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Abstract

Crow search algorithm (CSA), as a new swarm intelligence algorithm that simulates the crows’ behaviors of hiding and
tracking food in nature, performs well in solving many optimization problems. However, while handling complex and
high-dimensional global optimization problems, CSA is apt to fall into evolutionary stagnation and has slow convergence
speed, low accuracy, and weak robustness. This is mainly because it only utilizes a single search stage, where position
updating relies on random following among individuals or arbitrary flight of individuals. To address these deficiencies, a
CSA with multi-stage search integration (MSCSA) is presented. Chaos and multiple opposition-based learning techniques
are first introduced to improve original population quality and ergodicity. The free foraging stage based on normal random
distribution and Lévy flight is designed to conduct local search for enhancing the solution accuracy. And the following
stage using mixed guiding individuals is presented to perform global search for expanding the search space through tracing
each other among individuals. Finally, the large-scale migration stage based on the best individual and mixed guiding
individuals concentrates on increasing the population diversity and helping the population jump out of local optima by
moving the population to a promising area. All of these strategies form multi-level and multi-granularity balances between
global exploration and local exploitation throughout the evolution. The proposed MSCSA is compared with a range of
other algorithms, including original CSA, three outstanding variants of CSA, two classical meta-heuristics, and six state-of-
the-art meta-heuristics covering different categories. The experiments are conducted based on the complex and high-
dimensional benchmark functions CEC 2017 and CEC 2010, respectively. The experimental and statistical results
demonstrate that MSCSA is competitive for tackling large-scale complicated problems, and is significantly superior to the
competitors.
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1 Introduction

Optimization runs through the whole human civilization. It
is the behavior of people to improve existing things in
order to solve practical problems and adapt to the current
environment. The mission of global optimization is to find
the optimal solution among all possible solutions to a
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optimal values are discontinuous, non-differentiable, and
even difficult to be expressed by mathematical models.
Because of these conditions, more and more scholars have
shifted their attention to stochastic optimization algo-
rithms. Their notable feature is the introduction of ran-
domness, which provides the possibility of jumping out of
local optimality (Hoos and Stiitzle 2004). Hence, it is
important to utilize stochastic optimization algorithms to
obtain the optimal solutions of global optimization
problems.

Swarm intelligence algorithm (Chakraborty and Kar
2017; Nayyar et al. 2018) is a kind of stochastic opti-
mization technology, which is inspired by various behav-
iors of biological communities in nature and opens up a
new way to solve the optimization problems. In nature, in
order to make up for the capabilities of individual foraging
and avoiding predation, many species form coordinated
and amazing swarm intelligence behaviors through coop-
eration and competition among individuals. For example,
the predation of wolves, the gathering and migration of
birds, and the social behavior of bees and ants. Therefore,
swarm intelligence optimization algorithms can be realized
by studying the potential behaviors of individuals in the
population and using mathematical modeling method to
build the working mechanism of the population system,
including the cooperation and competition among indi-
viduals within the population and the interaction between
the population and the external environment.

The proposed swarm intelligence algorithms are classi-
fied into five categories in this paper:

1. Bird-based swarm intelligence algorithms. This type of
swarm intelligence algorithm simulates a series of
activities of birds, such as swarming, migration,
courtship, reproduction, nesting, hatching and brood-
ing. Particle Swarm Optimization (PSO) (Eberhart and
Kennedy 1995) is the most famous and classical bird-
based swarm intelligence algorithm. Other new algo-
rithms of this category mainly include Crow Search
Algorithm (CSA) (Askarzadeh 2016), Sooty Tern
Optimization Algorithm (STOA) (Dhiman and Kaur
2019), Harris Hawks Optimization (HHO) (Heidari
et al. 2019), African Vultures Optimization Algorithm
(AVOA) (Abdollahzadeh et al. 2021), Aquila Opti-
mizer (AO) (Abualigah et al. 2021a, b), Artificial
Hummingbird Algorithm (AHA) (Zhao et al. 2022),
etc.

2. Terrestrial animal-based swarm intelligence algo-
rithms. The second category of swarm intelligence
algorithm is inspired by the behaviors of terrestrial
animals such as group division of labor, hierarchical
leadership, hunting and hedging, and information
communication. Some popular instances of this kind
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are Multi-Objective  Artificial Sheep Algorithm
(MOASA) (Lai et al. 2019), Red Deer Algorithm
(RDA) (Fathollahi-Fard et al. 2020), Horse herd
Optimization Algorithm (HOA) (MiarNaeimi et al.
2021), Zebra Optimization Algorithm (ZOA) (Tro-
jovska et al. 2022), and Reptile Search Algorithm
(RSA) (Abualigah et al. 2022).

3. Aquatic animal-based swarm intelligence algorithms.

The behaviors of aquatic animals mainly include
schooling, following, ingestion, breeding, encircling
predation, and spawning migration, which constitute
the important search phases in the algorithms of this
category. A well-known case of aquatic animal-based
swarm intelligence algorithms is whale optimization
algorithm (WOA) (Mirjalili and Lewis 2016) that
mimics the feeding behaviors of humpback whale.
Some other currently proposed algorithms of this type
are Manta Ray Foraging Optimization (MRFO) (Zhao
et al. 2020), Marine Predators Algorithm (MPA)
(Faramarzi et al. 2020), and Jellyfish Search (JS)
optimizer (Chou and Truong 2021).

4. Insect-based swarm intelligence algorithms. Social

insects refer to insects that live together in groups
with members divided into several classes or types,
each of which has a specific function. The inspired idea
behind this category of algorithms reflects the social
behaviors of insects, including group living with
overlapping generations, fine division of labor, build-
ing defensive structures or nests, competition and
cooperation, information sharing, recruitment and
alarm, etc. Ant Colony Optimization (ACO) (Dorigo
et al. 1996) is a typical representative of insect-based
swarm intelligence algorithm. Dragonfly Algorithm
(DA) (Mirjalili 2016), Beetle Antennae Search Algo-
rithm (BSA) (Jiang and Li 2018), and Grasshopper
Optimization Algorithm (GOA) (Mirjalili et al. 2018),
are other examples of this category.

5. Microorganism-based swarm intelligence algorithms.

Microorganisms include bacteria, viruses, fungi and
some small protozoa, and microscopic algae. They are
individually tiny and closely related to humans. The
last category of swarm intelligence algorithms mimics
the microorganism behaviors such as diffusion, forag-
ing, reproduction, variation, invasion, infection, and
phagocytosis. Some powerful microorganism-based
swarm intelligence algorithms proposed in literature
are Mushroom Reproduction Optimization (MRO)
(Bidar et al. 2018), Slime Mould Algorithm (SMA)
(Li et al. 2020), Coronavirus Herd Immunity Optimizer
(CHIO) (Alweshah 2022), and so no.

Crow Search Algorithm (CSA) (Askarzadeh 2016), an
outstanding described meta-heuristic, belongs to the
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category of bird-based swarm intelligence algorithm. A
simple foraging behavior simulation structure considering
tracking and hiding food is utilized in CSA to obtain the
optimal solution in the search space. CSA has the advan-
tages of easy to understand and implement, few control
parameters, good universality and strong global search
ability. Since its development, CSA has been widely used
in many fields, including numerical optimization (Kha-
lilpourazari and Pasandideh 2020; Necira et al. 2022;
Gholami et al. 2021), feature selection (Sayed et al. 2019;
Ouadfel and Abd Elaziz 2020), image processing (Upad-
hyay and Chhabra 2020; Fred et al. 2020), optimal power
flow (Saha et al. 2017; Fathy and Abdelaziz 2018), eco-
nomic load dispatch (Mohammadi and Abdi 2018; Spea
2020), cloud computing (Kumar and Vimala 2019; Kumar
and Kousalya 2020), control engineering (Turgut et al.
2020), and chemical engineering (Abdallh and Algamal
2020).

However, CSA only uses randomly selected individuals
to guide the search, and lacks the guidance of excellent
individuals or elite individuals, which is easy to lead to low
convergence accuracy and slow convergence speed of the
algorithm. Up to now, many strategies and techniques have
been proposed to improve the original CSA, manifested in
the following aspects.

1. Control parameter improvement strategies. In CSA, the
awareness probability AP and flight length fI are two
important parameters to affect algorithm performance.
dos Santos Coelho et al. (2016) proposed a modified
CSA, which uses population diversity information and
Gaussian distribution to adjust the control parameters.
Cuevas et al. (2019) has proposed another variant of
CSA by dynamically adjusting AP with the fitness
quality of each candidate solution. Later in Makh-
doomi and Askarzadeh (2020), an adaptive chaotic
awareness probability AP was formulated to improve
CSA’s efficiency. Also, Necira et al. (2022) designed a
dynamic CSA (DCSA) with dynamic fl changes based
on the generalized Pareto probability density function,
and AP adjusted linearly over optimization process.

2. Search mode improvement strategies. In Jain et al.
(2017), for solving high-dimensional optimization
problems, Jain et al. balanced the exploration and
exploitation of CSA by adding Lévy flight, experience
factor and adaptive adjustment factor. Moghaddam
et al. (2019) used crossover and mutated operators in
CSA to improve performance and prevent it from
falling into suboptimal regions. Zamani et al. (2019)
introduced three new search strategies called neigh-
borhood-based local search (NLS), non-neighborhood
based global search (NGS) and wandering around

based search (WAS) to improve the movement of
crows in different search spaces.

3. Hybridization with other algorithms. This type of
improved variants makes up for shortcomings of CSA
by hybridizing the advantages of other algorithms, such
as BCSA (Javaid et al. 2018) hybridized with bat
algorithm, DECSA (Mahesh and Vijayachitra 2019)
hybridized with dolphin echolocation, GWOCSA
(Arora et al. 2019) hybridized with grey wolf opti-
mization, SCCSA (Khalilpourazari and Pasandideh
2020) hybridized with sine cosine algorithm, and PSO-
CSA (Farh et al. 2020) hybridized with particle swarm
optimization.

From the above literature review, it can be concluded
that although most of the current studies have improved
CSA to some extent, there are still some drawbacks that
should be noted, including single type of search guiding
individual and search stage, inadequate adaptability to
complex and high-dimensional problems, and insufficient
balance between global exploration and local exploitation.
This means that CSA still has room for further improve-
ment. Hence, this paper’s aggregate purpose is to propose
an enhanced crow search algorithm with multi-stage search
integration (MSCSA) that can be suitable for different
complex and high-dimensional optimization problems. The
principal contributions and novelty of this study include:

1. Multiple search-guiding individuals are applied to
balance the global search and local search capabilities
of the algorithm. In this study, three mixed search-
guiding individuals are introduced for gradual search
guidance with respect to the evolution process.

2. Multiple search modes are designed to extend the
search scope of the algorithm and increase the
probability of finding optimal solution. Using different
guiding individuals to lead the search, and formulating
different flight length control parameters for each
search mode, six new individual search modes are
designed in this paper.

3. Proportion parameter of guiding individual and flight
length parameter in each mode are designed to control
the gradual transition from large-scale search in the
early and middle iterations to small-scale mining in the
later iterations.

4. Multiple search stages are integrated to achieve
different search intensities and enhance the population
diversity. Following the basic foraging principle of
crows, combined with the multiple guidance individ-
uals and position update modes mentioned above, this
study extended the single search stage of the original
CSA to three search stages, excluding the initialization
stage.

@ Springer
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5. The proposed MSCSA has good practicability and
applicability. It is capable of solving different complex
and high-dimensional problems.

The organization of the paper is as follows: Sect. 2
reviews the original CSA. The details of proposed MSCSA
are presented in Sect. 3. In Sect. 4, a range of compared
algorithms are applied to verify the effectiveness of
MSCSA for solving complex and high-dimensional
benchmark functions. The results are also analyzed in this
section. Finally, Sect. 5 concludes the study and provides
some future research directions.

2 Crow search algorithm

CSA is proposed based on the idea that crows store their
redundant food in hiding places and bring it back when
they need it. In CSA, each crow represents a solution
(position) to the optimization problem. Assuming that the
dimension of the solution space of the optimization prob-
lem is D, and the size of the crow population is N, the
position of the ith crow at iteration ¢ can be expressed as:
Xt = (¥, s Xl ), where i=12,..,N,
t=1,2,..., Thax, and Tpx represents the maximum itera-
tion number. Each crow has a memory and can remember
the hiding place of food, namely the best position obtained
so far. Assume that crow i’s hiding place at iteration ¢ is
M:. In the foraging process, crows move in the environ-
ment and search for better food sources (hiding places).

The main steps of CSA are described as follows:

Step 1: Randomly initialize a crow population P, and
take P as the initial memory M (hiding places) of crows.

Step 2: Crow i updates its position by randomly
selecting another crow j and following it. The position is
generated by Eq. (1).

it [ X (M) = X)),
! a random position,

rj > AP;
otherwise’

(1)

where r; and r; are random values between 0 and 1, fI} is the
flight length of the crow i at iteration ¢, and APJ’. is the
awareness probability of being followed of crow j at iter-
ation .

Step 3: Calculate the fitness of crow i according to the
new position, and update the memory of it as follows:

M — X poxh is better than f (M) 2)
l M;, otherwise ’

where f(.) denotes the fitness value.
Step 4: Repeat the steps 2-3 for all crows until the
termination conditions are met.
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3 CSA with multi-stage search integration
(MSCSA)

The simplicity of optimization is the main characteristic of
CSA, but this also becomes the disadvantage of CSA
because of its single search stage, namely random fol-
lowing mode or free flight mode. For some complex opti-
mization problems, especially in the cases of high-
dimensional functions and multi-modal problems, CSA
may fall into the dilemma of evolutionary stagnation, and
its solving performance declines sharply.

We introduced four strategies, including chaos, multi-
OBL, multi-guidance, and multi-position-update to
improve the performance of the original CSA. These
strategies are embedded in the different optimization stages
of MSCSA. The details of the proposed algorithm are
described as follows according to its different stages.

3.1 Initialization with the hybridization of chaos
and OBL

Population initialization is a critical stage of meta-heuristic
algorithms as it can affect convergence accuracy and speed
of the final results. Improving the ergodicity and quality of
the initial solutions as much as possible is an effective
method to generate excellent initial population.

In recent years, chaos theory and chaotic maps have
been widely used to improve the performance of meta-
heuristic algorithms (Chen et al. 2020a, b; Chen et al.
2020a, b; Lu et al. 2020). Due to the traits of randomness,
unpredictability, non-repetition and ergodicity, chaos can
conduct more thorough search at a higher speed than tra-
ditional probabilistic random search. Hence, in this study,
the chaotic map has been utilized to initialize the popula-
tion so that the problem space information can be extracted
as much as possible to enhance the coverage of the search.

Moreover, opposition-based learning (OBL) (Tizhoosh
2005), as a new technique in the field of computational
intelligence, has played a significant role in enhancing
global search ability of algorithms (Rahnamayan et al.
2008). In order to expand the proportion of excellent
individuals and population diversity, multiple OBL tech-
niques constructed by different reference individuals are
also used to generate the initial population.

The main steps of initialization that mixes chaos and
OBL are described as follows.

Step 1: Use Tent map (Lu et al. 2020) to generate a
chaotic sequence C = {Cy, ...,Cj,...,Cy}, where C;=
(City ey Cijyooycip) and ¢;j (i >2) is calculated as follows:
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Ci—1y
O b

i
Cij =9 10 )
?(1—@_11]‘), Ci_1JZO.7

Ci—1, <0.7

(3)

Specifically, ¢y is a random number between 0 and 1.

Step 2: The chaotic sequence is applied to the popula-
tion P = {Xy, ..., X;, ..., Xy} generated by random method,
and a chaotic population CP = {CXj, ...,CX;,...,CXy} is
then obtained through Eq. (4). Calculate the fitness of each
individual in CP.

CX,‘ = X,‘ X C,‘, (4)

Step 3: For each individual in CP, use the following
formula to calculate its opposition solution.

U+L-CX, ifr=1
0X; = { 2CXppsr — CX;, ifr=2, (5)
2CXmean — CX; if r=3
1 N
CMmezm = CXia 6
N; (6)

where U and L represent the lower bound and upper bound
of the optimization problem, respectively; CXp.; and
CX,ean are the best individual and mean individual (center
position) of the population CP, respectively; r is a random
integer from 1 to 3.

Step 4: For each opposition solution OX;, if f(0X;) is
better than f(CX;), replace CX; with OX;.

Step 5: Take the final population CP as the initial
population P for MSCSA.

As can be seen from Eq. (5), three different OBL
methods are applied to calculate the opposition solutions,
including one traditional method based on lower and upper
bounds, and two new proposed methods based on best
individual reference point and mean individual reference
point, respectively. Obviously, the multiple OBL methods
can enhance the population quality and increase the
diversity.

3.2 Free foraging stage

The free foraging means that crows conduct a random
search around themselves to find a location closer to the
food source. Two search modes with different intensities
are proposed in the free foraging stage, namely the
expanded search based on Lévy flight and the narrowed
search based on standard normal distribution, shown as
follows:

{Xf +f1 x w x sign(R — 0.5) x Levy(D),

i if r,<0.5
X} + fl x w x randn(D),

. b)
otherwize

(7)

1

1
-10(zE5-05)

Tmax—1

; (3)

w=1-—

I+e
where R is a random vector by size D with each element
between 0 and 1; r. is a random number between O and 1;
sign(.) means a sign function with value in {— 1, 0, 1} for
evaluating each dimension of a vector; Levy(D) is a Lévy
flight function that can generate a D-dimensional vector;
the function randn(D) represents generating a D-dimen-
sional vector from the standard normal distribution; and w
is a Sigmoid-based function that acts as the flight length
control parameter with the feature of decreasing nonlin-
early and smoothly from 1 to 0, shown in Fig. 1.

The description of Lévy flight function with one
dimension is as follows (Yang 2010):

T(1+ ) x sin(z x $/2) |

F(l%ﬁ) xﬁxzﬁ%]

uxao
Levy(x) :W, g =
Y

©)

where u, v are both random values obeying standard normal
distribution, f is a constant with value of 1.5.

Since the random position offset produced by Lévy
flight or standard normal distribution is small in most cases,
the free foraging search concentrates on local exploitation,
that is, it is very beneficial for individuals to carry out fine
excavation in their adjacent regions. However, Lévy flight
occasionally generates some random walks of large steps
during optimization, this search mode is also helpful for
enhancing the capability of jumping out of local optima.
Furthermore, as can be seen from Eq. (7), each crow does
not need the information of other individuals in the popu-
lation when updating its position, which can avoid pre-
mature population convergence and enhance the population

Values of w
=1 e o o o 4 = o [=J
© ®»® = & & 4 = o -~
] ]

o

0 L L L L L L L L i
0 100 200 300 400 500 600 700 800 900 1000
t

Fig. 1 Change curve of w
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Fig. 2 Flight length control parameter of the extended migration
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Fig. 3 Flight length control parameter of the narrowed migration

diversity. Finally, the introduction of flight control
parameter w can accelerate the convergence speed of the
algorithm.

3.3 Following stage

After the crows accomplish their free foraging, the popu-
lation will distribute in some high-quality areas of the
search space. At this time, each crow can move to a
promising position (better food hiding place) by following
the excellent guiding individuals. The following stage is
also achieved through two different intensities of search,
depicted in the following formula:
g {X;+ﬂ X R % (Gy = X{),

i X +flxrx (G —X}),

if r.<0.5
otherwise

, (10)
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G]Z(I—W)XMt

best

+wx M,

Gy=(1—w)xM,,, +wxM,

mean’

where G, and G, denotes the guiding individuals per-
forming extended and narrowed searches, respectively;
M, is the best hiding place of all crows at iteration f;

M., is the mean value of all hiding places at iteration #;

M; is the hiding place of crow j by random selection at
iteration #; r is a random number lying in (0,1); the
meanings of R, r. are the same as described in Sec. 3.2; and
w is used to control the proportion of the components in the
guiding individuals, whose calculation is shown in Eq. (8).

The search of this stage focuses on global exploration.
On the one hand, as can be seen from Eq. (10), under the
guidance of G; or G, the current individual can carry out a
large range of movement, due to the big gap between the
guiding individual and the current individual. In particular,
in the early stage of evolution, individuals have a wider
range of search because there is good diversity in the
population and the difference between the guiding indi-
vidual and the current individual is more pronounced. On
the other hand, as the evolution proceeds, the global search
intensity of the algorithm decreases. This is because the
diversity of the population gradually deteriorates, and G,
and G, gradually converge to the best hiding place M.y,
thus the whole population gradually approaches the opti-
mal solution.

The first search mode guided by G; conducts more
intense global search with comparison to the second mode
guided by G,. There are two reasons for this. First of all,
the randomly chosen hiding place is introduced to form Gy,
which results in each crow having a different guiding
individual. But G, is formed by the hybridization of the
best hiding place and the mean hiding place, which is the
same for each individual over the course of an iteration.
Hence, the first mode (expanded search) allows individuals
search more dispersedly than the second (narrowed search).
Furthermore, in the first mode, the flight length control
parameter R is a D-dimensional vector that causes the
position offset to have a different flight length factor in
each dimension. While in the second mode, the flight
length control parameter 7 is a scalar such that the position
offset is multiplied by the same coefficient for each
dimension. Therefore, individuals in the first mode can
obtain a larger scale of position change than in the second
mode.

3.4 Large-scale migration stage
After the above two stages, crows have been able to con-

duct a thorough search of an area. However, if this area
continues to be searched, the population will fall into local
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Fig. 4 Flowchart of MSCSA
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optima and the diversity will gradually deteriorate. This is
especially true in later stages of evolution. Thus, for the
sake of improving the diversity of the population and
prevent the evolutionary stagnation, a large-scale migration
stage is proposed to help the population move to a new
search region and recover the population diversity. This
search phase consists of two position-update modes, cor-
responding to different search strength, detailed below:

lezest +ﬂXW>< (2R—1) ><6;3, if I’L-<O.5

X =S M, + /1 x sign(R - 0.5)
x(e7#" — 1) x abs(G4 — X!),  otherwise
(13)
G; = (l - W) X M;;est +w X Xyand, (14)
Gy = G, (15)

where G; and G, represent the two guiding individuals that
are applied to construct the migrated positions, and the
calculation of G, is consistent with that of Gy; X,4uq 1S a
randomly generated individual (position); 4 is a D-dimen-
sional random vector in the range of 0 to 1; abs(.) is a
function that evaluates the absolute value of each dimen-
sion of a vector. R, r, are the same as described in Sect. 3.2;
and w is used to control the flight length in Eq. (13) and
component proportion in Egs. (14) and (15), respectively.

For the first migration mode (extended migration),
|[w x (2R — 1)] is the flight length control parameter, whose
figure for one dimension is illustrated in Fig. 2. And the
flight length control parameter of the second migration
mode (narrowed migration) is |e’“w — 1|, whose fig-
ure for one dimension is displayed in Fig. 3. Obviously, the
curve shapes of control parameters for both modes are
basically the same. However, the range of control param-
eter in the extended mode is larger than that in the nar-
rowed mode, and the curve reduction speed is also faster
than that in the narrowed mode.

The large-scale migration stage concentrates on helping
the population jump out of the local optima and recovering
the population diversity. Most importantly, as can be seen
from Eq. (13), the base vector used to calculate the
migration position is independent of the current individual.
That is to say, individuals can migrate to a position quite
different from their current positions. Moreover, in the
extended migration, the guiding individual Gz is built by

@ Springer

mixing the best hiding place M|, and the randomly gen-
erated individual X,,, that is unrelated to the current
population. In the early and middle stages of evolution,
Xrana plays a major role in Gs, so the migration position
produced by M;,, and G5 for each individual can be far
away from its previous position. As for the narrowed
migration, since the current individual participates in the
calculation of position offset and smaller value of control
parameter, the resulting range of the migration positions is
weaker than that of the first mode.

Meanwhile, the design of this stage also takes into
account the solution quality and convergence speed.
Although the migration operation can effectively enhance
the population diversity and help the population jump to a
new area, exorbitant diversity or poor quality of the new
area will lead to slow convergence of the algorithm and
even worse convergence accuracy. Hence, two measures
have been proposed to deal with these problems. The first
measure is that the migration position fuses the valuable
information of the so-far-best solution, due to the base
vector M}, ,, which makes the migrated population of good
quality. Another measure is that, with the continuous iter-
ation of the algorithm, the migration position of each
individual gradually converges to M, which can enhance
the convergence accuracy and speed of the algorithm. To
be specific, this lies on w that can decrease smoothly and
nonlinearly from 1 to 0. With the assistance of w, the
guiding individuals G3 and G4 transform from random
individual X,,,s and mean individual M, to the best
individual Mj,,, and the migration position also transforms
from the region far away from M;,, to the vicinity of M} _,.
Thus, this stage realizes the transition from large-scale
exploration in the early and middle stages to small-scale
exploitation in the later stage, which not only improves the
convergence precision, but also accelerates the conver-
gence speed.

3.5 Procedure and overall analysis of MSCSA

The proposed MSCSA procedure is represented in Algo-
rithm 1, and its flowchart is shown in Fig. 4.
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Algorithm 1: CSA with multi-stage search integration (MSCSA)

18:
19:
20:

21:

22:

23:
24

25:

Initialize the MSCSA parameters fI=2, 7 ,and N

max ’

Initialize the population P using hybridization of chaos and multi-OBL technique
Take P as the initial memory M (hiding places)
=0

while 1 <= Tmax

/I Free foraging stage, focusing on exploitation
for each individual in P
Update the position of the current individual by Eq. (7)

end for

Calculate the fitness of each individual, and update M o according to Eq. (2)

i

Update M.

best

if there is a better hiding place

// Following stage, focusing on exploration
for each individual in P
Update the position of the current individual by Eq. (10)

end for

Calculate the fitness of each individual, and update M . according to Eq. (2)

i

+1
est

Update M,i if there is a better hiding place

// Large-scale migration stage, focusing on jumping out of the local optimum and
recovering the population diversity
for each individual in P
Update the position of the current individual by Eq. (13)

end for

Calculate the fitness of each individual, and update M o according to Eq. (2)

i

+1
est

Update M é if there is a better hiding place

=t+1

end while

Return M ™

best

@ Springer
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Table 1 Time complexity of the algorithms

Algorithms Time complexity

MSCSA O(3ND + 2Nf + maxFEs(D +f))
CSA O(ND + Nf 4+ maxFEs(D +f))
DCSA O(ND + Nf + maxFEs(D + f))
SCCSA O(ND + Nf + maxFEs(D + f))
ICSA O(ND + Nf + maxFEs(D + f))
WOA O(ND + Nf + maxFEs(D + f))
AO O(ND + Nf 4+ maxFEs(D +f))
RSA O(ND + Nf + maxFEs(D +f))
HHO O(ND + Nf + maxFEs(D + f))
STSA O(ND + Nf + maxFEs(D + f))
AOA O(ND + Nf + maxFEs(D +f))
GA O(ND + Nf + maxFEs((1 + P,,)D +f))
PSO O(ND + Nf + maxFEs(D +f))

In view of the previous detailed description of each
stage of the algorithm and the above algorithm process, the
overall optimization of the algorithm follows the principle
of achieving the good trade-off between global exploration
and local exploitation, and is embodied in the following
three different levels of balances (from top to bottom, from
macro to micro).

Search-stage level Specifically, the initialization is
devoted to improving the ergodicity and quality of the
original population. The free foraging stage mainly con-
ducts local search for enhancing the solution accuracy
through individual fine excavation in their own neighbor-
hood. The global search is performed in the following stage
to expand the search space as much as possible by fol-
lowing each other among individuals. And the last stage

large-scale migration concentrates on greatly increasing the
population diversity and helping the population jump out of
the local optima by transferring the population to a new
potential region. Apparently, each of these stages has its
own characteristics and is good at different intensities of
search, so as to form complementary advantages. They
jointly achieve the balance between global exploration and
local exploitation in the whole search process of the
algorithm.

Position-update level There are two position-update
modes, extended and narrowed, of varying intensities in
each search phase. The extended mode and narrowed mode
can cover different search ranges and form different search
fineness, which diversifies the population and increases the
probability of finding better solutions. Combining these
two modes in one search phase also sticks to the principle
of giving consideration to large-range coarse-grained
exploration and small-range fine-grained exploitation.

Control-parameter level The proportion control param-
eters can make the guiding individuals converge to the best
individual (the best hiding place of the population). Under
the lead of the guiding individuals, with the changes of
flight length control parameters, the search area of each
individual will gradually shrink from a large area far away
from itself to the nearest area of the best individual or its
own neighborhood. Therefore, even at the lowest micro
level, the design of the algorithm still reflects the process of
transition from large-scale search in the early and middle
iterations to small-scale mining in the later iterations.

3.6 Computational complexity

All the algorithms involved in this study utilize max
function evaluations (maxFEs) to determine the timing of

Table 2 Parameter settings of

the algorithms Algorithms

Parameter settings

MSCSA (this paper)
CSA (Askarzadeh 2016)
DCSA (Necira et al. 2022)

=2
fl=2,AP=0.1
AP =[0.2, 0.01], 7=0.9

SCCSA (Khalilpourazari and Pasandideh 2020) r =1[2,0], fl=

ICSA (Gholami et al. 2021)

WOA (Mirjalili 2016)

AO (Abualigah et al. 2021a, b)
RSA (Abualigah et al. 2022)
HHO (Heidari et al. 2019)

STSA (Jiang et al. 2020)

AOA (Abualigah et al. 2021a, b)
GA (Bonabeau et al. 1999)

PSO (Kennedy and Eberhart 1995)

fl=15, AP =0.1
= [2 OL az = [717 72]1 b=1

=01, §=0.1
%=0.1, f=0.1
ST =04
x=5u=05

pP.=0.9, P, =0.05
w=0.75¢c=18,¢c,=2

@ Springer
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Table 5 (continued)
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4.52E+02
5.35E+02

5.35E+03
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8.64E+03
7.59E+03
7.13E4-03
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STSA
AOA
GA

1.63E+02
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2.48E+10
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3.30E+4-08
4.27E+05

5.48E+05
7.38E+06
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1.28E4-09

3.46E+06 1.37E+07

PSO

algorithm termination. For analysis purpose, the number of
iterations is used to figure out the time complexity, which
is then converted to the one based on maxFEs.

Generally, the time complexity of an algorithm mainly
consists of three parts: initialization processes, fitness
function evaluation, and updating of solutions. Let the
population size be N, the problem space dimension be D,
and the maximum number of iterations of the algorithm be
Tmax- The computational complexity of the calculation of
fitness (one function evaluation) is set to be O(f). In the
initialization stage, the time complexity of generating
chaotic sequence is O(ND). The time complexity of pro-
ducing a chaotic population is O(ND), and so is the
opposition population. The time complexity of obtaining
the fitness of these two populations is O(2Nf). Hence, the
total time complexity of initialization stage is
O(3ND + 2Nf). Each iteration of the algorithm consists of
three search stages. Each stage generates a new population,
and carries out the population evaluation. After Ty, iter-
ations, the time complexity is O((3ND + 3Nf)Tiax )- Thus,
the time complexity of MSCSA is
O(3ND + 2Nf + (3ND + 3Nf) Ty )- Apparently,
2N + 3NT.x = maxFEs, but 2N is much less than
3NTax, S0 3NTax = maxFEs can be concluded. Replac-
ing T with maxFEs, the time complexity can finally be
expressed as O(3ND + 2Nf + maxFEs(D + f)). Applying
the same method, the time complexity of the original CSA
can be obtained as O(ND + Nf + maxFEs(D + f)). Obvi-
ously, the time complexity of MSCSA is only slightly
greater than that of CSA, mainly because chaos and OBL
techniques are used to generate the initial population.

In addition, the time complexity of other algorithms can
be calculated in a similar way. The time complexity of all
comparison algorithms is shown in Table 1. P,, in the time
complex of GA represents the mutation probability. As can
be seen from the table, the time complexity of these
algorithms can be considered the same, namely
maxFEs(D + f). However, due to the different position-
update modes and control parameters used by different
algorithms, the actual computational time varies greatly.
This point is fully verified in the comparison test of
algorithm computational time.

4 Experimental results and analysis

In order to comprehensively evaluate the performance of
the proposed MSCSA, two types of experiments are con-
ducted in this study. MSCSA is first tested by CEC 2017
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Table 6 (continued)

F30

F29

100

50

30

100

50

30

Std

Avg

Std

Avg

Std

Avg

Std

Avg

Std

Avg

Std

Avg

1.88E+407
3.28E+408
2.48E+08

4.17E+07
6.17E+08
5.20E+08
2.61E4+10
4.71E+10
2.13E4-09

7.47E+06
4.31E+07
4.12E+07
3.55E+409
4.06E+09
8.83E4-07
6.76E4-07
2.35E409
3.08E+4-07
8.97E+4-08
3.04E+09

8.24E+-05 3.27E407

1.32E+06
9.77E+06
6.96E+06
9.01E+08

7.32E+02
1.49E+03
1.67E+03

8.74E+03

3.16E+02
7.18E+02
2.00E+03

5.15E+03
7.01E+03
7.46E+03
4.91E+04
1.28E+05
8.94E4-03
6.64E4-03
3.95E4-04
6.71E+03
7.98E+4-03
9.42E+404

2.48E+02
3.08E+02
4.27E+02

4.06E+03
4.80E+03
4.64E+03

MSCSA
CSA

1.45E+08

1.96E+07
6.66E+06

1.34E+4-04

1.63E+08
3.64E+09
7.66E+09
2.82E4-08

1.33E+04
4.66E+05
8.19E+05

DCSA

1.07E+10
7.98E4-09

1.59E+09
8.44E+08
6.53E4-07

1.06E+06
6.05E+05
3.12E4-03
2.05E4-03
1.14E4-05
1.18E+03

1.33E+05
1.34E4-05

1.64E+04
2.94E+03
5.38E+402
2.82E4+02
5.38E+02
3.01E+02
3.90E+-02
2.20E+03
2.00E+402
2.07E4+02

1.22E+04
8.82E+03
5.27E4-03
4.49E+03
6.20E4-03
4.69E+03
4.76E+03
7.82E+03

SCCSA
ICSA

W

1.25E+09
6.95E+4-07
2.58E+407

1.03E4-09
4.36E+08
7.84E4-09

1.98E4-04

1.19E4-03
8.11E+02
2.53E+04
8.76E+4-02
9.26E+02

OA

1.15E4-09
3.79E+10
2.51E+408

1.75E+08
4.89E+09
8.53E4+07
7.33E+08
7.64E+09

1.62E4-07

1.50E+4-04
2.56E+05

AO

1.16E4-09
7.61E+06
3.30E+07

1.97E+09
8.16E+06
3.50E+07

RSA
HHO

1.23E4-08
4.97E+09
6.11E+09

1.21E+04
3.20E+-04
7.14E+05

1.39E+10
4.18E+10
2.14E4-08
2.24E4-09

1.32E4-04
6.31E+05
6.87E4-02
1.54E4-03

STSA
AOA

GA

1.25E+09

1.83E+09
8.17E+05

1.50E+05
3.32E+02
5.59E4-02

2.66E+07 1.17E+408 1.60E+08
7.16E+07

3.98E+07

1.27E4-06
1.66E4-05

8.26E+03
1.06E+4-04

4.38E+03

5.13E+03

3.89E+03
3.90E+03

1.48E4-09

1.44E+05

PSO

(Awad et al. 2016) special session benchmark functions for
solving complex global optimization problems with
dimensions of 30, 50, and 100. And then, the effectiveness
of MSCSA is estimated for solving complex and high-
dimensional global optimization problems through bench-
mark functions CEC 2010 (Tang et al. 2009) with
dimensions up to 1000.

In all experiments, the performance of MSCSA is
compared with some state-of-the-art meta-heuristic algo-
rithms, including original CSA (Askarzadeh 2016), Sine—
cosine CSA (SCCSA) (Khalilpourazari and Pasandideh
2020), Dynamic CSA (DCSA) (Necira et al. 2022),
Improved CSA (ICSA) (Gholami et al. 2021), Whale
Optimization Algorithm (WOA) (Mirjalili 2016), Harris
Hawks Optimization (HHO) (Heidari et al. 2019), Sine
Tree-Seed Algorithm (STSA) (Jiang et al. 2020), Arith-
metic Optimization Algorithm (AOA) (Abualigah et al.
2021a), Aquila Optimizer (AO) (Abualigah et al. 2021b),
Reptile Search Algorithm (RSA) (Abualigah et al. 2022),
Genetic Algorithm (GA) (Bonabeau et al. 1999), and
Particle Swarm Optimization (PSO) (Kennedy and Eber-
hart 1995). Among these algorithms, DCSA, SCCSA, and
ICSA are newly developed variants of CSA; WOA, HHO,
AO, and RSA are powerful swarm intelligence algorithms;
STSA is an improved TSA (Kiran 2015) of evolutionary
algorithm; AOA is another recently proposed physics-
based algorithm; GA and PSO are two classical meta-
heuristic algorithms. Hence, the compared algorithms
cover various types of meta-heuristic algorithms, and the
effectiveness of MSCSA can be fully verified by compar-
ing with them.

In particular, for algorithms CSA, DCSA, SCCSA,
ICSA, STSA, GA, and PSO, we implemented them by
MATLAB coding according to the corresponding papers.
And for algorithms WOA, HHO, AO, AOA, and RSA,
since the authors provided the MATLAB implementation,
we downloaded the codes according to the links given in
the corresponding papers and used them for experiments.

4.1 Benchmark functions

The benchmark functions of CEC 2017 can be divided into
four categories: unimodal, simple multi-modal, hybrid and
composition. The unimodal functions (FI1-F3) with a
unique global optimum can reveal the exploitation capa-
bilities of different algorithms, while the multi-modal
functions (F4-F10) possessing lots of local optima can
disclose the exploration and premature convergence
avoidance capabilities of compared optimizers. As for
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Table 7 Comparison results on high-dimensional functions of CEC 2010 with dimensions 1000

F1 F2 F3 F4 F5

Avg Std Avg Std Avg Std Avg Std Avg Std
MSCSA 1.04E+10 7.77E408 8.42E+4+04 7.96E+03 2.10E+01 6.82E—02 2.87E+13 9.50E+12 4.53E+08 1.03E+08
CSA 5.20E+10 3.29E4+09 3.70E4+04 246E+403 2.11E401 145E-01 9.22E+13 3.38E+13 8.13E408 1.46E+408
DCSA 5.32E+10 3.65E4+09 3.67E4+04 1.96E4+03 2.12E4+01 2.06E—01 9.38E+13 291E+13 7.27E408 1.95E408
SCCSA  2.01E+11 2.80E+10 6.80E4+05 1.30E+05 2.16E4+01 7.59E—-02 1.73E+15 1.37E+15 2.56E+10 1.82E+10
ICSA 1.94E+11 5.20E+09 1.67E4+04 1.17E402 2.10E401 1.34E-02 3.17E+15 1.04E+15 7.91E+08 4.93E407
WOA 9.52E4+10 6.12E4+09 1.55E+04 2.93E+02 2.13E401 3.25E—01 3.81E4+14 1.06E+14 6.64E+08 8.26E+407
AO 7.71E+10 4.32E409 1.64E404 1.40E402 2.10E401 1.76E—02 3.17E+14 1.04E+14 6.58E4-08 5.33E4-07
RSA 1.75E+11 848E+09 1.69E4+04 6.11E401 2.10E401 131E—-02 1.64E+15 6.28E+14 7.70E+08 2.79E4-07
HHO 4.87E+10 3.79E4+09 1.67E4+04 1.29E402 2.09E4+01 1.58E—-02 146E+14 5.55E+13 6.98E4+08 4.13E407
STSA 1.42E+11  6.69E+09 1.59E+04 1.35E402 2.13E4+01 3.39E—01 4.09E+14 1.59E+14 5.63E+08 5.72E+407
AOA 1.89E+11 4.99E+09 1.60E+04 8.64E4+01 2.09E+01 7.26E—03 2.10E+15 7.90E+14 6.70E4+08 4.44E407
GA 6.57E+10 4.08E4+09 5.14E4+05 8.73E4+04 2.12E4+01 5.74E—02 1.84E+14 5.31E+13 1.83E4+09 2.16E+408
PSO 1.11E+11 1.01E+10 1.67E+06 5.63E4+04 2.16E4+01 1.28E—02 2.13E+14 9.61E+13 2.54E+09 1.85E409

F6 F7 F8 F9 F10

Avg Std Avg Std Avg Std Avg Std Avg Std
MSCSA 1.66E+07 6.31E4+06 9.20E+09 2.65E+09 1.11E+09 2.21E4+09 1.13E+10 8.16E4+08 9.46E+04 7.77E+03
CSA 2.00E+07 1.94E406 5.79E4+10 1.57E4+10 6.16E4+12 7.41E+12 6.26E+10 3.74E4+09 3.65E4-04 2.17E4-03
DCSA 2.07E+07 2.88E405 5.61E4+10 1.18E4+10 4.54E4+12 3.62E+12 6.21E+10 3.18E4+09 3.64E4-04  2.28E4-03
SCCSA  2.11E+07 2.84E405 1.61E4+12 1.17E4+12 4.63E4+16 291E+16 2.11E+11 2.30E+10 7.15E405 2.99E4-05
ICSA 2.04E4+07 1.37E4+05 1.59E+12 8.99E+11 5.60E+16 591E+15 234E+11 5.21E+09 1.70E+04 1.70E+402
WOA 2.08E+07 4.08E+05 148E+12 7.96E+11 1.66E+15 536E+14 1.10E+11 6.08E409 1.60E+04 2.94E402
AO 2.04E4+07 9.57E+04 149E+11 2.89E+10 8.12E+14 3.41E+14 9.64E+10 5.58E+09 1.66E+04 1.50E+402
RSA 2.04E407 9.74E4+04 8.50E+11 4.73E+11 4.20E+16 7.29E+415 2.07E+11 5.64E+09 1.72E404 8.84E+401
HHO 2.02E+07 1.15E405 2.11E+4+11 6.61E4+10 1.42E+13 9.51E+12 S5.79E+10 3.89E4+09 1.69E4+04 1.51E4-02
STSA 2.11E+07 3.36E405 1.13E4+11 3.02E410 1.80E+16 5.29E+15 1.72E+11 6.64E4+09 1.61E4+04 1.61E402
AOA 2.05E+07 3.57E405 1.84E+12 1.23E+12 4.86E+4+16 7.28E+15 222E+11 8.50E4+09 1.64E404 8.40E4-01
GA 2.11E407 7.79E+04 527E+10 1.18E4+10 1.92E+12 1.42E+12 9.70E4+10 6.23E+09 546E+05 1.49E405
PSO 2.12E+07 5.86E+04 1.63E4+11 8.57E+10 4.83E+15 3.72E+15 9.92E+10 1.31E+10 1.67E406 4.29E404

F11 F12 F13 F14 F15

Avg Std Avg Std Avg Std Avg Std Avg Std
MSCSA 2.29E+02 1.01E+00 3.24E+06 1.83E4+05 7.01E+09 145E409 1.17E+10 7.59E+08 9.96E+04 1.01E+404
CSA 230E+02 1.08E+00 4.89E4+06 2.78E405 242E+11 1.83E+10 6.75E+10 5.04E4+09 3.68E4+04 2.33E403
DCSA 2.32E402 2.85E4+00 4.90E+06 2.70E4+05 245E+11 1.87E4+10 6.98E+10 4.76E+09 3.61E4+04 1.92E403
SCCSA  2.37E+02 135E+00 1.61E+07 4.01E+06 1.35E+12 2.83E+11 230E+11 2.78E+10 7.05E+05  2.10E+05
ICSA 2.30E4+02 1.74E-01 236E+07 3.32E4+06 6.93E+11 5.79E4+09 2.64E+11 6.22E+09 1.71E+04 1.44E+402
WOA 2.33E4+02 3.82E400 248E+07 3.97E+06 4.25E+11 2.02E4+10 1.10E4+11 7.48E+09 1.59E+04 5.27E402
AO 230E+02 2.03E-01 6.82E4+06 5.40E4+05 297E+11 1.94E+10 1.05E+11 5.91E4+09 1.67E4+04 1.69E4-02
RSA 230E+02 1.82E-01 1.85E4+07 1.26E406 6.36E+11 9.92E+09 232E+11 4.52E4+09 1.71E404 1.16E402
HHO 229E+02 237E-01 6.30E+06 5.69E4+05 1.68E+11 1.40E+10 581E+10 4.34E+09 1.70E+04 1.40E+402
STSA 2.34E+02 4.03E+00 8.70E+06 7.88E4+05 5.80E+11 1.56E+10 1.85E+11 5.93E+09 1.60E+04 1.81E402
AOA 231E+02 3.09E+00 1.57E4+07 1.87E4+06 6.84E4+11 4.97E+09 246E+11 9.89E4+09 1.64E4+04 1.29E402
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Table 7 (continued)

F11 F12 F13 F14 F15

Avg Std Avg Std Avg Std Avg Std Avg Std
GA 237E+02 240E—-01 7.54E406 5.41E4+05 9.18E+11 7.94E+10 1.07E+11 7.47E4+09 5.14E405 8.22E+404
PSO 237E+02 1.83E—01 9.44E+406 7.77E405 7.53E+11 7.96E+10 6.78E+10 5.58E4+09 1.67E4+06 6.16E404

F16 F17 F18 F19 F20

Avg Std Avg Std Avg Std Avg Std Avg Std
MSCSA 4.21E4+02 1.31E4+00 3.77E+06 2.63E+05 1.57E+11 1.56E+10 1.15SE+07 1.03E+06 1.94E+11 2.29E+10
CSA 421E+02 1.22E400 8.48E+406 6.07E405 8.86E+11 431E+10 2.03E+07 2.38E+4+06 1.02E4+12 3.70E+410
DCSA 4.22E+02 3.62E4+00 8.34E4+06 6.32E4+05 8.75E+11 3.65E+10 2.01E+07 1.62E4+06 1.05E+12 3.15E+10
SCCSA  431E+02 2.80E+00 3.49E+07 845E+06 3.01E+12 6.54E+11 248E+08 1.30E+08 3.20E+12 5.56E+11
ICSA 4.19E+02 3.03E—01 6.00E4+-07 7.11E406 1.47E+12 7.14E+09 1.65E+08 7.82E4+07 1.65E+12 6.24E4+09
WOA 425E+02 7.25E400 5.52E4+07 3.95E4+06 1.13E+12 2.86E+10 3.39E+08 1.07E4+08 1.29E+12 2.54E+10
AO 4.18E+02 3.64E—01 1.15E4+07 9.40E+05 8.99E+11 3.14E+10 4.20E+07 6.23E406 1.02E+12 3.23E+10
RSA 4.19E+02 2.30E-01 3.91E+4+07 6.73E406 1.40E+12 1.54E+10 1.38E+08 2.88E4+07 1.57E+12 1.98E+10
HHO 4.18E+02 3.19E—01 1.04E4+07 1.21E406 6.63E+11 2.90E+10 5.59E+07 145E+4+07 7.74E+11 3.39E+410
STSA 426E+02 7.51E400 2.18E407 2.79E406 1.31E+12 2.56E+10 3.37E+07 4.23E406 1.50E+12 2.34E+10
AOA 420E+02 4.99E4+00 4.33E407 5.67E4+06 1.46E+12 8.05SE+09 9.14E+07 2.80E4+07 1.64E4+12 6.16E4+09
GA 431E+02 5.79E—01 1.58E4+07 1.37E406 2.28E+12 1.64E+11 3.23E+07 3.76E4+06 2.55E+12 2.07E+11
PSO 432E+02 2.89E—01 1.38E4+07 9.56E+05 3.04E+12 1.98E+11 3.02E+07 2.64E4+06 3.27E+12 1.78E+11

hybrid functions (F11-F20) and composition functions
(F21-F30), owing to their traits of maintaining the conti-
nuity around the local and global optima, they are quite
suitable for detecting the balance between global and local
search abilities and escape potential of local optima.

Generally, with the increase of dimension of global
optimization problems, the search space increases expo-
nentially. Meta-heuristic algorithms often suffer from the
curse of dimensionality when solving large-scale problems.
Thus, the high-dimensional benchmark functions of CEC
2010 with dimensions 1000 are applied to investigate the
performance of the proposed MSCSA. This test suite
consists of twenty functions with different features: uni-
modal, multi-modal, shifted, separable, fully nonseparable
and scalability in the different range space.

4.2 Experimental setup

All algorithms are implemented in MATLAB R2018b and
simulations are tested on Core i7 processor with 2.4 GHz
and 16 GB main memory in windows 11. The maximum
number of function evaluations (maxFEs) is used as the
condition to terminate the algorithms, and its value is set to
20,000. For all following experiments population size is set
to 20, and for each function, algorithms are run 30 times
independently.

In MSCSA, only the flight length fl needs to be set and
its value is set to 2. For a fair comparison, the other specific
parameters for compared algorithms are obtained from
their corresponding papers, as shown in Table 2.

4.3 Numerical performance evaluation

In this subsection, the performance of MSCSA is com-
prehensively and thoroughly evaluated by CEC 2017 and
CEC 2010 benchmark functions. The experimental results
are shown in Tables 3, 4, 5, 6, 7 where the average (Avg)
and standard deviation (Std) of the best obtained fitness in
each run are applied to estimate the compared algorithms,
and the minimum values are recorded in bold.

4.3.1 Evaluation of local exploitation capability

The unimodal functions are suitable to evaluate the
exploitation capability of the algorithms. Table 3 discloses
the optimal values gained by MSCSA and other competi-
tors for unimodal functions F1-F3 with dimensions 30, 50
and 100. It can be seen that MSCSA is superior to the
compared algorithms except on F3 with dimensions 50 and
100.
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Fig. 5 Convergence curves of MSCSA and other algorithms for unimodal benchmark functions

4.3.2 Evaluation of global exploration capability

The simple multimodal functions F4-F10 in CEC 2017
have one global optimum and several local optima. As the
dimension increases, the number of local optima increases
exponentially. Thus, these functions are very suitable for
evaluating the global exploration capability of algorithms.
Table 4 shows the results of the efficiency of the proposed
MSCSA and other compared algorithms in different
dimensions 30, 50 and 100. Except F6 and F10 of
dimension 30, MSCSA is superior to other algorithms.

@ Springer

4.3.3 Evaluation of capability to escape from local optima

The capability of an algorithm to jump out of local optima
mainly depends on the maintenance of population diversity
and the potential quality of the region to jump to. Thus, the
power of proposed MSCSA to avoid falling into local
optima and balance the global search and local search is
estimated by hybrid functions and composite functions in
Tables 5 and 6, respectively. As the results shown in
Table 5, MSCSA outperforms other compared algorithms
in most cases. Although the convergence accuracy of
MSCSA is inferior to that of the optimal algorithm in low-
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Fig. 6 Convergence curves of MSCSA and other algorithms for multi-modal benchmark functions

dimensional F13, F14, F15 and F18 functions, it regains the
advantages in high-dimensional cases. And for the results
in Table 6, MSCSA performs better than other algorithms
except on F22 with dimension 30, F27 with dimensions 50
and 100, F29, and F30 with dimensions 30 and 50. All in
all, the ability of MSCSA to escape from local minima is
better than the competitors, and it is very suitable for
solving high-dimensional problems.

4.3.4 Evaluation of large-scale global optimization

In order to investigate the search ability of solving high-
dimensional complex problems, the global optimization

performance of the proposed algorithm is further evaluated
by using the CEC 2010 benchmark with 1000 dimensions.
The obtained results are recorded in Table 7, which proves
that in most cases, MSCSA is more efficient than the
comparison algorithms while handling large-scale

problems.

4.4 Convergence analysis

In this section, the convergence features of various algo-
rithms on different test suites and dimensions are compared

and analyzed. For each category of CEC 2017, several
functions are chosen as representatives: F1-F3 for
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Fig. 7 Convergence curves of MSCSA and other algorithms for hybrid benchmark functions

unimodal, F5, F7, and F9 for simple multi-modal, F12,
F16, and F19 for hybrid, F23, F26, and F30 for composite.
Functions F1-F3, F5-F7, F9-F11, F13-F15, F18-F20 are
selected to represent CEC 2010. Figures 5, 6, 7, 8 and 9
show the convergence curves of the involved algorithms
for solving these functions with different dimensions. In
CEC 2017 test suite, except F3 with dimensions 50 and
100, F19 with dimension 50, and F30 with dimensions 30
and 50, MSCSA converges to more accurate solutions at a
faster rate than other algorithms. As for CEC 2010 test
suite, except F2, F3, F10, and F15, the convergence of
MSCSA is better than compared algorithms.
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4.5 Non-parametric statistical analysis

In addition to the above experimental evaluations, non-
parametric statistical analysis is utilized to further validate
the overall performance of MSCSA. Hence, in this section,
Wilcoxon signed rank test (Derrac et al. 2011) and Fried-
man test (Garcia et al. 2010) are applied as non-parametric
methods to experiment on CEC 2017 and CEC 2010
benchmark functions.

The Wilcoxon signed rank test is used to detect the
significant differences between the results of two algo-
rithms. The symbols “ 4 , — , = ” indicate the times that
MSCSA is superior, inferior, or equal to the compared
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Fig. 8 Convergence curves of MSCSA and other algorithms for composite benchmark functions

algorithms, respectively. As shown in Table 8 of CEC 2017
benchmark, MSCSA is inferior to the comparison algo-
rithms only on no more than five functions, while in all
other cases, it is superior to or equal to its competitors.
With the increase of function dimension, MSCSA still
maintains obvious advantages. In Table 9 of CEC 2010
benchmark, in most cases, MSCSA is superior to others. In
fact, MSCSA fails to achieve optimal performance for only
five functions. Moreover, the p values of the comparisons
for various dimensions 30, 50, 100, and 1000 are less than
0.05, which verify the superiority of the proposed MSCSA
according to statistics.

The Friedman test can be used for multiple comparisons
among several algorithms by computing the ranks of the
observed results. As shown in Tables 10 and 11, the mean
rank of the MSCSA algorithm is the smallest in any
dimension. Therefore, MSCSA ranks the first among all
algorithms, and is significant different from the others.

4.6 Computational time

The computational times of the compared algorithms are
listed in Table 12 for CEC 2017 and Table 13 for CEC
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2010, respectively. These times are the mean running times
of benchmark functions with the same dimensions.
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«Fig. 9 Convergence curves of MSCSA and other algorithms for CEC Table 9 Wilcoxon signed rank test for CEC 2010 functions
2010 functions (D = 1000)
D Vs + - = p value 0.05 0.1
1000 CSA 16 3 1 1.49E—-05 Y Y
Table 8 Wilcoxon signed rank test for CEC 2017 functions DCSA 16 3 1 1.49E—05 Y Y
SCCSA 20 0 0 1.73E—-06 Y Y
D Vs + - = p value 0.05 0.1
ICSA 15 5 0 1.02E—-05 Y Y
30 CSA 24 2 4 4.70E—03 Y Y WOA 17 3 0 1.73E—06 Y Y
DCSA 24 4 2 6.80E—03 Y Y AO 15 5 0 1.24E—05 Y Y
SCCSA 30 0 0 1.73E—06 Y Y RSA 16 4 0 1.24E—05 Y Y
ICSA 30 0 0 1.73E—06 Y Y HHO 15 5 0 1.36E—05 Y Y
WOA 30 0 0 1.73E—06 Y Y STSA 17 3 0 1.36E—05 Y Y
AO 28 0 2 8.46E—06 Y Y AOA 15 5 0 1.13E-05 Y Y
RSA 30 0 0 1.73E—06 Y Y GA 30 0 0 8.86E—05 Y Y
HHO 30 0 0 1.73E—-06 Y Y PSO 30 0 0 8.86E—05 Y Y
STSA 29 0 1 1.73E—06 Y Y
AOA 30 0 0 1.73E—-06 Y Y
GA 19 4 7 4.36E—04 Y Y
PSO 22 3 5 7.0E-04 Y Y In CEC 2017, MSCSA ranks seventh among all algo-
50 CSA 29 1 0 148E-04 Y Y rithms in any dimension. Regardless of the dimension of
DCSA 29 1 0 894E—-04 Y Y the function, it takes slightly longer than CSA, less than
SCCSA 30 0 0 1.73E—06 Y Y 0.1 s to run. As in CEC 2010 with the dimension up to
ICSA 30 0 0 1.73E—06 Y Y 1000, MSCSA ranks fourth, which indicates that it has
WOA 30 0 0 1.73E—06 Y Y better optimization efficiency in solving high-dimensional
AO 30 0 0 1.73E—06 Y Y problems. Moreover, as described in Sect. 3.6 on the time
RSA 30 0 0 1.73E-06 Y Y complexity of algorithms, the time complexity of all
HHO 30 0 0 1.73E-06 Y Y algorithms can be summed up to be consistent, but the
STSA 30 0 0 1.73E-06 Y Y actual running time varies greatly. The reason for this
AOA 30 0 0 1.73E—06 Y Y phenomenon is that the control parameter construction and
GA 23 5 2 420E—03 Y Y individual position updating methods of different algo-
PSO 27 0 3 212E—06 Y Y rithms are quite different.
100 CSA 26 1 3 1.49E—05 Y Y
DCSA 28 1 1 149E—05 Y v 4.7 Overall analysis of the improvements
SCCSA 30 0 0 1.73E—06 Y Y
ICSA 29 1 0 LO2E—05 Y v Based on the results for complicated and high-dimen-
WOA 30 0 0 L73E—06 Y v sional global benchmarks, the effectiveness of the
AO 29 | 0 124E—05 Y % MSCSA is enhanced relative to the original CSA and
RSA 29 | 0 124E—-05 Y v several state-of-the-art methods. As stated in Sects. 3 and
HHO 29 | 0 136E—05 Y v 4, the main reason is that the proposed multi-stage
STSA 29 | 0 1366-05 Y Y sear({h integraFion structure can achieve multi-level and
AOA 29 1 0 LI3E—05 Y Y multl-.grzfnulanty ba.la}nces between ~explc?ratory and
GA o7 3 0 380605 Y v exploitative propensmc?s throughogt iterations. These
PSO 30 0 0 LT3E—06 Y v balances are accomplished by different mechanisms

designed in MSCSA. In the initialization stage, chaos-
based and OBL techniques improve the coverage and
quality of the initialized population. In the free foraging
stage, the random flights strengthen the exploitation
capability of the algorithm, which leads to enhance the
quality of the solutions. Also, the mutual following of
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Table 10 Friedman test for CEC 2017 functions Table 11 Friedman test for CEC 2010 functions

D Algorithms Mean rank Final rank p value 0.05 0.1 D Algorithms  Mean Final p value 0.05 0.1

rank rank

30 MSCSA 1.67 1 2.04E—56 Yes Yes
CSA 4.52 5 1000 MSCSA 2.83 1 3.95E—17 Yes Yes
DCSA 3.78 3 CSA 4.78
SCCSA 11.50 12 DCSA 5.18
ICSA 12.17 13 SCCSA 11.60 13
WOA 8.87 9 ICSA 9.28 11
AO 5.27 6 WOA 7.43 7
RSA 10.93 10 AO 4.85 4
HHO 6.27 7 RSA 8.05 8
STSA 7.30 8 HHO 3.70 2
AOA 10.98 11 STSA 7.08 6
GA 3.63 2 AOA 8.13 9
PSO 4.12 4 GA 8.30 10

50 MSCSA 1.67 1 574E—57 Yes Yes PSO 9.83 12
CSA 4.52 4
DCSA 3.78 3
SCCSA 11.50 12 increasing the population diversity and jumping out of
ICSA 12.17 13 local optima by moving to a promising search area. In
woA 8.87 9 addition, the parameter-control strategy is proposed in
AO 5.27 6 MSCSA, which can slowly control the component pro-
RSA 10.93 10 portion of guiding individuals and flight length of indi-
HHO 6.27 5 viduals so as to gradually change the search intensity
STSA 7.30 8 from the beginning extensive search to the focused local
AOA 10.98 11 search as the iteration proceeds.
GA 3.63 2
PSO 4.12 7

100 MSCSA 1.40 1 1.12E-54 Yes Yes 5 Conclusions and future directions
CSA 3.67 3
DCSA 345 2 This study first proposes a multi-stage search structure, and
SCCSA 12.02 12 then incorporates chaos, multi-OBL, multi-guidance, and
ICSA 12.07 13 multi-position-update strategies into the structure to
WOA 8.05 9 improve the performance of the original CSA. The pro-
AO 5.88 6 posed MSCSA possesses three different levels of balances
RSA 10.12 10 between global exploration and local exploitation, namely
HHO 4.98 the search-stage level, the position-update level and the
STSA 745 control-parameter level. These balances significantly
AOA 10.92 11 improve the diversity of the population and the ability of
GA 413 the algorithm to jump out of local optima. Testing a
PSO 6.87 7 comprehensive set of complex and high-dimensional

individuals is conducive to the information exchange of
the population, which assists MSCSA in expanding the
search space for exploration. The proposed MSCSA also
benefits from the large-scale migration stage for greatly
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benchmark functions from CEC 2017 and CEC 2010 shows
that the efficiency of MSCSA is remarkably better than the
original CSA and its variants. Furthermore, as compared to
other various categories of meta-heuristic algorithms,
including WOA, AO, RSA, HHO, STSA, AOA, GA, and
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Table 12 Computational times of CEC 2017 functions Table 13 Computational times of CEC 2010 functions
D Algorithms Computational time (s) Rank D Algorithms Computational time (s) Rank
30 MSCSA 0.2150 7 1000 MSCSA 5.1635 4
CSA 0.1837 CSA 4.3225 3
DCSA 1.2352 13 DCSA 5.7196 8
SCCSA 0.1733 2 SCCSA 4.3207 2
ICSA 0.1857 5 ICSA 4.3203 1
WOA 0.1503 1 WOA 5.2788 5
AO 0.2455 8 AO 5.7349 9
RSA 0.9601 12 RSA 51.8767 13
HHO 0.4014 9 HHO 10.0358 11
STSA 0.2063 6 STSA 5.4183 7
AOA 0.1799 3 AOA 5.4098 6
GA 0.8137 11 GA 12.1662 12
PSO 0.6066 10 PSO 7.1996 10
50 MSCSA 0.3235 7
CSA 0.2765 3
DCSA 1.2624 12
SCCSA 0.2671 2 Author contributions JH, ZP, and LZ contributed to the idea and
ICSA 02791 4 design of the study. QL implemented the algorithm and carried out
WOA 0.2466 1 the experiments. LZ and DC analysed the results of the experiments.
AO 0.3623 8 JH wrote the'manuscript and all the authors read and approved the
final manuscript.
RSA 1.5043 13
HHO 0.6163 9 Funding The work was supported by the Guangdong Basic and
STSA 0.3098 6 Applied Basic  Research ~ Foundation  (2020A1515010727,
AOA 02921 5 2023A1515011913, 2021A1515012252, 2022A1515012022), the
’ National Natural Science Foundation of China (62273109), the Key
GA L1212 11 Realm R&D Program of Guangdong Province (2021B0707010003),
PSO 0.8399 10 and the Guangdong Province Special Project (2021S0053).
100 MSCSA 0.7642 7 I . .
Data availability Data will be made available on reasonable request.
CSA 0.6883 3
DCSA 1.6888 12
SCCSA 0.6712 2 Declarations
ICSA 0.6878 4
WOA 0.6479 1 Confl?ct of i.nterest The _authors. decl.are t_hat there are no known
conflicts of interest associated with this article.
AO 0.8351 8
RSA 3.3192 13
HHO 1.5047 9 References
STSA 0.7482 6
AOA 0.7386 5 Abdallh GY, Algamal ZY (2020) A QSAR classification model of
GA 1.9274 11 skin sensitization potential based on improving binary crow
search algorithm. Electron J Appl Stat 13(1):86-95
PSO 1.2809 10

PSO, MSCSA also demonstrates outstanding performance
in convergence accuracy, convergence speed and non-
parametric statistics. Therefore, MSCSA improves both the
global and local search capabilities of the original CSA.

In near future, it would be interesting to extend MSCSA
to handle more complex real-world problems, such as
multi-objective optimization, combinatorial optimization
and constrained optimization problems.
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