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A FINITE ELEMENT METHOD FOR PRICING

CONTINUOUS-INSTALLMENT OPTIONS UNDER A

MARKOV-MODULATED MODEL

SAGHAR HEIDARI

Abstract. In this paper, we apply Markov-modulated models to value continuous-installment
options of European style with partial differential equation approach. Under regime switch-
ing models and the opportunity for continuing or stopping to pay installments, the val-
uation problem can be formulated as coupled partial differential equations (CPDE) with
free boundary features, which in many ways is similar to the free boundary problem for
vanilla American options due to the possibility of early exercise. In this paper to value
the continuous-installment options under the proposed model with numerical approach, we
first express the truncated CPDE as a linear complementarity problem (LCP), then a finite
element method is applied to solve the resulting variational inequality. Under some appro-
priate assumptions, we establish the stability of the method and illustrate some numerical
results to examine the rate of convergence and accuracy of the proposed method for the
pricing problem under regime-switching model.

1. Introduction

Nowadays, financial derivatives, in particular the installment options are widely consid-
ered in the modern financial markets. An European continuous-installment option is a type
of path-dependent derivative instrument in which the buyer pays a low initial premium and
a stream of further payments as installments at a given rate per unit time during the option
lifetime, instead of the entire up-front premium. For these options, the holder has the right
to lapse the contract through termination of payments at any time before the maturity, in
which case the option payoff is zero (the present value of the expected payoff is less than
the present value of the remaining payments). If all installments are paid until maturity,
the holder can exercise the option and receive the exercise value. Due to this opportunity,
this type of European option can be viewed as an American vanilla option with early exer-
cise feature, and leads to a pricing problem with free boundary similar to that arising for
American vanilla option. This flexibility in payments, also makes the total premium of the
European installment option considerably greater than the corresponding European vanilla
option’s premium. However, this style options are more attractive for the option’s holder to
reduce the losses and increase the portfolio’s liquidity by entering the contract at a low initial
cost and flexibility to make a decision to stop the contract at any time before the maturity.
On the other hand, the option’s seller can use simple hedging strategy to eliminate financial
risk.

Date: Sunday 20th February, 2022.
Key words and phrases. continuous-installment option, free boundary problem, regime-switching model,
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2 S. HEIDARI

Installment options have been rather widely traded in financial markets. For example,
in life insurance contracts, which the insurance beneficiary can lapse the contract by stopping
the premium payments, or in large capital investment projects, which can be canceled at
any time due to investment uncertainty [15]. In the last decades, application of installment
options have been extended to the financial markets. For instance, the Deutsche Bank’s 10-
year warrant [11], the Canadian retail market [9], installment warrants on Australian stocks
[16], employee stock options [24], compound options [18] and so on. Installment options can
also be embedded in other contracts. For more examples see [13].

To value European installment options, due to existence of changing in time boundaries,
we face more difficulties as we need to find the free boundaries as well as the solutions of
the partial differential equations. There are no many research papers in the literature on in-
stallment options, especially for the European-style installment options. Davis et al. [11, 12]
employed the martingale approach to study the European discrete-installment option in the
Black Scholes framework with stochastic volatility and derived no-arbitrage bounds for the
initial premium of the option using a robust static hedging strategy. They also presented
numerical simulations, using binomial simulations and finite difference methods. In [17], au-
thors derived a closed form solution to the initial premium of a European discrete-installment
option in terms of multidimensional cumulative normal distribution functions and examined
the limiting case of an installment option with a continuous payment plan independent of
underlying asset model. For the European continuous case, it is worth mentioning these
papers: Alobaidi et al. [2, 1] analyzed the European continuous-installment option using
a partial Laplace transform to derive an integral equation for the stopping boundary and
studied its asymptotic behavior close to expiry for the both call and put options. Fahuai
Yi et al. [29, 28] investigated a parabolic variational inequality arising from European
continuous-installment call and put options to prove the existence and uniqueness of the
solution of pricing problem. They also determined regularity and the bounds of the free
boundary. In the numerical valuation of the European continuous-installment options, we
consider following papers: Using Laplace-Carson transform, Kimura [23] solved the integral
representation arising from the pricing problem of European continuous-installment call and
put options written on assets with dividends by PDE approach and obtained a closed form
for the stopping boundary. Ciurlia [10] priced European continuous-installment options with
constant continuous dividend under Black–Scholes model and applied Monte Carlo approach
to the integral representation for both the initial premium and the optimal stopping bound-
ary. Recently Beiranvand et al. [3] applied penalty method for pricing problem of European
continuous-installment option written on the underlying asset which pays constant dividend.
They also used finite element method to solve the linear complementarity problem resulting
from pricing European continuous-installment options under Black-Scholes model [4].

In this paper, we consider European continuous-installment options written on a risky
asset. In the last decades, concerning asset price dynamics, a number of alternative models
have appeared in the finance literature to overcome the deficiencies in the standard geometric
Brownian motion model that is known as the Black-Scholes-Merton model [5, 25]). In this
respect, Regime switching (RS) models [7], in which the dynamics of the change of economic
regimes is modeled by a Markov chain, produce better results in fitting market data because
they explain the jump patterns exhibited by risky assets in real markets. However, they are
more difficult to handle compared to the basic Black–Scholes model. Since the pioneering
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PRICING INSTALLMENT OPTIONS 3

paper of Hamilton [19], regime switching models have been extensively applied to options
pricing in financial markets [8, 6].

The standard Black–Scholes model has been widely used to describe the dynamics of
underlying assets in pricing problem of installment options. Deng [14] has considered jump
diffusion model as an alternative model to the classical Black–Scholes framework, to price
American continuous installment put options. But to the best of our knowledge, there
has been no progress applying regime switching models for installment options and they
are restricted to the Black–Scholes model and jump diffusion model. This motivated us
to consider regime switching models to pricing problem of European continuous-installment
options with partial differential equation approach. For this purpose, volatility, dividend,
interest rate and installment rate, which are assumed constant in the classical Black–Scholes
model, are allowed to take diverse values by switching states governing by Markov process.
For pricing installment option under this model, we write the obtained problem as a linear
complementarity problem and proposed a finite element method [26] in order to solve the
truncated problem. We illustrate the stability of the proposed method when the mesh ratio
k/h2 is chosen sufficiently small and obtain quadratic convergence rates. We also present
our numerical results to examine the accuracy of the applied method.

The paper is organized as follows. In section 2, we introduce the free boundary problems
for the European continuous-installment options under regime-switching model for both put
and call. A finite element method is proposed in section 3 to solve the resulted linear
complementarity problems. This section also contains the implementation of Crank–Nicolson
discretization to obtain the systems of equations. In section 4, we analyze stability of the
method under some appropriate assumptions. We illustrate numerical results to show the
suitability of the proposed model and the accuracy of the applied method in section 5.
Conclusion is presented in section 6.

2. European continuous-installment options under regime-switching model

In this section, we derive the system of partial differential equations(PDEs) satisfied by
European continuous-installment option’s price under a regime-switching model. For this,
we borrow the idea and notations from paper [20, 21] to define the regime-switching model
for the dynamic of underlying asset in installment options.

We define the state of system by a finite state continuous-time Markov chain X =
{X(t), t ≥ 0} on probability space (Ω,F , P ) with the neutral-risk probability measure P .

Note In this paper, we consider the Markov chain with two regimes, since all the
approaches can be extended for a problem with more than two regimes.

We assume the set of state vectors {e1, e2} in R
2, where e1 = (1, 0) and e2 = (0, 1).

Let the matrix Q = (qi,j)2×2 be the rate matrix of the Markov chain. We know (see e.g.

[21]) that qi,j > 0 for i 6= j and
∑2

j=1 qi,j = 0, i = 1, 2.

Discretizing the continuous-time Markov chain by partitioning the time into steps of
size ∆t, we obtain the infinitesimal transition probabilities:

Pij = P
(

X(t+∆t) = j|X(t) = i
)

=

{

1 + qi,i∆t i = j

qi,i∆t otherwise,
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4 S. HEIDARI

Therefore, the dynamics X is specified as the following semimartingale representation:

dX(t) = QX(t)dt+ dMt,

where M = {Mt, t ≥ 0} is a martingale with respect to the filtration Ft = σ{X(u), u ≤ t}.
Suppose the risk-free interest rate r = {rt, t ≥ 0}, the drift µ = {µt, t ≥ 0} and volatility

σ = {σt, t ≥ 0} depend on the state X of the economy, so that

rt = r(Xt),

µt = µ(Xt),

σt = σ(Xt).

Thus, the vectors r, µ and σ in R
2 are as follows:

r = (r1, r2)
T ,

µ = (µ1, µ2)
T ,

σ = (σ1, σ2)
T .

When the economy is in the i-th state (i.e., X(t) = ei), the asset price process S(t) is assumed
to follow the stochastic differential equation:

dS(t)

S(t)
= µidt+ σidW (t), t > 0,

where µi = ri − di with ri ≥ 0 the risk free interest rate and di ≥ 0 the dividend, σi ≥ 0
is the volatility rate and W (t) is a standard Brownian motion, independent of the Markov
chain X(t).

Consider a European-style continuous-installment call option written on S(t) with the
vector of installment rates q = (q1, q2)

T , strike price $K and expiry date T years. Note that
q is the continual input of cash via the premium, it means that at time t, the holder must
pay an amount qt to keep the option alive.
Let C(S, t; q) be the option price at time t such that

C(S, t; q) = (C1(S, t; q), C2(S, t; q))
T ,

where Ci(S, t; q) be the option price when the economy is in the i-th state.
The opportunity to terminate the contract at any time, leads the pricing problem of in-
stallment options to an optimal stopping problem. Then under the risk-neutral probability
measure, we have

Ci(S, t; q) = sup
τ∈S

E
[

e−r(T−t)
(

S(T )−K
)+
✶{τ≥T} −

q

r

(

1− e−r(τ∧(T−t)
)
∣

∣S(t) = S,X(t) = ei

]

,

where S is the set of all stopping times taking values in interval [t, T ] and τ∧T = min{τ, T}.
Now by applying the Ito’s rule to Ci we have

Ci(S, t; q) = Ci(0, t; q) +

∫ t

0

∂Ci

∂u
du+

∫ t

0

∂Ci

∂S
dS(u) +

1

2

∫ t

0

σ2
i S

2∂
2Ci

∂S2
du

−
∫ t

0

qidu+

∫ t

0

(C, dX(u)).
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PRICING INSTALLMENT OPTIONS 5

We know that the discounted price process is a martingale, therefore using no-arbitrage
arguments, we get the following non-homogeneous partial differential equation for Ci(S, t; q):

∂Ci

∂t
(S, t; q) +

1

2
σ2
i S

2∂
2Ci

∂S2
(S, t; q) + µiS

∂Ci

∂S
(S, t; q)− riCi(S, t; q)

+ (C(S, t; q), dX(t)) = qi.

From [20] we define the domain D = {(S, t)|S ∈ [0,∞), t ∈ [0, T ]}. When the economy
is in the i-th state, if the present value of the expected payoff is less than the present value
of the remaining installments, we have to let the contract to lapse. So, there is an optimal
stopping time such that we should stop paying option premiums and the contract should be
terminated. The asset price at the optimal stopping time, the stopping boundary Sc

i (t; q),
divides the domain D into subdomains D1,i and D2,i such that the set D1,i = {(S, t) ∈
D|Ci(S, t; q) = 0} is known the stopping region and the setD2,i = {(S, t) ∈ D|Ci(S, t; q) > 0}
is called the continuation region, where it is optimal to continue paying the premiums.
Therefore, the stopping boundary Sc

i (t; q) is defined as:

Sc
i (t; q) = inf{S ∈ [0,∞)|Ci(S, t; q) > 0}, t ∈ [0, T ].

To apply the value matching and smooth contact conditions for installment option, due to
the fact that option is worthless at the stopping region, the option’s value and its derivative
with respect to S (the option’s delta) must be continuous across the boundary. This means
that for 0 ≤ t < T , they must be zero at the boundary:

lim
S↓Sc

i
(t;q)

Ci (S, t; q) = lim
S↓Sc

i
(t;q)

∂Ci

∂S
(S, t; q) = 0.

Therefore, C(S, t; q) = (C1(S, t; q), C2(S, t; q))
T and the stopping boundary Sc

i (t; q) solve
the following free boundary value problem consisting of the inhomogeneous partial differential
equation:

(2.1)
∂Ci

∂t
(S, t; q) + LiC(S, t; q) = qi, S > Sc

i (t; q),

with Li = LBS
i + LRS

i ,
where the operators LBS

i and LRS
i for the Black-Scholes and regime-switching terms respec-

tively are defined [20] as

LBS
i Ci(S, t; q) =

1

2
σ2
i S

2∂
2Ci

∂S2
(S, t; q) + µiS

∂Ci

∂S
(S, t; q)− riCi(S, t; q),

LRS
i C(S, t; q) =

2
∑

j=1

qi,jCj(S, t; q),

with terminal condition

(2.2) Ci(S, T ; q) = (S −K)+, S ≥ 0,
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6 S. HEIDARI

and boundary conditions

lim
S↓Sc

i
(t;q)

∂Ci

∂S
(S, t; q) = 0, 0 ≤ t < T,(2.3)

lim
S↓Sc

i
(t;q)

Ci (S, t; q) = 0, 0 ≤ t < T,(2.4)

lim
S↑∞

∂Ci

∂S
(S, t; q) < ∞, 0 ≤ t < T.(2.5)

For put option problem, we have the similar free boundary value problem consisting of
the inhomogeneous partial differential equation:

(2.6)
∂Pi

∂t
(S, t; q) + LiP (S, t; q) = qi, S < Sp

i (t; q),

where the operators Li,LBS
i and LRS

i are defined as above:

Li = LBS
i + LRS

i ,

LBS
i Pi(S, t; q) =

1

2
σ2
i S

2∂
2Pi

∂S2
(S, t; q) + µiS

∂Pi

∂S
(S, t; q)− riPi(S, t; q),

LRS
i P (S, t; q) =

2
∑

j=1

qi,jPj(S, t; q),

with terminal condition

(2.7) Pi(S, T ; q) = (K − S)+, S ≥ 0,

and boundary conditions

lim
S↑Sp

i
(t;q)

∂Pi

∂S
(S, t; q) = 0, 0 ≤ t < T,(2.8)

lim
S↑Sp

i
(t;q)

Pi (S, t; q) = 0, 0 ≤ t < T,(2.9)

lim
S↓0

∂Pi

∂S
(S, t; q) < ∞, 0 ≤ t < T.(2.10)

where Pi(S, t; q) and Sp
i (t; q) are the put price and the stopping boundary in the i-th state

of economy, respectively.

As we know the free boundary has the same value for both the put and the call install-
ment options at expiry,

Sp
i (T ; q) = Sc

i (T ; q) = K,

and the value of q does not affect the position of the free boundary at expiry, but it affects the
slope of the boundary. The competition between the premiums to be paid and the payoff to
be received, makes the free boundary for installment option more complicated than a vanilla
American option and leads to a boundary with non-monotonic behavior. For more details
of installment option free boundary see [2].

Due to the well-known put-call duality, the put option price can be evaluated through
the call option price. So we only consider call options. Using the variable transformation for
the call option

S = Kex, Ci(S, T − t; q) = Kui(x, t; q), Sc
i (T − t; q) = Kex

c
i
(t;q),
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PRICING INSTALLMENT OPTIONS 7

the linear complementarity problem [20] of the installment call option (2.1)–(2.5) is given by

∂ui

∂t
(x, t; q) + Liu(x, t; q) ≥ −qi, x ∈ R, t ∈ T,(2.11)

ui(x, t; q) ≥ 0, x ∈ R, t ∈ T,(2.12)
(

∂ui

∂t
(x, t; q) + Liu(x, t; q) + qi

)

ui(x, t; q) = 0, x ∈ R, t ∈ T,(2.13)

with the initial condition

(2.14) ui(x, 0; q) = fi(x), x ∈ R,

the operators

Liu(x, t; q) = −γiui,xx + νiui,x + κiui −Riu,(2.15)

Riu(x, t; q) =
2

∑

j=1

qi,juj(x, t; q),(2.16)

and

fi(x) = (ex − 1)+,(2.17)

γi =
1

2
σ2
i , νi = γi − µi, κi = ri − qi,i.(2.18)

3. A Finite Element Method

In this section, a finite element method [22, 20] is developed for solving the pricing
problem (2.11)–(2.14) for the installment call option.

We truncate the pricing problem (2.11)–(2.14) over a bounded domain Ω = (Xmin, Xmax)
for negative numberXmin and positive numberXmax. Define D̄ = Ω×T , then we approximate
the linear complementarity problem (2.11)–(2.14) for i = 1, 2 as follow:

∂ui

∂t
(x, t; q) + Liu(x, t; q) ≥ −qi, (x, t) ∈ D̄,(3.1)

ui(x, t; q) ≥ 0, (x, t) ∈ D̄,(3.2)
(

∂ui

∂t
(x, t; q) + Liu(x, t; q) + qi

)

ui(x, t; q) = 0, (x, t) ∈ D̄,(3.3)

with the boundary conditions

(3.4) ui(x, t; q) = fi(x), x ∈ ∂Ω, t ∈ T,

and initial condition

(3.5) ui(x, 0; q) = fi(x), x ∈ Ω.
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8 S. HEIDARI

Since it is easier to deal with the homogeneous boundary conditions, we define functions
gi ∈ C2 for i = 1, 2 such that gi(x)|∂Ω = fi(x). Then we consider the new unknown functions

vi(x, t; q) = ui(x, t; q)− gi(x), i = 1, 2, (x, t) ∈ D̄.

Thus, we rewrite the linear complementary problem (3.1)–(3.5) as

∂vi
∂t

(x, t; q) + Liv(x, t; q) ≥ Gi(x), (x, t) ∈ D̄,(3.6)

vi(x, t; q) ≥ −gi(x), (x, t) ∈ D̄,(3.7)
(

∂vi
∂t

(x, t; q) + Liv(x, t; q)− Gi(x)

)

vi(x, t; q) = 0, (x, t) ∈ D̄,(3.8)

vi(x, t; q) = 0, x ∈ ∂Ω, t ∈ T,(3.9)

vi(x, 0; q) = fi(x)− gi(x), x ∈ Ω,(3.10)

where Gi = Ligi for i = 1, 2.

Now we are ready to write the variational inequality. Let

W =

{

v : v ∈ L2(0, T ;H1
0 (Ω)),

∂v

∂t
∈ L2(0, T ;H−1(Ω)), v ≥ −g a.e. in D̄

}

and

V = {v ∈ H1
0 (Ω), v ≥ −g on Ω},

where we define as [20]:

H1
0 (Ω) =

{

v : v ∈ L2(Ω),
∂v

∂x
∈ L2(Ω), v|∂Ω = 0

}

,

and

L2(0, T ;H1
0 (Ω)) =

{

v : v(., t) ∈ H1
0 (Ω),

(
∫ T

0

‖v(., t)‖2H1

0
(Ω)dt

)1/2

< ∞
}

.

Then we have the variational problem for (3.6)–(3.10):

Find wi ∈ W such that

(3.11) (
∂wi

∂t
, v − wi) +Ai(w, v − wi) ≥ Gi(v − wi), ∀v ∈ V, i = 1, 2,

where w = (w1, w2), the operators

Ai(w, v) = Ai,1(wi, v) +Ai,2(w3−i, v)

Ai,1(wi, v) = γi(wi,x, vx) + (νiwi,x + κiwi, v),

Ai,2(w3−i, v) = −qi,3−i (w3−i, v) ,
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PRICING INSTALLMENT OPTIONS 9

and

Gi(v) =

∫ Xmax

0

(αie
x + βi) v(x)dx−

∫ Xmax

Xmin

qiv(x)dx,

αi = γi − νi − κi − qii,

βi = κi + qii.

Let Πt : 0 = t0 < t1 < · · · < tM = T and Πx : Xmin = x0 < x1 < · · · < xN = Xmax be
partitions of T and D̄, respectively, whereM, N are positive integers. Let Vh be the piecewise
linear element subspace of V with respect to partition Πx, where h = max1≤j≤N(xj − xj−1).
Let w0

i,h = 0. The finite element approximation to the variational problem (3.11) is:

For m = 1, 2, . . . ,M , find wm
1,h, wm

2,h ∈ Vh such that

(3.12) (δtw
m
i,h, v − wm

i,h) +Ai

(

w
m− 1

2

h , v − wm
i,h

)

≥ Gi(v − wm
i,h), ∀v ∈ Vh, i = 1, 2,

where wm
h =

(

wm
1,h, wm

2,h

)

, and

δtw
m
i,h =

wm
i,h − wm−1

i,h

km
, w

m− 1

2

i,h =
1

2

(

wm
i,h + wm−1

i,h

)

, km = tm − tm−1.

Here we have only considered the Crank-Nicolson scheme since it has the highest order of
the truncation error.

Denote the linear basis functions of Vh by φ1, . . . , φN−1, i.e., φj(xl) = δl,j for j =
1, 2, . . . , N − 1 and l = 0, 1, . . . , N , where δl,j is the Kronecker delta. Write

wm
i,h(x) =

N−1
∑

j=1

wm
ijφj(x),

and let
Wm

i =
(

wm
i1 , . . . , w

m
i(N−1)

)T
, i = 1, 2.

Then the matrix form of the linear complementarity problem (3.12) can be written as:

(3.13)

{

Ai,1W
m
1 + Ai,2W

m
2 ≥ Fm

i , Wm
i ≥ 0,

(Ai,1W
m
1 + Ai,2W

m
2 − Fm

i )T Wm
i = 0,

for i = 1, 2, m = 1, 2, . . . ,M , where

Ai,i =

(

(φk, φl) +
1

2
kmAi,1(φk, φl)

)

(N−1)×(N−1)

,

Ai,3−i =

(

1

2
kmAi,2(φk, φl)

)

(N−1)×(N−1)

,

Fm
i = kmG

m
i +Bi,iW

m−1
i − Ai,3−iW

m−1
3−i ,

Gm
i = (Gi (φ1) , . . . , Gi (φN−1))

T ,

Bi,i =

(

(φk, φl)−
1

2
kmAi,1(φk, φl)

)

(N−1)×(N−1)

.
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10 S. HEIDARI

The inner products of linear basis functions can be computed exactly for k, l = 1, 2, . . . , N−1:

(φk, φl) =







2h/3, k = l,
h/6, |k − l| = 1,
0, otherwise,

(φ′
k, φl) =







1/2, k − l = 1,
−1/2, k − l = −1,
0, otherwise,

(φ′
k, φ

′
l) =







2/h, k = l,
−1/h, |k − l| = 1,
0, otherwise.

It is easy to see that A1,1 and A2,2 are positive definite tridiagonal matrices and that A12

and A21 are symmetric tridiagonal matrices. Let ǫ be the tolerance and W old
1 and W old

2 be
the initial guesses. The projected block Gauss-Seidel algorithm for (3.13) reads as follows:

Step 1. Solve the following LCP for W new
1 by the projected Thomas algorithm:

{

A1,1W
new
1 + A1,2W

old
2 ≥ F1, W new

1 ≥ 0,
(

A1,1W
new
1 + A1,2W

old
2 − F1

)T
W new

1 = 0.

Step 2. Solve the following LCP for W new
2 by the projected Thomas algorithm:

{

A2,1W
new
1 + A2,2W

new
2 ≥ F2, W new

2 ≥ 0,

(A2,1W
new
1 + A2,2W

new
2 − F2)

T W new
2 = 0.

Step 3. If

|W new
1 −W old

1 |2 + |W new
2 −W old

2 |2 ≤ ǫ2,

then stop. Otherwise, let W old
i = W new

i for i = 1, 2, and then go to (1).

4. Stability

In this section we show the existence and uniqueness of the solution to problem (3.12)
and analyze stability of the proposed method.

Letting v = 0 in (3.12), the finite element approximation for our problem can be sim-
plified as:

(4.1) (δtw
m
i,h, w

m
i,h) +Ai(w

m− 1

2

h , wm
i,h) ≥ Gi(w

m
i,h), i = 1, 2.

Now we define the bilinear form

A(w1, w2; v1, v2) :=
2

∑

i=1

Ai,1(wi, vi) +Ai,2(w3−i, vi).

We shall prove the existence of a unique solution to the problem (3.12) by exploiting the
following result from the Lions–Stampacchia Theorem:
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PRICING INSTALLMENT OPTIONS 11

For all wi, vi, v ∈ H1
0 (Ω), there are positive constants c1, c2 and c3 such that

(4.2) |A(w1, w2;w1, w2)| ≥ c1

2
∑

i=1

‖wi,x‖2,

(4.3) |A(w1, w2; v1, v2)| ≤ c2

√

‖w1,x‖2 + ‖w2,x‖2
√

‖v1,x‖2 + ‖v2,x‖2,

(4.4) |Gi(v)| ≤ c3‖vx‖,
where ‖.‖ denotes the norm of L2(Ω).

From the definition of A and applying the Cauchy–Schwarz and the Poincaré inequalities
we have

A(w1, w2;w1, w2) =
2

∑

i=1

Ai,1(wi, wi) +Ai,2(w3−i, wi)

=
∑

i

γi‖wi,x‖2 + νi(wi,x, wi) + κi‖wi‖2 − (q12 + q21)(w1, w2)

≥
∑

i

γi‖wi,x‖2 + κi‖wi‖2 − ǫ‖w1‖‖w2‖

≥
∑

i

γi‖wi,x‖2 + ζ‖w1‖‖w2‖

≥
∑

i

γi‖wi,x‖2.

Here we have considered that ζ ≥ 0, where

ζ = 2
√
κ1κ2 − ǫ,

and

ǫ = q12 + q21.

We can choose the parameters such that ζ ≥ 0, i.e.

(4.5) 4κ1κ2 ≥ ǫ2.

So by considering (4.5) and putting c1 = max1≤i≤2 γi the bilinear form A is coercive.

For obtaining the required bound in (4.3) we know from [27] that there is positive constant
c2 such that

|A(w1, w2;w1, w2)| ≤ c2

√

‖w1,x‖2 + ‖w2,x‖2
√

‖v1,x‖2 + ‖v2,x‖2.

Also by the Cauchy-Schwarz inequality

|
∫ Xmax

0

Hi(x)v(x)dx| ≤
(

∫ Xmax

0

|Hi(x)|2dx
)1/2(

∫ Xmax

0

|v(x)|2dx
)1/2

= ‖Hi‖‖v‖ ≤ ‖Hi‖‖vx‖,
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12 S. HEIDARI

where Hi(x) = αie
x + βi, and let ξ1 = maxi ‖Hi‖.

By using the same approach, it is easy to see that

|
∫ Xmax

Xmin

qiv(x)dx| ≤ ξ2‖vx‖,

where ξ2 = maxi |qi|.
So by letting c3 = max(ξ1, ξ2) we obtain the required bound (4.4),

|Gi(v)| ≤ c3‖vx‖.

Therefore, we have the following theorem about the solution existence and uniqueness of
(3.12).

Theorem 1. When inequality (4.5) holds, the variational problem (3.12) has a unique so-

lution.

Now for getting an estimate for stability we apply the argument in [21, 27]. For this,
by summation for i = 1, 2 in (4.1), we will have

2
∑

i=1

(δtw
m
ih, w

m
ih) +

2
∑

i=1

Ai(w
m− 1

2

h , wm
ih) ≤

2
∑

i=1

Gi(w
m
ih).

By assumption, max1≤m≤M km/h
2 is small enough, and using the bounds from Theorem (1)

and result [27], we obtain

(4.6)
2

∑

i=1

(

‖wm
ih‖2 − ‖wm−1

ih ‖2
)

+
km
2

2
∑

i=1

γi
(

‖wm
ihx‖2 + ‖wm−1

ihx ‖2
)

≤ ckm,

where c = 4c23/mini γi.

By summing (4.6) for m = 1, ...,M and knowing that w0
ih = 0 we will have

2
∑

i=1

[

‖wM
ih ‖2 + γi

M−1
∑

m=1

km‖wm
ih,x‖2 +

γi
2
kM‖wM

ih,x‖2
]

≤ c

M
∑

m=1

km.

Therefore, we have the following theorem about the stability problem.

Theorem 2. For the variational problem (3.12), we have the following stability estimate:

M
max
m=1

‖wm
h ‖2 +

M
∑

m=1

km‖wm
h,x‖2 ≤ C,

provided that the mesh ration km
h2 is sufficiently small, where ‖.‖ denotes the norm of (L2(Ω))2

and C is a positive constant independent of wm
h , h and km.
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PRICING INSTALLMENT OPTIONS 13

5. Numerical Results

In this section, we examine the results of applying the finite element method for pricing
European installment options to verify the accuracy of our computational scheme. Since
exact solutions for the options are unknown, we propose a comparison with some recent
works and consider both European call and put options under regime switching model with
two regimes. Our results show accurate values with considerable computational time. The
computations were carried out with a C++ class in a computer with 8.00 GB RAM and
2.5 GHz processor. For implementation, we consider different combinations of problem’s
parameters. We also set the tolerance ǫ = 10−9 and uniform partitions are used for both
space and time in [−2.5, 2.5]× [0, 1].

Test : First of all we show the convergence rates of the proposed method by refining
mesh sizes. For this purpose, we consider the European installment call options with strike
price K = $100 and expiration time T = 1 year. we examine three different cases:

Case I. regime–switching volatilities:
In this case, we consider different volatilities, the same interest rates and installment rates
for the two states of economy. The parameters are set as follows:

σ1 = 0.3, σ2 = 0.2, r1 = r2 = 0.1,

d1 = d2 = 0.08, 0.10, 0.12, q1 = q2 = 1.

Case II. regime–switching interest rates:
For this case we consider the same volatilities and installment rate, but different interest
rates for the two states of economy. Thus, the parameters are set as follows:

σ1 = σ2 = 0.2, r1 = 0.10, r2 = 0.06,

d1 = d2 = 0.04, 0.06, 0.08, 0.10, 0.12, q1 = q2 = 1.

Case III. regime–switching installment rates:
In this case, we consider different installment rates and same interest rates and volatilities
for the two states of economy. The parameters are set as follows:

σ1 = σ2 = 0.2, r1 = r2 = 0.1,

d1 = d2 = 0.08, 0.10, 0.12, q1 = 1, q2 = 3.

For all the cases we let

q12 = 5, q21 = 3.

For each case in Figure 1 we displayed graphs of the error wm
2h − wm

h in L2–norm and L∞–
norm for the space mesh size h of the option prices. It can be observed that the method is
converging quadratically for the option price, as we expected.

Now let us consider some examples to represent our accurate numerical experiments
resulting the proposed method.

Example 1: As the first example for testing our method, we use this fact that when
qij for i, j = 1, 2 are set to be zero, the problems (2.1)– (2.5) and (2.6)– (2.10) becomes the
decoupled problems for the installment call and put options without regime switching under
the corresponding Black-Scholes models, respectively. Hence, we can use our program to
evaluate the European installment options prices under the classical Black-Scholes models.
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Figure 1. The convergence rates for prices of European installment call op-
tions under regime–switching volatilities, regime–switching interest rates and
regime–switching installment rates, respectively.

For this purpose, we consider the European installment options with expiration date T = 1
year and strike price K = $100. Other parameters are set as [23]:

r1 = r2 = 0.03; d1 = d2 = 0.05; σ1 = σ2 = 0.2.

Table 1 shows the price of European option under our model with no regime switching using
finite element method and corresponding European option under Black-Scholes model using
Laplace-Carson transform by Kimura in [23] for different values of initial stock prices S
and installment rates. The data indicate that our algorithm can provide very accurate and
reasonable results.

From Table 1, it can also be seen that the decrease in installment rates would lead
to a higher price of installment option in our model. This proves that the premium of an
installment option is less than the premium of a vanilla option. Thus, as installment rate q
tends to zero in the first column of Table 1, installment option price approaches to price of
its counterpart vanilla option.

Example 2: As the second example, we illustrate our numerical experiments for the
installment European call and put options under regime switching of installment rates. For
this purpose, we consider installment European call and put options with expiration date
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PRICING INSTALLMENT OPTIONS 15

Table 1. European installment call option prices by finite element method
(FEM) and corresponding European installment call options by Laplace-
Carson method (LCM) for different values of stock prices and installment
rates.

FEM LCM

S q=0 q=1 q=3 q=6 q=1 q=3 q=6

95 4.5872 3.70712 2.22782 0.67600 3.7071 2.2280 0.6754
105 9.3451 8.40304 6.64219 4.25996 8.3994 6.6385 4.2745
115 15.8173 14.85289 12.96791 10.24892 14.8530 12.9687 10.2533

T = 1 year and strike price K = $100. Other parameters are set as:

r1 = r2 = 0.05; d1 = d2 = 0.04; σ1 = 0.3, σ2 = 0.2;

and

q1 = 3, q2 = 8,

where q1 and q2 are the installment rates in first and second regimes, respectively. For the
regime switching parameters, let

q12 = 5, q21 = 3.

Table 2 shows the price of European installment call and put options under our model with
applying finite element method for different values of initial stock prices S in first and second
regimes.

Table 2. Prices of European installment call and put options under regime–
switching installment rates by finite element method for different values of
stock prices.

Regime 1 Regime 2

S Call Put Call Put

96 7.6576 10.3571 1.2079 2.7891
100 10.0193 9.0013 2.6751 1.9902
104 11.9972 7.1290 4.0162 0.6731

6. Conclusion

In this paper, we studied pricing problem of European continuous-installment options
under Markov-modulated model as an alternative model to the classical Black–Scholes model.
For this purpose, the volatility, dividend, interest rate and installment rate, which are as-
sumed constant in the Black–Scholes model, are allowed to take diverse values by switching
states governed by Markov process. Then to price installment options under this model,
we wrote the obtained free boundary problem as a linear complementarity problem and
applied a finite element method to solve the arising coupled partial differential equations
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16 S. HEIDARI

under regime switching models. We illustrated the stability of the method under some ap-
propriate assumptions and examined its accuracy with some numerical results. From our
numerical results, it is observed that the model produce better results in fitting market
data, due to ability of regime switching models to capture the jump patterns exhibited by
underlying assets. Our numerical experiments also show the stability and accuracy of the
proposed method for pricing installment options under regime switching models. It is worth
mentioning that the applied method converges quadratically, as we expected.
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