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Abstract

The server logs play an essential role in website maintenance. When the Internet server is run-
ning, the service maintained may encounter various problems, and the logs generated by the server
are the key data to locate the problems. However, the existing log storage systems are prone to
a single point of failure, which may cause logs to be lost, and the problem cannot be rectified.
Meanwhile, external attackers can tamper with logs to evade tracking, and the person in charge of
an accident may also tamper with the log to evade responsibility. The advantages of blockchain,
such as immutability, decentralization, and security, can effectively overcome these shortcomings.
In this paper, we proposed a log data storage scheme based on blockchain and Interplanetary
File System (IPFS). The lack of scalability of blockchain for storing large files is addressed by
storing the log data stored in IPFS. Firstly, our model uses IPFS to store extensive file log
data and combines blockchain technology to realize log data storage decentralization and diffi-
culty to tamper. Secondly, to improve the query efficiency of log data, we propose two improved
Merkle tree methods to provide fast queries of log data with a timestamp as query keywords.
Finally, the experimental results show that the two methods have better log retrieval efficiency.

Keywords: blockchain, log storge, IPFS, Merkle tee

1 Introduction

Log data can help administrators discover vul-
nerabilities in the system (Sur, 2019). The server
downtime or malicious invasion of the server will
cause the log data to be lost, and it is difficult to
analyze the reasons or investigate the responsibil-
ity after the problem occurs. Sending log data to

trusted third-party management or a distributed
log system to aggregate these files is now the main-
stream log storage method (He et al, 2010; Son
et al, 2017). However, these servers are vulnerable
to accidental data damage or malicious attacks,
not guarantee log data security. On the one hand,
the management of the log database is usually per-
formed by users with permissions, and semi-honest
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users with permissions can tamper with the log
data in the log database, which cannot guarantee
the security of the log data. On the other hand,
external attackers can illegally manipulate the sys-
tem, and log data may be tampered with, causing
economic losses (Faradzhullaev, 2008).

The emergence of blockchain technology pro-
vides a new idea for log data storage security
(Kumar et al, 2018; Nakamoto, 2008). Blockchain
technology is now applied to various fields, such as
electronic health record Uddin et al (2021), food
traceability Jiuliang Liu (2020), etc. The decen-
tralized distributed architecture of blockchain
technology makes it possible to establish a log
storage system independent of trusted third par-
ties. However, if the log data is directly stored
in the blockchain, it may limit its large-scale
application since the traditional blockchain has
limitations in capacity and scalability (Yue et al,
2020). Recently, (Shekhtman and Waisbard, 2021)
considered the storage capacity of one blockchain,
uploading ample file storage to the cloud, only sav-
ing the hash value of the file to the blockchain,
ensuring the integrity of the file. However, they
did not guarantee the authenticity of files when
they were compromised or maliciously tampered
with within a cloud server. Fortunately, Interplan-
etary File System (IPFS) provides a new solution
for storing large file log data (Benet, 2014), which
provides storage scalability and high availability
through replication through generating a unique
hash value for each file. Users can obtain the file’s
content through the hash value, and the uploaded
data are almost impossible to modify and delete.

In this paper, we propose a blockchain-based
log storage scheme, which uses IPFS to store
log data and utilizes an improved Merkle tree to
improve log query efficiency. In full generality, we
outline our contributions as follows:

Firstly, we propose a decentralized log storage
scheme, which eliminates the traditional central-
ized log storage scheme. This scheme utilizes IPFS
to address the need to store a large number of
logs. By storing log data into the IPFS server, the
storage pressure of blockchain alleviates.

Secondly, we improve the traditional Merkle
tree and propose two enhanced schemes: the base-
line and the enhanced method. Both of them
support finding data by log timestamp on the
blockchain.

Thirdly, we finished the simulation of the
proposed two methods in the implementation.

The main structure is as follows: In section 2,
we discuss work related to log storage. We design a
log storage scheme based on blockchain and IPFS
in section 3. Further, in section 4, we describe two
methods of the Merkle tree. Then, we compare
the query performance of the two schemes through
comprehensive simulation in section 5. Finally, in
section 6, we summarize the full text.

2 Related Works

In order to avoid the problem that centralized
log storage is vulnerable to attack, researchers
have proposed some blockchain-based log stor-
age schemes. The security of log data can be
protected by using the immutability property of
blockchain (Ahmad et al, 2018; Putz et al, 2019;
Xu et al, 2022). (Gürsoy et al, 2020) realized the
storage and query scheme of genomic access log
files based on the blockchain using a multi-chain
platform. In their scheme, inquirers need to down-
load all data from the chain and save them in
local memory for fast queries. To solve this prob-
lem, they designed another ‘bigmem’ solution,
which uses index instead of local storage for fast
queries. (Shekhtman and Waisbard, 2021) added
an additional encryption layer to the blockchain,
encrypting data before data transmission to the
blockchain and protecting the privacy and security
of data between authorized parties. (Pourmajidi
and Miranskyy, 2018) designed a super blockchain
with two layers of hierarchical structure. Log
data is stored in a circled blockchain, including
a genesis block and a terminal block where each
superblock contains a circled blockchain. Obvi-
ously, most existing blockchain-based log data
storage solutions mainly solve the shortage of cen-
tralized log storage. In this article, we will focus
on the scalability of blockchain storage and query.

Merkle tree is a data structure, which can real-
ize fast data verification. Changing the value of
any leaf node causes the root to change (Buch-
mann et al, 2008). Merkle tree is the main compo-
nent of the blockchain and is used to store and ver-
ify transactions, ensuring that the blocks are con-
sistent at each node. Most mainstream blockchain
frameworks have improved the Merkle tree. Bit-
coin uses the traditional Merkle tree (Nakamoto,
2008); Ethereum improved Bitcoin and proposed
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Merkle Patricia tree based on the characteristics of
efficient retrieval of Patricia tree (Bonneau, 2016);
to reduce the cost of adding data, the Hyper-
ledger combines Merkle trees and hash buckets
(Androulaki et al, 2018). (Xu et al, 2017) proposed
an educational certificate blockchain based on the
Merkle Patricia tree, which not only can you pro-
vide efficient queries but also support historical
transaction queries. (He et al, 2020) proposed
a blockchain-based verification scheme for large-
scale cloud data and designed a T-tree structure,
which supports binary search on the blockchain.
(Yue et al, 2018) proposed a general data integrity
verification framework for blockchain-based P2P
cloud storage. Some multi-branch Merkle trees
based on data shards are constructed, and their
performance is compared.

3 System Design

3.1 System model

In the model proposed in this paper, log data are
stored in IPFS, and the hash tags corresponding to
each log data are stored in the chain, which solves
the shortage of blockchain in storing extensive file
log data. Based on this model, combined with the
improved Merkle tree, the log data with times-
tamp query keywords can be quickly retrieved.
The concrete implementation of the improved
Merkle tree is in section 4.

Our blockchain-based log storage system
model elaborates in Figure 1. The model contains
three different entities: client, IPFS server, and
blockchain nodes. The clients have many log data
that need to be stored in the system safely and can
send query requests to blockchain nodes to obtain
the query results. IPFS servers store log files
received from the clients and generate a unique
hash for each log file. Clients and other users can
send download requests to servers or nodes accord-
ing to unique hash tags to get the contents of the
log files. Blockchain stores hash values generated
by the IPFS server for data integrity verification.

Our proposed scheme includes two stages: the
storage stage and the query stage.

Storage Stage: (1) The client encrypts the log
data using symmetric encryption and signs them,
and uploads the processed log data to the IPFS
server. (2) The IPFS server verifies the processed
log data to ensure the integrity of log data. The

Fig. 1 Blockchain-based log storage system model

log data is then stored, and the generated hash
tags are returned to the client. (3) The client ver-
ifies the correctness of hash tags with other IPFS
servers. (4) The client signs the hash tags and
sends the data to the blockchain node. (5) The
blockchain node sends a comparison tags verifica-
tion request to the IPFS node to verify whether
the sender of tags is the same as the log data
holder in IPFS.

Query Stage: (6) The client sends log query
requests to a blockchain node. (7) The blockchain
node query the corresponding log hash tag accord-
ing to the request, then return the data proof
and query results to the client. (8) The client ver-
ifies the correctness of the data proof to other
blockchain nodes. If the data proof proves that the
hash tag is intact, the client downloads data from
the IPFS server node using the hash tag; other-
wise, it indicates that the data tag is incomplete
and may be tampered with.

In data transmission, a cryptography algo-
rithm is used to ensure the authenticity, reliability
and integrity of information transmission. The
sender of the data has to sign the hash value
of the data. If the data is tampered with dur-
ing transmission, the verification signature will
not pass, and the data will not be trusted. In
the storage stage, the Practical Byzantine Fault
Tolerance (PBFT) algorithm is used to complete
the consensus process of data blocks (Castro and
Liskov, 2002). Suppose there are blockchain nodes
to compose a consensus system, the PBFT algo-
rithm provides the fault-tolerant capability of f =
(n − 1)/3 , that is, the number of failed or mali-
cious nodes cannot exceed 1/3 of all nodes. IPFS
guarantees the integrity of log data.
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3.2 The Improved Blockchain

Storage Structure

In our scheme, hash tags generated from log data
are packaged into blocks by blockchain nodes. In
order to adapt to the application scenario where
log data needs to be queried by timestamp, this
paper extends the block structure, as shown in
Figure 2.

Fig. 2 The improved blockchain architecture

Each block is composed of a block head and a
block body (Nofer et al, 2017). The block header
contains the hash value of the previous block, the
timestamp when generating the block, the Merkle
root, block height, and the log start and end time
of the transaction list in the block. The data in the
transaction list is sorted by log generation time,
all of which are stored in the k-v database.

We added the start time and end time of
the transaction in the transaction list of the
blockchain to the original block header data to
improve the search efficiency of the timestamp
keyword on the chain. Due to network delay and
upload speed, the start time of logs in the current
block may be shorter than the end time of the
previous block. Given a timestamp, the block con-
taining the timestamp is determined by scanning
all the block headers on the blockchain.

4 The Improved Merkle Tree

The transaction data for each block in the
blockchain is stored as a Merkle tree. One feature
of the Merkle tree is that given a Merkle path, it
can quickly verify whether a transaction is in the

transaction list. However, when a client wants to
query a transaction by keyword, the blockchain
node needs to traverse all the transaction data
stored in the Merkle tree. As the transaction data
in the block increases, the time it takes to query a
transaction record on the blockchain increases dra-
matically. In order to reduce memory and improve
query efficiency, the nodes of the Merkle tree are
improved in our method. Our method contains
the Merkle tree validation features (the client can
verify that a transaction is included in the trans-
action list without downloading all transactions in
all blocks) but also improve the timestamp key-
word query efficiency on the blockchain and the
methods support the timestamp range query. In
this section, we describe in detail the structure of
the two improved Merkle trees and give the times-
tamp point query algorithm and timestamp range
query algorithm.

4.1 The Baseline Method

The baseline method combines the characteristics
of binary search and Merkle tree, and its node
structure is shown in Figure 3. There are two
types of nodes in this method: branch nodes and
leaf nodes. A branch node Bnode of the baseline
method consists of the minimum log timestamp
value Min, maximum log timestamp value Max,
the hash values of the left subtrees LeftChild and
right subtrees RightChild. A leaf node Lnode con-
tains the transaction value TX and the generation
timestamp LogT ime of the log data in the trans-
action. In this method, all nodes are stored in the
k − v database, where v is all data connections
of nodes and k is obtained by the hash algorithm
Hash(v).

Fig. 3 Basic baseline method data types

In tree constructions, leaf nodes are first con-
structed according to the transaction list and
saved in the database. Then, starting at the bot-
tom of the tree, a new branch node is constructed
layer by layer by two nodes of the tree, and if there
is an odd number of branch nodes in a layer, the
last branch node is copied until the last is the root
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node. In a branch node, if its child node is a branch
node, Min is the left child’s Min, and Max is the
right child’s Max; if its child node is the leaf node,
and its Min and Max are the LogT ime of the leaf
node.

In the query stage of the blockchain-based log
storage model, when a client requests a times-
tamp single point query of a blockchain node,
the blockchain node invokes the query algorithm
to search for transaction data. The client sends
a timestamp T to the blockchain node. If T is
not within the time range of the blockchain, the
algorithm returns a null value. Otherwise, find
the blocks where T is located by the start and
end times in the block header. Then, based on
the hash value of the root of the Merkle tree in
the block header, the search algorithm is called
to obtain TX. In the search process, the tra-
versed nodes are Merkle path, and the blockchain
nodes return Merkle path and search results to the
client. The Merkle path allows the client to deter-
mine whether the transaction is on the blockchain
quickly. The timestamp point query algorithm for
the baseline method is as follows:

Algorithm 1 Timestamp Point Query Algorithm

Require: timestamp T , Merkle root Root
1: nodes=stack()
2: nodes.append(GetNode(Root))
3: while nodes is not empty do

4: Plist.append(nodes[-1])
5: node= nodes.pop()
6: if node is leaf node and node.Min==T

then

7: Hlist.Add(GetValue(node.leftChild))
8: else if T ≥

GetNode(node.leftChild).Max then

9: nodes.append(GetNode(node.rightChild))
10: else if T ≤

GetNode(node.rightChild).Min then

11: nodes.append(GetNode(node.leftChild))
12: end if

13: end while

14: return Hlist, Plist

According to the timestamp keyword query
feature of log data, when the client sends the
start and ends time of the log to the blockchain

node, the blockchain node returns the correspond-
ing query results. Gives a start timestamp T s
and an end timestamp Te, timestamp range query
algorithm returns the hash tag list within that
timestamp range. Assuming that the timestamp
ranges of each block have no intersection, the
blocks containing T s and Te are found from the
blockchain. From these blocks, we can call the
query algorithm to get hash tag list, according to
the following conditions:

Case1: Ts and Te are in the same block, call
query algorithm.

Case2: Ts and Te are in different blocks. The
block transaction list in the middle of the two
blocks is added to the hash tag list. The query
algorithm is then called on both blocks.

The following query algorithm is given to
search for transactions within a given timestamp
range in a block:

Algorithm 2 Timestamp Range Query Algo-
rithm
Require: start timestamp Ts, end timestamp

Te, Merkle root Root
1: nodes=queue()
2: nodes.append(Root)
3: while nodes is not empty do

4: node = nodes.get()
5: if node is leaf node then

6: Hlist.Add(GetValue(node.leftChild))
7: Plist.append(nodes[-1])
8: else

9: leftChild = GetNode(node.leftChild)
10: rightChild =

GetNode(node.rightChild)
11: if Ts or Te ≤ leftChild.Max then

12: nodes.append(GetNode(node.leftChild))
13: Plist.append(nodes[-1])
14: end if

15: if Ts or Te ≥ leftChild.Max then

16: nodes.append
(GetNode(node.rightChild)

17: Plist.append(nodes[-1])
18: end if

19: end if

20: end while

21: return Hlist, Plist
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4.2 The Enhanced Method

In the enhanced method, we combine the prefix
tree and the Merkle tree to improve the baseline
scheme. In this method, we take the log gener-
ation time to build a prefix tree. The maximum
height of the improved tree is the length of the
Unix timestamp under decimal. The basic nodes of
the enhanced method are composed of two nodes:
branch node, leaf node as shown in Figure 4. A
branch node Bnode is a node with a child set
childi, i ∈ [0, 9] and a prefix value Prefix. A leaf
node Lnode consists of a prefix value and a trans-
action list TXj , j ∈ [0,m], transactions in each
leaf node have the same log generation time.

Fig. 4 Basic enhanced method data types

Similar to the baseline, the input of the tree
constructions algorithm is a list, and the output is
the hash value of the root node, except that the list
element UT is A Unix timestamp. Transactions
with the same log timestamp are stored in the
same leaf node, which greatly reduces the number
of nodes that need to be traversed based on the
timestamp keyword.

Algorithm 3 Timestamp Point Query Algorithm

Require: timestamp UT , Merkle root Root
1: node=GetNode(Root)
2: while node is not leaf node do

3: if UT[len(node.prefix)] in node.children
then

4: Plist.append(node)
5: node= node.getChild(UT [len(node.prefix)])
6: else

7: return null
8: end if

9: end while

10: if node.prefix==UT then

11: for tx in node.txes do

12: Hlist.append (tx)
13: end for

14: end if

15: return Hlist, Plist

In the timestamp range query algorithm,
whether the prefix of the node is within the
given time range is determined. The algorithm is
described in detail as follows:

Algorithm 4 Timestamp Range Query Algo-
rithm
Require: start timestamp Ts, end timestamp

Te, the Merkle root Root
1: nodes=queue()
2: nodes.append(Root)
3: while nodes is not empty do

4: for temp in range(nodes.size())) do
5: node = nodes.popleft()
6: for childNode in node.childrenNode

do

7: if Ts [:len(prefix)] ≤ childNode.
prefix ≤ Te[:len(prefix)] then

8: if childNode is leaf node then

9: for tx in childNode.txes do
10: Hlist.append(tx)
11: end for

12: else

13: nodes.append(childNode)
14: end if

15: Plist.append(childNode)
16: end if

17: end for

18: end for

19: end while

20: return Hlist, Plist

5 Experiments

The experiment was performed on Windows 10.
The main hardware configuration is as follows:
CPU: Intel(R) Core (TM) i7-4720HQ 2.60GHz;
RAM:16GB. This paper mainly studies how to
improve the blockchain structure and Merkle tree
to improve the search efficiency on the blockchain.
Consequently, we have not conducted experiments
on clusters.

In this paper, we implemented the two
improved methods using the python language and
compared them with the Merkle tree of Yue’s
scheme [22]. Yue’s scheme [22] constructs some
multi-branched Merkle trees based on data shards,
each tree needs to download all the transactions in
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the block to be queried, so we only design a com-
prehensive comparison experiment between the
Binary Branching tree (BBT) and our methods.
We compare the storage structures of blockchain
in terms of tree construction complexity, times-
tamp point query, and range query overhead. We
randomly generated one hundred thousand log
data, uploaded it to the IPFS server in the private
network, and uploaded the hash tags of these logs
to blockchain for an experiment. Each block con-
tains the Merkle root of BBT, the baseline, and
the enhanced method.

Firstly, we compare the tree generation effi-
ciency versus the number of the size of the trans-
action list. Assuming that the block’s transaction
list is from 256 to 8192 (256, 512, 1024, 2048, 4096,
8192). From Figure 5, we can see that the two
improved methods’ tree construction efficiency is
lower than BBT. Due to the two methods, we
proposed storing all nodes in the database dur-
ing the construction process. Furthermore, in the
enhanced method, the prefix value of log gener-
ation time for all transactions is different in the
worst case, resulting in a much larger number of
nodes than the other methods.

Fig. 5 The comparison of methods and BBT build cost

Secondly, we compare the query efficiency.
Considering that timestamps are often used as
keywords when searching for logs, we compare the
time consumption of point query and range query.
We experimented on the blockchain generated
by the tree construction experiment, randomly
querying 10,000 times and recording the average
query time. As shown in Figure 6, the baseline
and enhanced methods do not require all transac-
tions to be read in, so timestamp point query times
are much lower than BBT. As shown in Figure
7, two methods also have higher query efficiency

in timestamp range queries. Fewer tree nodes are
generated in the enhanced approach, so it takes
less time to query than the baseline method.
Therefore, it can be observed that both methods
have better query performance than BBT.

Fig. 6 The comparison of methods and BBT point query
cost

Fig. 7 The comparison of methods and BBT range query
cost

In our methods, we build a tree with the times-
tamp as the keyword and store each node in the
database, so the build time of the tree is more pro-
tracted than BBT. However, the query overhead
is lower than BBT because we have added fields
to each node to enable efficient searching.

6 Conclusions

This paper proposes a log data storage scheme
based on blockchain and IPFS. This scheme effec-
tively solves the problem of insufficient scalability
of blockchain by storing log data in IPFS and
hash tags in the blockchain. The structure of the
model is introduced and analyzed. Aiming at the
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requirement that logs need to be queried by times-
tamp, we design two improved methods based
on the Merkle tree to improve the query rate of
logs by timestamp. Experiments show that the
two improved methods proposed in this paper can
effectively improve the search performance of the
query log according to the timestamp.
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