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Abstract
Crow search algorithm (CSA), as a new swarm intelligence algorithm that simulates the crows’ behaviors of hiding and

tracking food in nature, performs well in solving many optimization problems. However, while handling complex and

high-dimensional global optimization problems, CSA is apt to fall into evolutionary stagnation and has slow convergence

speed, low accuracy, and weak robustness. This is mainly because it only utilizes a single search stage, where position

updating relies on random following among individuals or arbitrary flight of individuals. To address these deficiencies, a

CSA with multi-stage search integration (MSCSA) is presented. Chaos and multiple opposition-based learning techniques

are first introduced to improve original population quality and ergodicity. The free foraging stage based on normal random

distribution and Lévy flight is designed to conduct local search for enhancing the solution accuracy. And the following

stage using mixed guiding individuals is presented to perform global search for expanding the search space through tracing

each other among individuals. Finally, the large-scale migration stage based on the best individual and mixed guiding

individuals concentrates on increasing the population diversity and helping the population jump out of local optima by

moving the population to a promising area. All of these strategies form multi-level and multi-granularity balances between

global exploration and local exploitation throughout the evolution. The proposed MSCSA is compared with a range of

other algorithms, including original CSA, three outstanding variants of CSA, two classical meta-heuristics, and six state-of-

the-art meta-heuristics covering different categories. The experiments are conducted based on the complex and high-

dimensional benchmark functions CEC 2017 and CEC 2010, respectively. The experimental and statistical results

demonstrate that MSCSA is competitive for tackling large-scale complicated problems, and is significantly superior to the

competitors.
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1 Introduction

Optimization runs through the whole human civilization. It

is the behavior of people to improve existing things in

order to solve practical problems and adapt to the current

environment. The mission of global optimization is to find

the optimal solution among all possible solutions to a

particular problem. Generally, current optimization algo-

rithms can be divided into two categories: deterministic

and stochastic. Although deterministic algorithms have

been mature in mathematical theory, their optimization

effect and performance are poor when dealing with dis-

continuous and non-differentiable functions, and some-

times they cannot solve such problems. However, most

engineering optimization problems with many local
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optimal values are discontinuous, non-differentiable, and

even difficult to be expressed by mathematical models.

Because of these conditions, more and more scholars have

shifted their attention to stochastic optimization algo-

rithms. Their notable feature is the introduction of ran-

domness, which provides the possibility of jumping out of

local optimality (Hoos and Stützle 2004). Hence, it is

important to utilize stochastic optimization algorithms to

obtain the optimal solutions of global optimization

problems.

Swarm intelligence algorithm (Chakraborty and Kar

2017; Nayyar et al. 2018) is a kind of stochastic opti-

mization technology, which is inspired by various behav-

iors of biological communities in nature and opens up a

new way to solve the optimization problems. In nature, in

order to make up for the capabilities of individual foraging

and avoiding predation, many species form coordinated

and amazing swarm intelligence behaviors through coop-

eration and competition among individuals. For example,

the predation of wolves, the gathering and migration of

birds, and the social behavior of bees and ants. Therefore,

swarm intelligence optimization algorithms can be realized

by studying the potential behaviors of individuals in the

population and using mathematical modeling method to

build the working mechanism of the population system,

including the cooperation and competition among indi-

viduals within the population and the interaction between

the population and the external environment.

The proposed swarm intelligence algorithms are classi-

fied into five categories in this paper:

1. Bird-based swarm intelligence algorithms. This type of

swarm intelligence algorithm simulates a series of

activities of birds, such as swarming, migration,

courtship, reproduction, nesting, hatching and brood-

ing. Particle Swarm Optimization (PSO) (Eberhart and

Kennedy 1995) is the most famous and classical bird-

based swarm intelligence algorithm. Other new algo-

rithms of this category mainly include Crow Search

Algorithm (CSA) (Askarzadeh 2016), Sooty Tern

Optimization Algorithm (STOA) (Dhiman and Kaur

2019), Harris Hawks Optimization (HHO) (Heidari

et al. 2019), African Vultures Optimization Algorithm

(AVOA) (Abdollahzadeh et al. 2021), Aquila Opti-

mizer (AO) (Abualigah et al. 2021a, b), Artificial

Hummingbird Algorithm (AHA) (Zhao et al. 2022),

etc.

2. Terrestrial animal-based swarm intelligence algo-

rithms. The second category of swarm intelligence

algorithm is inspired by the behaviors of terrestrial

animals such as group division of labor, hierarchical

leadership, hunting and hedging, and information

communication. Some popular instances of this kind

are Multi-Objective Artificial Sheep Algorithm

(MOASA) (Lai et al. 2019), Red Deer Algorithm

(RDA) (Fathollahi-Fard et al. 2020), Horse herd

Optimization Algorithm (HOA) (MiarNaeimi et al.

2021), Zebra Optimization Algorithm (ZOA) (Tro-

jovská et al. 2022), and Reptile Search Algorithm

(RSA) (Abualigah et al. 2022).

3. Aquatic animal-based swarm intelligence algorithms.

The behaviors of aquatic animals mainly include

schooling, following, ingestion, breeding, encircling

predation, and spawning migration, which constitute

the important search phases in the algorithms of this

category. A well-known case of aquatic animal-based

swarm intelligence algorithms is whale optimization

algorithm (WOA) (Mirjalili and Lewis 2016) that

mimics the feeding behaviors of humpback whale.

Some other currently proposed algorithms of this type

are Manta Ray Foraging Optimization (MRFO) (Zhao

et al. 2020), Marine Predators Algorithm (MPA)

(Faramarzi et al. 2020), and Jellyfish Search (JS)

optimizer (Chou and Truong 2021).

4. Insect-based swarm intelligence algorithms. Social

insects refer to insects that live together in groups

with members divided into several classes or types,

each of which has a specific function. The inspired idea

behind this category of algorithms reflects the social

behaviors of insects, including group living with

overlapping generations, fine division of labor, build-

ing defensive structures or nests, competition and

cooperation, information sharing, recruitment and

alarm, etc. Ant Colony Optimization (ACO) (Dorigo

et al. 1996) is a typical representative of insect-based

swarm intelligence algorithm. Dragonfly Algorithm

(DA) (Mirjalili 2016), Beetle Antennae Search Algo-

rithm (BSA) (Jiang and Li 2018), and Grasshopper

Optimization Algorithm (GOA) (Mirjalili et al. 2018),

are other examples of this category.

5. Microorganism-based swarm intelligence algorithms.

Microorganisms include bacteria, viruses, fungi and

some small protozoa, and microscopic algae. They are

individually tiny and closely related to humans. The

last category of swarm intelligence algorithms mimics

the microorganism behaviors such as diffusion, forag-

ing, reproduction, variation, invasion, infection, and

phagocytosis. Some powerful microorganism-based

swarm intelligence algorithms proposed in literature

are Mushroom Reproduction Optimization (MRO)

(Bidar et al. 2018), Slime Mould Algorithm (SMA)

(Li et al. 2020), Coronavirus Herd Immunity Optimizer

(CHIO) (Alweshah 2022), and so no.

Crow Search Algorithm (CSA) (Askarzadeh 2016), an

outstanding described meta-heuristic, belongs to the
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category of bird-based swarm intelligence algorithm. A

simple foraging behavior simulation structure considering

tracking and hiding food is utilized in CSA to obtain the

optimal solution in the search space. CSA has the advan-

tages of easy to understand and implement, few control

parameters, good universality and strong global search

ability. Since its development, CSA has been widely used

in many fields, including numerical optimization (Kha-

lilpourazari and Pasandideh 2020; Necira et al. 2022;

Gholami et al. 2021), feature selection (Sayed et al. 2019;

Ouadfel and Abd Elaziz 2020), image processing (Upad-

hyay and Chhabra 2020; Fred et al. 2020), optimal power

flow (Saha et al. 2017; Fathy and Abdelaziz 2018), eco-

nomic load dispatch (Mohammadi and Abdi 2018; Spea

2020), cloud computing (Kumar and Vimala 2019; Kumar

and Kousalya 2020), control engineering (Turgut et al.

2020), and chemical engineering (Abdallh and Algamal

2020).

However, CSA only uses randomly selected individuals

to guide the search, and lacks the guidance of excellent

individuals or elite individuals, which is easy to lead to low

convergence accuracy and slow convergence speed of the

algorithm. Up to now, many strategies and techniques have

been proposed to improve the original CSA, manifested in

the following aspects.

1. Control parameter improvement strategies. In CSA, the

awareness probability AP and flight length fl are two

important parameters to affect algorithm performance.

dos Santos Coelho et al. (2016) proposed a modified

CSA, which uses population diversity information and

Gaussian distribution to adjust the control parameters.

Cuevas et al. (2019) has proposed another variant of

CSA by dynamically adjusting AP with the fitness

quality of each candidate solution. Later in Makh-

doomi and Askarzadeh (2020), an adaptive chaotic

awareness probability AP was formulated to improve

CSA’s efficiency. Also, Necira et al. (2022) designed a

dynamic CSA (DCSA) with dynamic fl changes based

on the generalized Pareto probability density function,

and AP adjusted linearly over optimization process.

2. Search mode improvement strategies. In Jain et al.

(2017), for solving high-dimensional optimization

problems, Jain et al. balanced the exploration and

exploitation of CSA by adding Lévy flight, experience

factor and adaptive adjustment factor. Moghaddam

et al. (2019) used crossover and mutated operators in

CSA to improve performance and prevent it from

falling into suboptimal regions. Zamani et al. (2019)

introduced three new search strategies called neigh-

borhood-based local search (NLS), non-neighborhood

based global search (NGS) and wandering around

based search (WAS) to improve the movement of

crows in different search spaces.

3. Hybridization with other algorithms. This type of

improved variants makes up for shortcomings of CSA

by hybridizing the advantages of other algorithms, such

as BCSA (Javaid et al. 2018) hybridized with bat

algorithm, DECSA (Mahesh and Vijayachitra 2019)

hybridized with dolphin echolocation, GWOCSA

(Arora et al. 2019) hybridized with grey wolf opti-

mization, SCCSA (Khalilpourazari and Pasandideh

2020) hybridized with sine cosine algorithm, and PSO-

CSA (Farh et al. 2020) hybridized with particle swarm

optimization.

From the above literature review, it can be concluded

that although most of the current studies have improved

CSA to some extent, there are still some drawbacks that

should be noted, including single type of search guiding

individual and search stage, inadequate adaptability to

complex and high-dimensional problems, and insufficient

balance between global exploration and local exploitation.

This means that CSA still has room for further improve-

ment. Hence, this paper’s aggregate purpose is to propose

an enhanced crow search algorithm with multi-stage search

integration (MSCSA) that can be suitable for different

complex and high-dimensional optimization problems. The

principal contributions and novelty of this study include:

1. Multiple search-guiding individuals are applied to

balance the global search and local search capabilities

of the algorithm. In this study, three mixed search-

guiding individuals are introduced for gradual search

guidance with respect to the evolution process.

2. Multiple search modes are designed to extend the

search scope of the algorithm and increase the

probability of finding optimal solution. Using different

guiding individuals to lead the search, and formulating

different flight length control parameters for each

search mode, six new individual search modes are

designed in this paper.

3. Proportion parameter of guiding individual and flight

length parameter in each mode are designed to control

the gradual transition from large-scale search in the

early and middle iterations to small-scale mining in the

later iterations.

4. Multiple search stages are integrated to achieve

different search intensities and enhance the population

diversity. Following the basic foraging principle of

crows, combined with the multiple guidance individ-

uals and position update modes mentioned above, this

study extended the single search stage of the original

CSA to three search stages, excluding the initialization

stage.

Enhanced crow search algorithm with multi-stage search integration for global optimization… 14879

123



5. The proposed MSCSA has good practicability and

applicability. It is capable of solving different complex

and high-dimensional problems.

The organization of the paper is as follows: Sect. 2

reviews the original CSA. The details of proposed MSCSA

are presented in Sect. 3. In Sect. 4, a range of compared

algorithms are applied to verify the effectiveness of

MSCSA for solving complex and high-dimensional

benchmark functions. The results are also analyzed in this

section. Finally, Sect. 5 concludes the study and provides

some future research directions.

2 Crow search algorithm

CSA is proposed based on the idea that crows store their

redundant food in hiding places and bring it back when

they need it. In CSA, each crow represents a solution

(position) to the optimization problem. Assuming that the

dimension of the solution space of the optimization prob-

lem is D, and the size of the crow population is N, the

position of the ith crow at iteration t can be expressed as:

Xt
i ¼ ðxti;1; xti;2; :::; xti;DÞ, where i ¼ 1; 2; :::;N,

t ¼ 1; 2; :::; Tmax, and Tmax represents the maximum itera-

tion number. Each crow has a memory and can remember

the hiding place of food, namely the best position obtained

so far. Assume that crow i’s hiding place at iteration t is

Mt
i . In the foraging process, crows move in the environ-

ment and search for better food sources (hiding places).

The main steps of CSA are described as follows:

Step 1: Randomly initialize a crow population P, and

take P as the initial memory M (hiding places) of crows.

Step 2: Crow i updates its position by randomly

selecting another crow j and following it. The position is

generated by Eq. (1).

Xtþ1
i ¼ Xt

i þ ri � flti � ðMt
j � Xt

iÞ; rj �APt
j

a random position, otherwise

�
; ð1Þ

where ri and rj are random values between 0 and 1, flti is the

flight length of the crow i at iteration t, and APt
j is the

awareness probability of being followed of crow j at iter-

ation t.

Step 3: Calculate the fitness of crow i according to the

new position, and update the memory of it as follows:

Mtþ1
i ¼ Xtþ1

i ; f ðXtþ1
i Þ is better than f ðMt

iÞ
Mt

i ; otherwise

�
; ð2Þ

where f ð:Þ denotes the fitness value.

Step 4: Repeat the steps 2–3 for all crows until the

termination conditions are met.

3 CSA with multi-stage search integration
(MSCSA)

The simplicity of optimization is the main characteristic of

CSA, but this also becomes the disadvantage of CSA

because of its single search stage, namely random fol-

lowing mode or free flight mode. For some complex opti-

mization problems, especially in the cases of high-

dimensional functions and multi-modal problems, CSA

may fall into the dilemma of evolutionary stagnation, and

its solving performance declines sharply.

We introduced four strategies, including chaos, multi-

OBL, multi-guidance, and multi-position-update to

improve the performance of the original CSA. These

strategies are embedded in the different optimization stages

of MSCSA. The details of the proposed algorithm are

described as follows according to its different stages.

3.1 Initialization with the hybridization of chaos
and OBL

Population initialization is a critical stage of meta-heuristic

algorithms as it can affect convergence accuracy and speed

of the final results. Improving the ergodicity and quality of

the initial solutions as much as possible is an effective

method to generate excellent initial population.

In recent years, chaos theory and chaotic maps have

been widely used to improve the performance of meta-

heuristic algorithms (Chen et al. 2020a, b; Chen et al.

2020a, b; Lu et al. 2020). Due to the traits of randomness,

unpredictability, non-repetition and ergodicity, chaos can

conduct more thorough search at a higher speed than tra-

ditional probabilistic random search. Hence, in this study,

the chaotic map has been utilized to initialize the popula-

tion so that the problem space information can be extracted

as much as possible to enhance the coverage of the search.

Moreover, opposition-based learning (OBL) (Tizhoosh

2005), as a new technique in the field of computational

intelligence, has played a significant role in enhancing

global search ability of algorithms (Rahnamayan et al.

2008). In order to expand the proportion of excellent

individuals and population diversity, multiple OBL tech-

niques constructed by different reference individuals are

also used to generate the initial population.

The main steps of initialization that mixes chaos and

OBL are described as follows.

Step 1: Use Tent map (Lu et al. 2020) to generate a

chaotic sequence C ¼ fC1; :::;Ci; :::;CNg, where Ci ¼
ðci;1; :::; ci;j; :::; ci;DÞ and ci;j ði� 2Þ is calculated as follows:

14880 J. He et al.
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ci;j ¼

ci�1;j

0:7
; ci�1;j\0:7

10

3
ð1 � ci�1;jÞ; ci�1;j � 0:7

8><
>: ; ð3Þ

Specifically, c1;j is a random number between 0 and 1.

Step 2: The chaotic sequence is applied to the popula-

tion P ¼ fX1; :::;Xi; :::;XNg generated by random method,

and a chaotic population CP ¼ fCX1; :::;CXi; :::;CXNg is

then obtained through Eq. (4). Calculate the fitness of each

individual in CP.

CXi ¼ Xi � Ci; ð4Þ

Step 3: For each individual in CP, use the following

formula to calculate its opposition solution.

OXi ¼
U þ L� CXi; if r ¼ 1

2CXbest � CXi; if r ¼ 2

2CXmean � CXi; if r ¼ 3

8<
: ; ð5Þ

CMmean ¼
1

N

XN
i¼1

CXi; ð6Þ

where U and L represent the lower bound and upper bound

of the optimization problem, respectively; CXbest and

CXmean are the best individual and mean individual (center

position) of the population CP, respectively; r is a random

integer from 1 to 3.

Step 4: For each opposition solution OXi, if f ðOXiÞ is

better than f ðCXiÞ, replace CXi with OXi.

Step 5: Take the final population CP as the initial

population P for MSCSA.

As can be seen from Eq. (5), three different OBL

methods are applied to calculate the opposition solutions,

including one traditional method based on lower and upper

bounds, and two new proposed methods based on best

individual reference point and mean individual reference

point, respectively. Obviously, the multiple OBL methods

can enhance the population quality and increase the

diversity.

3.2 Free foraging stage

The free foraging means that crows conduct a random

search around themselves to find a location closer to the

food source. Two search modes with different intensities

are proposed in the free foraging stage, namely the

expanded search based on Lévy flight and the narrowed

search based on standard normal distribution, shown as

follows:

Xtþ1
i ¼

Xt
i þ fl� w� signðR� 0:5Þ � LevyðDÞ; if rc\0:5

Xt
i þ fl� w� randnðDÞ; otherwize

�
;

ð7Þ

w ¼ 1 � 1

1 þ e�10 t�1
Tmax�1

�0:5ð Þ ; ð8Þ

where R is a random vector by size D with each element

between 0 and 1; rc is a random number between 0 and 1;

sign(.) means a sign function with value in {- 1, 0, 1} for

evaluating each dimension of a vector; Levy(D) is a Lévy

flight function that can generate a D-dimensional vector;

the function randn(D) represents generating a D-dimen-

sional vector from the standard normal distribution; and w

is a Sigmoid-based function that acts as the flight length

control parameter with the feature of decreasing nonlin-

early and smoothly from 1 to 0, shown in Fig. 1.

The description of Lévy flight function with one

dimension is as follows (Yang 2010):

LevyðxÞ ¼ u� r

vj j
1
b

; r ¼ Cð1 þ bÞ � sinðp� b=2Þ
C 1þb

2

� �
� b� 2

b�1
2

0
@

1
A

1
b

;

ð9Þ

where u, v are both random values obeying standard normal

distribution, b is a constant with value of 1.5.

Since the random position offset produced by Lévy

flight or standard normal distribution is small in most cases,

the free foraging search concentrates on local exploitation,

that is, it is very beneficial for individuals to carry out fine

excavation in their adjacent regions. However, Lévy flight

occasionally generates some random walks of large steps

during optimization, this search mode is also helpful for

enhancing the capability of jumping out of local optima.

Furthermore, as can be seen from Eq. (7), each crow does

not need the information of other individuals in the popu-

lation when updating its position, which can avoid pre-

mature population convergence and enhance the population

Fig. 1 Change curve of w
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diversity. Finally, the introduction of flight control

parameter w can accelerate the convergence speed of the

algorithm.

3.3 Following stage

After the crows accomplish their free foraging, the popu-

lation will distribute in some high-quality areas of the

search space. At this time, each crow can move to a

promising position (better food hiding place) by following

the excellent guiding individuals. The following stage is

also achieved through two different intensities of search,

depicted in the following formula:

Xtþ1
i ¼ Xt

i þ fl� R� ðG1 � Xt
iÞ; if rc\0:5

Xt
i þ fl� r � ðG2 � Xt

iÞ; otherwise

�
; ð10Þ

G1 ¼ ð1 � wÞ �Mt
best þ w�Mt

j ; ð11Þ

G2 ¼ ð1 � wÞ �Mt
best þ w�Mt

mean; ð12Þ

where G1 and G2 denotes the guiding individuals per-

forming extended and narrowed searches, respectively;

Mt
best is the best hiding place of all crows at iteration t;

Mt
mean is the mean value of all hiding places at iteration t;

Mt
j is the hiding place of crow j by random selection at

iteration t; r is a random number lying in (0,1); the

meanings of R, rc are the same as described in Sec. 3.2; and

w is used to control the proportion of the components in the

guiding individuals, whose calculation is shown in Eq. (8).

The search of this stage focuses on global exploration.

On the one hand, as can be seen from Eq. (10), under the

guidance of G1 or G2, the current individual can carry out a

large range of movement, due to the big gap between the

guiding individual and the current individual. In particular,

in the early stage of evolution, individuals have a wider

range of search because there is good diversity in the

population and the difference between the guiding indi-

vidual and the current individual is more pronounced. On

the other hand, as the evolution proceeds, the global search

intensity of the algorithm decreases. This is because the

diversity of the population gradually deteriorates, and G1

and G2 gradually converge to the best hiding place Mbest,

thus the whole population gradually approaches the opti-

mal solution.

The first search mode guided by G1 conducts more

intense global search with comparison to the second mode

guided by G2. There are two reasons for this. First of all,

the randomly chosen hiding place is introduced to form G1,

which results in each crow having a different guiding

individual. But G2 is formed by the hybridization of the

best hiding place and the mean hiding place, which is the

same for each individual over the course of an iteration.

Hence, the first mode (expanded search) allows individuals

search more dispersedly than the second (narrowed search).

Furthermore, in the first mode, the flight length control

parameter R is a D-dimensional vector that causes the

position offset to have a different flight length factor in

each dimension. While in the second mode, the flight

length control parameter r is a scalar such that the position

offset is multiplied by the same coefficient for each

dimension. Therefore, individuals in the first mode can

obtain a larger scale of position change than in the second

mode.

3.4 Large-scale migration stage

After the above two stages, crows have been able to con-

duct a thorough search of an area. However, if this area

continues to be searched, the population will fall into local

Fig. 2 Flight length control parameter of the extended migration

Fig. 3 Flight length control parameter of the narrowed migration

14882 J. He et al.

123



Fig. 4 Flowchart of MSCSA
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optima and the diversity will gradually deteriorate. This is

especially true in later stages of evolution. Thus, for the

sake of improving the diversity of the population and

prevent the evolutionary stagnation, a large-scale migration

stage is proposed to help the population move to a new

search region and recover the population diversity. This

search phase consists of two position-update modes, cor-

responding to different search strength, detailed below:

Xtþ1
i ¼

Mt
best þ fl� w� ð2R� 1Þ � G3; if rc\0:5

Mt
best þ fl� signðR� 0:5Þ
�ðe�k�w � 1Þ � absðG4 � Xt

iÞ; otherwise

8<
:

ð13Þ

G3 ¼ ð1 � wÞ �Mt
best þ w� Xrand; ð14Þ

G4 ¼ G2; ð15Þ

where G3 and G4 represent the two guiding individuals that

are applied to construct the migrated positions, and the

calculation of G4 is consistent with that of G2; Xrand is a

randomly generated individual (position); k is a D-dimen-

sional random vector in the range of 0 to 1; abs(.) is a

function that evaluates the absolute value of each dimen-

sion of a vector. R, rc are the same as described in Sect. 3.2;

and w is used to control the flight length in Eq. (13) and

component proportion in Eqs. (14) and (15), respectively.

For the first migration mode (extended migration),

w� ð2R� 1Þj j is the flight length control parameter, whose

figure for one dimension is illustrated in Fig. 2. And the

flight length control parameter of the second migration

mode (narrowed migration) is e�k�w � 1
�� ��, whose fig-

ure for one dimension is displayed in Fig. 3. Obviously, the

curve shapes of control parameters for both modes are

basically the same. However, the range of control param-

eter in the extended mode is larger than that in the nar-

rowed mode, and the curve reduction speed is also faster

than that in the narrowed mode.

The large-scale migration stage concentrates on helping

the population jump out of the local optima and recovering

the population diversity. Most importantly, as can be seen

from Eq. (13), the base vector used to calculate the

migration position is independent of the current individual.

That is to say, individuals can migrate to a position quite

different from their current positions. Moreover, in the

extended migration, the guiding individual G3 is built by

mixing the best hiding place Mt
best and the randomly gen-

erated individual Xrand that is unrelated to the current

population. In the early and middle stages of evolution,

Xrand plays a major role in G3, so the migration position

produced by Mt
best and G3 for each individual can be far

away from its previous position. As for the narrowed

migration, since the current individual participates in the

calculation of position offset and smaller value of control

parameter, the resulting range of the migration positions is

weaker than that of the first mode.

Meanwhile, the design of this stage also takes into

account the solution quality and convergence speed.

Although the migration operation can effectively enhance

the population diversity and help the population jump to a

new area, exorbitant diversity or poor quality of the new

area will lead to slow convergence of the algorithm and

even worse convergence accuracy. Hence, two measures

have been proposed to deal with these problems. The first

measure is that the migration position fuses the valuable

information of the so-far-best solution, due to the base

vector Mt
best, which makes the migrated population of good

quality. Another measure is that, with the continuous iter-

ation of the algorithm, the migration position of each

individual gradually converges to Mt
best, which can enhance

the convergence accuracy and speed of the algorithm. To

be specific, this lies on w that can decrease smoothly and

nonlinearly from 1 to 0. With the assistance of w, the

guiding individuals G3 and G4 transform from random

individual Xrand and mean individual Mt
mean to the best

individual Mt
best, and the migration position also transforms

from the region far away from Mt
best to the vicinity of Mt

best.

Thus, this stage realizes the transition from large-scale

exploration in the early and middle stages to small-scale

exploitation in the later stage, which not only improves the

convergence precision, but also accelerates the conver-

gence speed.

3.5 Procedure and overall analysis of MSCSA

The proposed MSCSA procedure is represented in Algo-

rithm 1, and its flowchart is shown in Fig. 4.
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In view of the previous detailed description of each

stage of the algorithm and the above algorithm process, the

overall optimization of the algorithm follows the principle

of achieving the good trade-off between global exploration

and local exploitation, and is embodied in the following

three different levels of balances (from top to bottom, from

macro to micro).

Search-stage level Specifically, the initialization is

devoted to improving the ergodicity and quality of the

original population. The free foraging stage mainly con-

ducts local search for enhancing the solution accuracy

through individual fine excavation in their own neighbor-

hood. The global search is performed in the following stage

to expand the search space as much as possible by fol-

lowing each other among individuals. And the last stage

large-scale migration concentrates on greatly increasing the

population diversity and helping the population jump out of

the local optima by transferring the population to a new

potential region. Apparently, each of these stages has its

own characteristics and is good at different intensities of

search, so as to form complementary advantages. They

jointly achieve the balance between global exploration and

local exploitation in the whole search process of the

algorithm.

Position-update level There are two position-update

modes, extended and narrowed, of varying intensities in

each search phase. The extended mode and narrowed mode

can cover different search ranges and form different search

fineness, which diversifies the population and increases the

probability of finding better solutions. Combining these

two modes in one search phase also sticks to the principle

of giving consideration to large-range coarse-grained

exploration and small-range fine-grained exploitation.

Control-parameter level The proportion control param-

eters can make the guiding individuals converge to the best

individual (the best hiding place of the population). Under

the lead of the guiding individuals, with the changes of

flight length control parameters, the search area of each

individual will gradually shrink from a large area far away

from itself to the nearest area of the best individual or its

own neighborhood. Therefore, even at the lowest micro

level, the design of the algorithm still reflects the process of

transition from large-scale search in the early and middle

iterations to small-scale mining in the later iterations.

3.6 Computational complexity

All the algorithms involved in this study utilize max

function evaluations (maxFEs) to determine the timing of

Table 1 Time complexity of the algorithms

Algorithms Time complexity

MSCSA Oð3NDþ 2Nf þ maxFEsðDþ f ÞÞ
CSA OðNDþ Nf þ maxFEsðDþ f ÞÞ
DCSA OðNDþ Nf þ maxFEsðDþ f ÞÞ
SCCSA OðNDþ Nf þ maxFEsðDþ f ÞÞ
ICSA OðNDþ Nf þ maxFEsðDþ f ÞÞ
WOA OðNDþ Nf þ maxFEsðDþ f ÞÞ
AO OðNDþ Nf þ maxFEsðDþ f ÞÞ
RSA OðNDþ Nf þ maxFEsðDþ f ÞÞ
HHO OðNDþ Nf þ maxFEsðDþ f ÞÞ
STSA OðNDþ Nf þ maxFEsðDþ f ÞÞ
AOA OðNDþ Nf þ maxFEsðDþ f ÞÞ
GA OðNDþ Nf þ maxFEsðð1 þ PmÞDþ f ÞÞ
PSO OðNDþ Nf þ maxFEsðDþ f ÞÞ

Table 2 Parameter settings of

the algorithms
Algorithms Parameter settings

MSCSA (this paper) fl ¼ 2

CSA (Askarzadeh 2016) fl ¼ 2; AP ¼ 0:1

DCSA (Necira et al. 2022) AP ¼ 0:2; 0:01½ �; s¼0:9

SCCSA (Khalilpourazari and Pasandideh 2020) r1 ¼ ½2; 0�; fl ¼ 2

ICSA (Gholami et al. 2021) fl ¼ 1:5; AP ¼ 0:1

WOA (Mirjalili 2016) a1 ¼ ½2; 0�; a2 ¼ ½�1; �2�; b ¼ 1

AO (Abualigah et al. 2021a, b) a ¼ 0:1; d ¼ 0:1

RSA (Abualigah et al. 2022) a ¼ 0:1; b ¼ 0:1

HHO (Heidari et al. 2019) *

STSA (Jiang et al. 2020) ST ¼ 0:4

AOA (Abualigah et al. 2021a, b) a ¼ 5; l ¼ 0:5

GA (Bonabeau et al. 1999) Pc = 0.9, Pm = 0.05

PSO (Kennedy and Eberhart 1995) w = 0.75, c1 = 1.8, c2 = 2

14886 J. He et al.
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algorithm termination. For analysis purpose, the number of

iterations is used to figure out the time complexity, which

is then converted to the one based on maxFEs.

Generally, the time complexity of an algorithm mainly

consists of three parts: initialization processes, fitness

function evaluation, and updating of solutions. Let the

population size be N, the problem space dimension be D,

and the maximum number of iterations of the algorithm be

Tmax. The computational complexity of the calculation of

fitness (one function evaluation) is set to be Oðf Þ. In the

initialization stage, the time complexity of generating

chaotic sequence is OðNDÞ. The time complexity of pro-

ducing a chaotic population is OðNDÞ, and so is the

opposition population. The time complexity of obtaining

the fitness of these two populations is Oð2Nf Þ. Hence, the

total time complexity of initialization stage is

Oð3NDþ 2Nf Þ. Each iteration of the algorithm consists of

three search stages. Each stage generates a new population,

and carries out the population evaluation. After Tmax iter-

ations, the time complexity is Oðð3NDþ 3Nf ÞTmaxÞ. Thus,

the time complexity of MSCSA is

Oð3NDþ 2Nf þ ð3NDþ 3Nf ÞTmaxÞ. Apparently,

2N þ 3NTmax ¼ maxFEs, but 2N is much less than

3NTmax, so 3NTmax ¼ maxFEs can be concluded. Replac-

ing Tmax with maxFEs, the time complexity can finally be

expressed as Oð3NDþ 2Nf þ maxFEsðDþ f ÞÞ. Applying

the same method, the time complexity of the original CSA

can be obtained as OðNDþ Nf þ maxFEsðDþ f ÞÞ. Obvi-

ously, the time complexity of MSCSA is only slightly

greater than that of CSA, mainly because chaos and OBL

techniques are used to generate the initial population.

In addition, the time complexity of other algorithms can

be calculated in a similar way. The time complexity of all

comparison algorithms is shown in Table 1. Pm in the time

complex of GA represents the mutation probability. As can

be seen from the table, the time complexity of these

algorithms can be considered the same, namely

maxFEsðDþ f Þ. However, due to the different position-

update modes and control parameters used by different

algorithms, the actual computational time varies greatly.

This point is fully verified in the comparison test of

algorithm computational time.

4 Experimental results and analysis

In order to comprehensively evaluate the performance of

the proposed MSCSA, two types of experiments are con-

ducted in this study. MSCSA is first tested by CEC 2017
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(Awad et al. 2016) special session benchmark functions for

solving complex global optimization problems with

dimensions of 30, 50, and 100. And then, the effectiveness

of MSCSA is estimated for solving complex and high-

dimensional global optimization problems through bench-

mark functions CEC 2010 (Tang et al. 2009) with

dimensions up to 1000.

In all experiments, the performance of MSCSA is

compared with some state-of-the-art meta-heuristic algo-

rithms, including original CSA (Askarzadeh 2016), Sine–

cosine CSA (SCCSA) (Khalilpourazari and Pasandideh

2020), Dynamic CSA (DCSA) (Necira et al. 2022),

Improved CSA (ICSA) (Gholami et al. 2021), Whale

Optimization Algorithm (WOA) (Mirjalili 2016), Harris

Hawks Optimization (HHO) (Heidari et al. 2019), Sine

Tree-Seed Algorithm (STSA) (Jiang et al. 2020), Arith-

metic Optimization Algorithm (AOA) (Abualigah et al.

2021a), Aquila Optimizer (AO) (Abualigah et al. 2021b),

Reptile Search Algorithm (RSA) (Abualigah et al. 2022),

Genetic Algorithm (GA) (Bonabeau et al. 1999), and

Particle Swarm Optimization (PSO) (Kennedy and Eber-

hart 1995). Among these algorithms, DCSA, SCCSA, and

ICSA are newly developed variants of CSA; WOA, HHO,

AO, and RSA are powerful swarm intelligence algorithms;

STSA is an improved TSA (Kiran 2015) of evolutionary

algorithm; AOA is another recently proposed physics-

based algorithm; GA and PSO are two classical meta-

heuristic algorithms. Hence, the compared algorithms

cover various types of meta-heuristic algorithms, and the

effectiveness of MSCSA can be fully verified by compar-

ing with them.

In particular, for algorithms CSA, DCSA, SCCSA,

ICSA, STSA, GA, and PSO, we implemented them by

MATLAB coding according to the corresponding papers.

And for algorithms WOA, HHO, AO, AOA, and RSA,

since the authors provided the MATLAB implementation,

we downloaded the codes according to the links given in

the corresponding papers and used them for experiments.

4.1 Benchmark functions

The benchmark functions of CEC 2017 can be divided into

four categories: unimodal, simple multi-modal, hybrid and

composition. The unimodal functions (F1–F3) with a

unique global optimum can reveal the exploitation capa-

bilities of different algorithms, while the multi-modal

functions (F4–F10) possessing lots of local optima can

disclose the exploration and premature convergence

avoidance capabilities of compared optimizers. As for
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Table 7 Comparison results on high-dimensional functions of CEC 2010 with dimensions 1000

F1 F2 F3 F4 F5

Avg Std Avg Std Avg Std Avg Std Avg Std

MSCSA 1.04E110 7.77E?08 8.42E?04 7.96E?03 2.10E?01 6.82E-02 2.87E113 9.50E?12 4.53E108 1.03E?08

CSA 5.20E?10 3.29E?09 3.70E?04 2.46E?03 2.11E?01 1.45E-01 9.22E?13 3.38E?13 8.13E?08 1.46E?08

DCSA 5.32E?10 3.65E?09 3.67E?04 1.96E?03 2.12E?01 2.06E-01 9.38E?13 2.91E?13 7.27E?08 1.95E?08

SCCSA 2.01E?11 2.80E?10 6.80E?05 1.30E?05 2.16E?01 7.59E-02 1.73E?15 1.37E?15 2.56E?10 1.82E?10

ICSA 1.94E?11 5.20E?09 1.67E?04 1.17E?02 2.10E?01 1.34E-02 3.17E?15 1.04E?15 7.91E?08 4.93E?07

WOA 9.52E?10 6.12E?09 1.55E104 2.93E?02 2.13E?01 3.25E-01 3.81E?14 1.06E?14 6.64E?08 8.26E?07

AO 7.71E?10 4.32E?09 1.64E?04 1.40E?02 2.10E?01 1.76E-02 3.17E?14 1.04E?14 6.58E?08 5.33E?07

RSA 1.75E?11 8.48E?09 1.69E?04 6.11E?01 2.10E?01 1.31E-02 1.64E?15 6.28E?14 7.70E?08 2.79E?07

HHO 4.87E?10 3.79E?09 1.67E?04 1.29E?02 2.09E?01 1.58E-02 1.46E?14 5.55E?13 6.98E?08 4.13E?07

STSA 1.42E?11 6.69E?09 1.59E?04 1.35E?02 2.13E?01 3.39E-01 4.09E?14 1.59E?14 5.63E?08 5.72E?07

AOA 1.89E?11 4.99E?09 1.60E?04 8.64E?01 2.09E101 7.26E-03 2.10E?15 7.90E?14 6.70E?08 4.44E?07

GA 6.57E?10 4.08E?09 5.14E?05 8.73E?04 2.12E?01 5.74E-02 1.84E?14 5.31E?13 1.83E?09 2.16E?08

PSO 1.11E?11 1.01E?10 1.67E?06 5.63E?04 2.16E?01 1.28E-02 2.13E?14 9.61E?13 2.54E?09 1.85E?09

F6 F7 F8 F9 F10

Avg Std Avg Std Avg Std Avg Std Avg Std

MSCSA 1.66E107 6.31E?06 9.20E109 2.65E?09 1.11E109 2.21E?09 1.13E110 8.16E?08 9.46E?04 7.77E?03

CSA 2.00E?07 1.94E?06 5.79E?10 1.57E?10 6.16E?12 7.41E?12 6.26E?10 3.74E?09 3.65E?04 2.17E?03

DCSA 2.07E?07 2.88E?05 5.61E?10 1.18E?10 4.54E?12 3.62E?12 6.21E?10 3.18E?09 3.64E?04 2.28E?03

SCCSA 2.11E?07 2.84E?05 1.61E?12 1.17E?12 4.63E?16 2.91E?16 2.11E?11 2.30E?10 7.15E?05 2.99E?05

ICSA 2.04E?07 1.37E?05 1.59E?12 8.99E?11 5.60E?16 5.91E?15 2.34E?11 5.21E?09 1.70E?04 1.70E?02

WOA 2.08E?07 4.08E?05 1.48E?12 7.96E?11 1.66E?15 5.36E?14 1.10E?11 6.08E?09 1.60E104 2.94E?02

AO 2.04E?07 9.57E?04 1.49E?11 2.89E?10 8.12E?14 3.41E?14 9.64E?10 5.58E?09 1.66E?04 1.50E?02

RSA 2.04E?07 9.74E?04 8.50E?11 4.73E?11 4.20E?16 7.29E?15 2.07E?11 5.64E?09 1.72E?04 8.84E?01

HHO 2.02E?07 1.15E?05 2.11E?11 6.61E?10 1.42E?13 9.51E?12 5.79E?10 3.89E?09 1.69E?04 1.51E?02

STSA 2.11E?07 3.36E?05 1.13E?11 3.02E?10 1.80E?16 5.29E?15 1.72E?11 6.64E?09 1.61E?04 1.61E?02

AOA 2.05E?07 3.57E?05 1.84E?12 1.23E?12 4.86E?16 7.28E?15 2.22E?11 8.50E?09 1.64E?04 8.40E?01

GA 2.11E?07 7.79E?04 5.27E?10 1.18E?10 1.92E?12 1.42E?12 9.70E?10 6.23E?09 5.46E?05 1.49E?05

PSO 2.12E?07 5.86E?04 1.63E?11 8.57E?10 4.83E?15 3.72E?15 9.92E?10 1.31E?10 1.67E?06 4.29E?04

F11 F12 F13 F14 F15

Avg Std Avg Std Avg Std Avg Std Avg Std

MSCSA 2.29E102 1.01E?00 3.24E106 1.83E?05 7.01E109 1.45E?09 1.17E110 7.59E?08 9.96E?04 1.01E?04

CSA 2.30E?02 1.08E?00 4.89E?06 2.78E?05 2.42E?11 1.83E?10 6.75E?10 5.04E?09 3.68E?04 2.33E?03

DCSA 2.32E?02 2.85E?00 4.90E?06 2.70E?05 2.45E?11 1.87E?10 6.98E?10 4.76E?09 3.61E?04 1.92E?03

SCCSA 2.37E?02 1.35E?00 1.61E?07 4.01E?06 1.35E?12 2.83E?11 2.30E?11 2.78E?10 7.05E?05 2.10E?05

ICSA 2.30E?02 1.74E-01 2.36E?07 3.32E?06 6.93E?11 5.79E?09 2.64E?11 6.22E?09 1.71E?04 1.44E?02

WOA 2.33E?02 3.82E?00 2.48E?07 3.97E?06 4.25E?11 2.02E?10 1.10E?11 7.48E?09 1.59E104 5.27E?02

AO 2.30E?02 2.03E-01 6.82E?06 5.40E?05 2.97E?11 1.94E?10 1.05E?11 5.91E?09 1.67E?04 1.69E?02

RSA 2.30E?02 1.82E-01 1.85E?07 1.26E?06 6.36E?11 9.92E?09 2.32E?11 4.52E?09 1.71E?04 1.16E?02

HHO 2.29E?02 2.37E-01 6.30E?06 5.69E?05 1.68E?11 1.40E?10 5.81E?10 4.34E?09 1.70E?04 1.40E?02

STSA 2.34E?02 4.03E?00 8.70E?06 7.88E?05 5.80E?11 1.56E?10 1.85E?11 5.93E?09 1.60E?04 1.81E?02

AOA 2.31E?02 3.09E?00 1.57E?07 1.87E?06 6.84E?11 4.97E?09 2.46E?11 9.89E?09 1.64E?04 1.29E?02
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hybrid functions (F11–F20) and composition functions

(F21–F30), owing to their traits of maintaining the conti-

nuity around the local and global optima, they are quite

suitable for detecting the balance between global and local

search abilities and escape potential of local optima.

Generally, with the increase of dimension of global

optimization problems, the search space increases expo-

nentially. Meta-heuristic algorithms often suffer from the

curse of dimensionality when solving large-scale problems.

Thus, the high-dimensional benchmark functions of CEC

2010 with dimensions 1000 are applied to investigate the

performance of the proposed MSCSA. This test suite

consists of twenty functions with different features: uni-

modal, multi-modal, shifted, separable, fully nonseparable

and scalability in the different range space.

4.2 Experimental setup

All algorithms are implemented in MATLAB R2018b and

simulations are tested on Core i7 processor with 2.4 GHz

and 16 GB main memory in windows 11. The maximum

number of function evaluations (maxFEs) is used as the

condition to terminate the algorithms, and its value is set to

20,000. For all following experiments population size is set

to 20, and for each function, algorithms are run 30 times

independently.

In MSCSA, only the flight length fl needs to be set and

its value is set to 2. For a fair comparison, the other specific

parameters for compared algorithms are obtained from

their corresponding papers, as shown in Table 2.

4.3 Numerical performance evaluation

In this subsection, the performance of MSCSA is com-

prehensively and thoroughly evaluated by CEC 2017 and

CEC 2010 benchmark functions. The experimental results

are shown in Tables 3, 4, 5, 6, 7 where the average (Avg)

and standard deviation (Std) of the best obtained fitness in

each run are applied to estimate the compared algorithms,

and the minimum values are recorded in bold.

4.3.1 Evaluation of local exploitation capability

The unimodal functions are suitable to evaluate the

exploitation capability of the algorithms. Table 3 discloses

the optimal values gained by MSCSA and other competi-

tors for unimodal functions F1–F3 with dimensions 30, 50

and 100. It can be seen that MSCSA is superior to the

compared algorithms except on F3 with dimensions 50 and

100.

Table 7 (continued)

F11 F12 F13 F14 F15

Avg Std Avg Std Avg Std Avg Std Avg Std

GA 2.37E?02 2.40E-01 7.54E?06 5.41E?05 9.18E?11 7.94E?10 1.07E?11 7.47E?09 5.14E?05 8.22E?04

PSO 2.37E?02 1.83E-01 9.44E?06 7.77E?05 7.53E?11 7.96E?10 6.78E?10 5.58E?09 1.67E?06 6.16E?04

F16 F17 F18 F19 F20

Avg Std Avg Std Avg Std Avg Std Avg Std

MSCSA 4.21E?02 1.31E?00 3.77E106 2.63E?05 1.57E111 1.56E?10 1.15E107 1.03E?06 1.94E111 2.29E?10

CSA 4.21E?02 1.22E?00 8.48E?06 6.07E?05 8.86E?11 4.31E?10 2.03E?07 2.38E?06 1.02E?12 3.70E?10

DCSA 4.22E?02 3.62E?00 8.34E?06 6.32E?05 8.75E?11 3.65E?10 2.01E?07 1.62E?06 1.05E?12 3.15E?10

SCCSA 4.31E?02 2.80E?00 3.49E?07 8.45E?06 3.01E?12 6.54E?11 2.48E?08 1.30E?08 3.20E?12 5.56E?11

ICSA 4.19E?02 3.03E-01 6.00E?07 7.11E?06 1.47E?12 7.14E?09 1.65E?08 7.82E?07 1.65E?12 6.24E?09

WOA 4.25E?02 7.25E?00 5.52E?07 3.95E?06 1.13E?12 2.86E?10 3.39E?08 1.07E?08 1.29E?12 2.54E?10

AO 4.18E?02 3.64E-01 1.15E?07 9.40E?05 8.99E?11 3.14E?10 4.20E?07 6.23E?06 1.02E?12 3.23E?10

RSA 4.19E?02 2.30E-01 3.91E?07 6.73E?06 1.40E?12 1.54E?10 1.38E?08 2.88E?07 1.57E?12 1.98E?10

HHO 4.18E102 3.19E-01 1.04E?07 1.21E?06 6.63E?11 2.90E?10 5.59E?07 1.45E?07 7.74E?11 3.39E?10

STSA 4.26E?02 7.51E?00 2.18E?07 2.79E?06 1.31E?12 2.56E?10 3.37E?07 4.23E?06 1.50E?12 2.34E?10

AOA 4.20E?02 4.99E?00 4.33E?07 5.67E?06 1.46E?12 8.05E?09 9.14E?07 2.80E?07 1.64E?12 6.16E?09

GA 4.31E?02 5.79E-01 1.58E?07 1.37E?06 2.28E?12 1.64E?11 3.23E?07 3.76E?06 2.55E?12 2.07E?11

PSO 4.32E?02 2.89E-01 1.38E?07 9.56E?05 3.04E?12 1.98E?11 3.02E?07 2.64E?06 3.27E?12 1.78E?11
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4.3.2 Evaluation of global exploration capability

The simple multimodal functions F4–F10 in CEC 2017

have one global optimum and several local optima. As the

dimension increases, the number of local optima increases

exponentially. Thus, these functions are very suitable for

evaluating the global exploration capability of algorithms.

Table 4 shows the results of the efficiency of the proposed

MSCSA and other compared algorithms in different

dimensions 30, 50 and 100. Except F6 and F10 of

dimension 30, MSCSA is superior to other algorithms.

4.3.3 Evaluation of capability to escape from local optima

The capability of an algorithm to jump out of local optima

mainly depends on the maintenance of population diversity

and the potential quality of the region to jump to. Thus, the

power of proposed MSCSA to avoid falling into local

optima and balance the global search and local search is

estimated by hybrid functions and composite functions in

Tables 5 and 6, respectively. As the results shown in

Table 5, MSCSA outperforms other compared algorithms

in most cases. Although the convergence accuracy of

MSCSA is inferior to that of the optimal algorithm in low-

Fig. 5 Convergence curves of MSCSA and other algorithms for unimodal benchmark functions

14898 J. He et al.

123



dimensional F13, F14, F15 and F18 functions, it regains the

advantages in high-dimensional cases. And for the results

in Table 6, MSCSA performs better than other algorithms

except on F22 with dimension 30, F27 with dimensions 50

and 100, F29, and F30 with dimensions 30 and 50. All in

all, the ability of MSCSA to escape from local minima is

better than the competitors, and it is very suitable for

solving high-dimensional problems.

4.3.4 Evaluation of large-scale global optimization

In order to investigate the search ability of solving high-

dimensional complex problems, the global optimization

performance of the proposed algorithm is further evaluated

by using the CEC 2010 benchmark with 1000 dimensions.

The obtained results are recorded in Table 7, which proves

that in most cases, MSCSA is more efficient than the

comparison algorithms while handling large-scale

problems.

4.4 Convergence analysis

In this section, the convergence features of various algo-

rithms on different test suites and dimensions are compared

and analyzed. For each category of CEC 2017, several

functions are chosen as representatives: F1–F3 for

Fig. 6 Convergence curves of MSCSA and other algorithms for multi-modal benchmark functions
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unimodal, F5, F7, and F9 for simple multi-modal, F12,

F16, and F19 for hybrid, F23, F26, and F30 for composite.

Functions F1–F3, F5–F7, F9–F11, F13–F15, F18–F20 are

selected to represent CEC 2010. Figures 5, 6, 7, 8 and 9

show the convergence curves of the involved algorithms

for solving these functions with different dimensions. In

CEC 2017 test suite, except F3 with dimensions 50 and

100, F19 with dimension 50, and F30 with dimensions 30

and 50, MSCSA converges to more accurate solutions at a

faster rate than other algorithms. As for CEC 2010 test

suite, except F2, F3, F10, and F15, the convergence of

MSCSA is better than compared algorithms.

4.5 Non-parametric statistical analysis

In addition to the above experimental evaluations, non-

parametric statistical analysis is utilized to further validate

the overall performance of MSCSA. Hence, in this section,

Wilcoxon signed rank test (Derrac et al. 2011) and Fried-

man test (Garcı́a et al. 2010) are applied as non-parametric

methods to experiment on CEC 2017 and CEC 2010

benchmark functions.

The Wilcoxon signed rank test is used to detect the

significant differences between the results of two algo-

rithms. The symbols ‘‘ ? , - , = ’’ indicate the times that

MSCSA is superior, inferior, or equal to the compared

Fig. 7 Convergence curves of MSCSA and other algorithms for hybrid benchmark functions
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algorithms, respectively. As shown in Table 8 of CEC 2017

benchmark, MSCSA is inferior to the comparison algo-

rithms only on no more than five functions, while in all

other cases, it is superior to or equal to its competitors.

With the increase of function dimension, MSCSA still

maintains obvious advantages. In Table 9 of CEC 2010

benchmark, in most cases, MSCSA is superior to others. In

fact, MSCSA fails to achieve optimal performance for only

five functions. Moreover, the p values of the comparisons

for various dimensions 30, 50, 100, and 1000 are less than

0.05, which verify the superiority of the proposed MSCSA

according to statistics.

The Friedman test can be used for multiple comparisons

among several algorithms by computing the ranks of the

observed results. As shown in Tables 10 and 11, the mean

rank of the MSCSA algorithm is the smallest in any

dimension. Therefore, MSCSA ranks the first among all

algorithms, and is significant different from the others.

4.6 Computational time

The computational times of the compared algorithms are

listed in Table 12 for CEC 2017 and Table 13 for CEC

Fig. 8 Convergence curves of MSCSA and other algorithms for composite benchmark functions
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2010, respectively. These times are the mean running times

of benchmark functions with the same dimensions.

In CEC 2017, MSCSA ranks seventh among all algo-

rithms in any dimension. Regardless of the dimension of

the function, it takes slightly longer than CSA, less than

0.1 s to run. As in CEC 2010 with the dimension up to

1000, MSCSA ranks fourth, which indicates that it has

better optimization efficiency in solving high-dimensional

problems. Moreover, as described in Sect. 3.6 on the time

complexity of algorithms, the time complexity of all

algorithms can be summed up to be consistent, but the

actual running time varies greatly. The reason for this

phenomenon is that the control parameter construction and

individual position updating methods of different algo-

rithms are quite different.

4.7 Overall analysis of the improvements

Based on the results for complicated and high-dimen-

sional global benchmarks, the effectiveness of the

MSCSA is enhanced relative to the original CSA and

several state-of-the-art methods. As stated in Sects. 3 and

4, the main reason is that the proposed multi-stage

search integration structure can achieve multi-level and

multi-granularity balances between exploratory and

exploitative propensities throughout iterations. These

balances are accomplished by different mechanisms

designed in MSCSA. In the initialization stage, chaos-

based and OBL techniques improve the coverage and

quality of the initialized population. In the free foraging

stage, the random flights strengthen the exploitation

capability of the algorithm, which leads to enhance the

quality of the solutions. Also, the mutual following of

bFig. 9 Convergence curves of MSCSA and other algorithms for CEC

2010 functions (D = 1000)

Table 8 Wilcoxon signed rank test for CEC 2017 functions

D vs ? - = p value 0.05 0.1

30 CSA 24 2 4 4.70E-03 Y Y

DCSA 24 4 2 6.80E-03 Y Y

SCCSA 30 0 0 1.73E-06 Y Y

ICSA 30 0 0 1.73E-06 Y Y

WOA 30 0 0 1.73E-06 Y Y

AO 28 0 2 8.46E-06 Y Y

RSA 30 0 0 1.73E-06 Y Y

HHO 30 0 0 1.73E-06 Y Y

STSA 29 0 1 1.73E-06 Y Y

AOA 30 0 0 1.73E-06 Y Y

GA 19 4 7 4.36E-04 Y Y

PSO 22 3 5 7.70E-04 Y Y

50 CSA 29 1 0 1.48E-04 Y Y

DCSA 29 1 0 8.94E-04 Y Y

SCCSA 30 0 0 1.73E-06 Y Y

ICSA 30 0 0 1.73E-06 Y Y

WOA 30 0 0 1.73E-06 Y Y

AO 30 0 0 1.73E-06 Y Y

RSA 30 0 0 1.73E-06 Y Y

HHO 30 0 0 1.73E-06 Y Y

STSA 30 0 0 1.73E-06 Y Y

AOA 30 0 0 1.73E-06 Y Y

GA 23 5 2 4.20E-03 Y Y

PSO 27 0 3 2.12E-06 Y Y

100 CSA 26 1 3 1.49E-05 Y Y

DCSA 28 1 1 1.49E-05 Y Y

SCCSA 30 0 0 1.73E-06 Y Y

ICSA 29 1 0 1.02E-05 Y Y

WOA 30 0 0 1.73E-06 Y Y

AO 29 1 0 1.24E-05 Y Y

RSA 29 1 0 1.24E-05 Y Y

HHO 29 1 0 1.36E-05 Y Y

STSA 29 1 0 1.36E-05 Y Y

AOA 29 1 0 1.13E-05 Y Y

GA 27 3 0 3.89E-05 Y Y

PSO 30 0 0 1.73E-06 Y Y

Table 9 Wilcoxon signed rank test for CEC 2010 functions

D vs ? - = p value 0.05 0.1

1000 CSA 16 3 1 1.49E-05 Y Y

DCSA 16 3 1 1.49E-05 Y Y

SCCSA 20 0 0 1.73E-06 Y Y

ICSA 15 5 0 1.02E-05 Y Y

WOA 17 3 0 1.73E-06 Y Y

AO 15 5 0 1.24E-05 Y Y

RSA 16 4 0 1.24E-05 Y Y

HHO 15 5 0 1.36E-05 Y Y

STSA 17 3 0 1.36E-05 Y Y

AOA 15 5 0 1.13E-05 Y Y

GA 30 0 0 8.86E-05 Y Y

PSO 30 0 0 8.86E-05 Y Y
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individuals is conducive to the information exchange of

the population, which assists MSCSA in expanding the

search space for exploration. The proposed MSCSA also

benefits from the large-scale migration stage for greatly

increasing the population diversity and jumping out of

local optima by moving to a promising search area. In

addition, the parameter-control strategy is proposed in

MSCSA, which can slowly control the component pro-

portion of guiding individuals and flight length of indi-

viduals so as to gradually change the search intensity

from the beginning extensive search to the focused local

search as the iteration proceeds.

5 Conclusions and future directions

This study first proposes a multi-stage search structure, and

then incorporates chaos, multi-OBL, multi-guidance, and

multi-position-update strategies into the structure to

improve the performance of the original CSA. The pro-

posed MSCSA possesses three different levels of balances

between global exploration and local exploitation, namely

the search-stage level, the position-update level and the

control-parameter level. These balances significantly

improve the diversity of the population and the ability of

the algorithm to jump out of local optima. Testing a

comprehensive set of complex and high-dimensional

benchmark functions from CEC 2017 and CEC 2010 shows

that the efficiency of MSCSA is remarkably better than the

original CSA and its variants. Furthermore, as compared to

other various categories of meta-heuristic algorithms,

including WOA, AO, RSA, HHO, STSA, AOA, GA, and

Table 10 Friedman test for CEC 2017 functions

D Algorithms Mean rank Final rank p value 0.05 0.1

30 MSCSA 1.67 1 2.04E-56 Yes Yes

CSA 4.52 5

DCSA 3.78 3

SCCSA 11.50 12

ICSA 12.17 13

WOA 8.87 9

AO 5.27 6

RSA 10.93 10

HHO 6.27 7

STSA 7.30 8

AOA 10.98 11

GA 3.63 2

PSO 4.12 4

50 MSCSA 1.67 1 5.74E-57 Yes Yes

CSA 4.52 4

DCSA 3.78 3

SCCSA 11.50 12

ICSA 12.17 13

WOA 8.87 9

AO 5.27 6

RSA 10.93 10

HHO 6.27 5

STSA 7.30 8

AOA 10.98 11

GA 3.63 2

PSO 4.12 7

100 MSCSA 1.40 1 1.12E-54 Yes Yes

CSA 3.67 3

DCSA 3.45 2

SCCSA 12.02 12

ICSA 12.07 13

WOA 8.05 9

AO 5.88 6

RSA 10.12 10

HHO 4.98 5

STSA 7.45 8

AOA 10.92 11

GA 4.13 4

PSO 6.87 7

Table 11 Friedman test for CEC 2010 functions

D Algorithms Mean

rank

Final

rank

p value 0.05 0.1

1000 MSCSA 2.83 1 3.95E-17 Yes Yes

CSA 4.78 3

DCSA 5.18 5

SCCSA 11.60 13

ICSA 9.28 11

WOA 7.43 7

AO 4.85 4

RSA 8.05 8

HHO 3.70 2

STSA 7.08 6

AOA 8.13 9

GA 8.30 10

PSO 9.83 12
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PSO, MSCSA also demonstrates outstanding performance

in convergence accuracy, convergence speed and non-

parametric statistics. Therefore, MSCSA improves both the

global and local search capabilities of the original CSA.

In near future, it would be interesting to extend MSCSA

to handle more complex real-world problems, such as

multi-objective optimization, combinatorial optimization

and constrained optimization problems.
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