1

(b) Success rate and average number of generations of dsjc500.5

Fig. 3: The experiment of the local optimal state detec-
tion period ϕ

the number of generations. So, strategy 2 is effective.

Meanwhile, the dsjc1000.1 is used to explore the

changes in the objective function value during the evo-
lutionary process. HEAD and NERS HEAD output the
objective function value of the gbest scheme at every 50

generations. After running 20 times, the objective func-

tion values of the same evolutionary generation were

averaged and plotted as Fig.5.

Overall, the value of the objective function decreases

with the number of generations during the evolution.

NERS HEAD can find the solution faster.

4.4 Relationship between the difference of objective

function and distance

In designing the fitness function, the objective function

difference is needed to determine the degree of similar-

ity between two individuals. There is no theoretical ba-

sis for whether individuals with larger or smaller objec-

(a) generation less than 2000

(b) generation more than 2000

Fig. 4: Comparison of the number of generations of the

same instance
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Fig. 5: The change of the objective function value on

dsjc1000.1(k=20)

Fig. 6: Relationship between the difference of objective

function and distance on dsjc1000.1(k=20)

tive function differences are more similar, so we deter-

mine this roughly by experiment. The dsjc1000.1 exam-

ple, during each generation, outputs the distance and

the difference of the objective function between two par-

ents. The difference of the objective function for each

scheme after the Tabucol is in a small range, and two

schemes of the same objective function difference may

correspond to multiple distances. Therefore, the hori-

zontal coordinate is the objective function difference,

and the vertical coordinate is the average distance cor-

responding to each objective function difference.
In Fig.6, the curve shows that as the difference in

the objective function becomes larger, the distance be-
tween the two individuals increases. It shows that the
difference of the objective function of the two schemes
is inversely correlated with the degree of similarity.

4.5 Algorithm comparison

The comparison result of HEAD and NERS HEAD is

shown in Table 2. The form of each item is x(y), x
and y are the experimental results of NERS HEAD and

HEAD(Moalic and Gondran, 2017), respectively. When
x=y, only x is listed. The first column is the name of

the instance. The second column is chromatic number.

The third column K represents the number of colors.

The fourth column is the number of Tabucol iterations.

The fifth column Success: success runs/total runs. The
right side is the number of total runs, usually set to 20

(10 for C2000.5 and C4000.5 for larger graphs), and the
left side is the number of times the solution was found
successfully. The Generation in the sixth column rep-

resents the number of crossovers or generations. Bold

font indicates better values.
For the success rate, NERS HEAD has two data

that are worse than HEAD, three data is better than

HEAD, and the other success rates are the same. Only

on the basis that the success rate is guaranteed, it

makes sense to compare the generations and compu-

tational time reductions. For 12 instances of the first

category(dsjc), it can reduce the number of generations

for seven instances and the computation time for six in-

stances. The reduction in computation time is not par-
ticularly significant because of the additional time cost
required to construct the elite pool. In the second cat-
egory(le450), most of the examples are relatively sim-

ple and can be solved quickly. NERS HEAD reduces

the number of generations and computation time of 3
instances. For le450 15c and le450 15d, an alternative

approach is used: adding a randomly generated scheme
inside the elite pool and directly replacing one of the
two parents with that approach gives a more significant

success rate improvement (le450 15c improve from 3/20

to 20/20, and le450 15d improve from 1/20 to 20/20).

In the remaining instances, the number of generations
and the computation time can be reduced for most of

the instances.
From Table 2, among 34 instances and 41 data items,

NERS HEAD can reduce the evolutionary generation

of 21 data items and the computation time of 18 data

items than HEAD. The average reduction in the num-

ber of evolutionary generations was calculated to be

28.3%. The average reduction in computation time is
22.11%. In particular, dsjc500.1 reduces the number of
evolutionary generations by 51.40% and the computa-
tion time by 40%. r1000.1c reduces the number of evo-

lutionary generations by 82.30% and the computation

time by 73.45%. Although the number of generations is

somewhat random in each calculation, the effectiveness

of the strategies can be demonstrated if it is reduced
in most instances. Therefore, NERS HEAD is effective

in reducing the number of evolutionary generations and

computation time.
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Table 2: Comparison of experimental results between NER HEAD and HEAD

Instance χ(G) k IterTC Success Generation Time(min)

dsjc125.1 5 5 400 20/20 7 < 0.01
dsjc125.5 17 17 5000 20/20 16 < 0.01
dsjc125.9 44 44 1000 20/20 4 < 0.01
dsjc250.1 ? 8 1000 20/20 26 < 0.01
dsjc250.5 ? 28 6000 20/20 104(124) 0.04
dsjc250.9 ? 72 5000 20/20 43(68) 0.03
dsjc500.1 ? 12 4000 20/20 278(572) 0.06(0.1)
dsjc500.5 ? 48 8000 20/20 318(516) 0.29(0.38)
dsjc500.9 ? 126 15000 10/20 701(818) 1.46(1.62)
dsjc1000.1 ? 20 3000 20/20 493(768) 0.16(0.21)
dsjc1000.5 ? 82 60000 3/20 5522(4700) 44.91(41.5)

83 40000 20/20 947(1197) 6.65(7.26)
dsjc1000.9 ? 222 50000 1/20(2/20) 8942(13262) 67.39(89.25)

223 30000 13/20(17/20) 2615(3211) 18.15(20.7)
le450 5a 5 5 30000 20/20 1 < 0.01
le450 5b 5 5 60000 20/20 1 < 0.01
le450 5c 5 5 8000 20/20 1 < 0.01
le450 5d 5 5 8000 20/20 1 < 0.01
le450 15a 15 15 30000 20/20 3 < 0.01
le450 15b 15 15 30000 20/20 1 < 0.01
le450 15c 15 15 110000 3/20 6 0.02

15 4000 20/20 119 0.03
le450 15d 15 15 100000 1/20 2(12) 0.02(0.05)

15 5000 20/20 756 0.33
le450 25a 25 25 1000 20/20 1 < 0.01
le450 25b 25 25 1000 20/20 1 < 0.01
le450 25c 25 25 22000000 20/20 40(65) 39.51(51.76)
le450 25d 25 25 21000000 17/20 86(101) 92(96.31)

flat300 28 0 28 31 4000 20/20 107(148) 0.03(0.04)
flat1000 50 0 50 50 130000 20/20 5 0.33
flat1000 60 0 60 60 130000 20/20 7(9) 0.43(0.52)
flat1000 76 0 76 81 60000 5/20(3/20) 5779(7695) 66.61(85.76)

82 60000 20/20 1002(1314) 7.24(8.63)
dsjr500.1c ? 85 42000000 1/20 1 0.2
r250.5 65 65 10000 1/20 30565(34898) 12.4(13)

r1000.1c ? 98 45000 2/20 43(243) 0.47(1.77)
r1000.5 ? 245 360000 20/20 4665(5757) 343(377)
C2000.5 ? 146 140000 5/10 3795(3799) 289

147 140000 10/10 2464(2870) 206(220)
C4000.5 ? 266 140000 4/10 9432(12949) 1948(2113)

267 140000 8/10 6723(8034) 1786(1832)

5 Conclusion and future work

This paper proposes a hybrid evolutionary algorithm

NERS HEAD based on an elite replacement to solve

GCP. NERS HEAD guides the evolution direction of

the population by setting the criteria of whether the

evolutionary process is trapped in the Local optimal

state and improves the global search ability by increas-
ing the diversity of elites. The comparison experiment
with the current excellent GCP solving algorithm on 34

DIMACS instances shows that NERS HEAD can re-

duce the number of evolutionary generations and the

computing time of most instances while ensuring the

success rate. The average reduction in evolution gener-

ations and calculation time reached 28.3% and 22.11%,

respectively. Therefore, NERS HEAD is a more effec-

tive GCP solving algorithm.

Constructing elite individuals suitable for general

instances has always been one of the main problems

in solving GCP. MPX is used in this paper, but it

has many crossover operators and mutation operators

(Marappan and Sethumadhavan, 2020) when solving

the GCP. For different types of graphs, changing the

operator may get better results. In future work, we can
study the characteristics of graphs and choose different
operators to construct elite individuals.
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