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Abstract

Human behavior recognition is one of the significant components of Ambient Assisted Living (AAL) sys-

tems and personal assistive robots allowing to improve the quality of their lives in terms of safety, auton-

omy, and well-being. A critical aspect of preventing dangerous situations for users, especially elderlies,

is to recognize abnormal human behavior. In spite of the extensive exploration of abnormality recogni-

tion in various fields, there remain some challenges in developing effective approaches for recognizing

abnormal human behaviors in AAL systems due to the limitations of data-driven and knowledge-driven

approaches. In this paper, a context-aware framework combining data-driven and knowledge-driven approaches

is proposed to better characterize human behaviors and recognize abnormal behaviors using commonsense

reasoning while considering human behavior context. The proposed framework comprises five main mod-

ules, which leverage Long Short-Term Memory (LSTM) models and Probabilistic Answer Set Programming

(PASP)-based commonsense reasoning to recognize human activities and represent abnormal human behav-

iors, as well as reason about those behaviors. The proposed framework is evaluated using two datasets,

namely Orange4Home and UCI HAR. The obtained results indicate the capability of the proposed frame-

work to characterize human behaviors and recognize abnormal human behaviors with high performance.

Keywords: Human activity and behavior recognition, Context-aware framework, Machine-learning models, Ontology, PASP

1 INTRODUCTION

Ambient Assisted Living (AAL) systems are designed

to enhance people’s lives by improving their safety,

well-being, and autonomy [1], [2], [3]. Designing

AAL systems that can automatically recognize human

activities, human behaviors, and abnormal human

behaviors with considering the user’s context results

in many challenges. The concept of context is defined

by A. K. Dey as any information that describes the

situation of an entity. It can include a person, place,

or object associated with the interaction between a

user and an application, including the user and the

application itself [4].

Researchers have paid considerable attention to

abnormal human behavior recognition approaches in

a variety of applications, such as healthcare [5] and

AAL systems [6]. These approaches aim to detect

unexpected behaviors of a user as they are differ-

ent from his/her usual behaviors [5]. Since people
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usually follow daily routines [7], changes in their

routines can be an indication of a health issue or

a dangerous situation [8]. It is critical to recognize

abnormal human behavior in order to prevent users,

especially the elderly, from becoming in danger. The

existing approaches for abnormal human behavior

recognition can be classified into two groups: (1)

non-vision-based approaches [9] and (2) vision-based

approaches [10], [11], [12]. In this paper, we focus

on the first group due to several limitations associated

with vision-based abnormal human behavior recogni-

tion approaches [13], [14], such as visual occlusions

and privacy concerns.

Unexpected or unusual behavior in humans is clas-

sified as abnormal, and can indicate underlying health

issues or hazardous incidents [8, 15]. For example,

a sudden loss of appetite, excessive sleeping, or a

significant decrease in physical activity levels could

indicate an underlying health issue or potentially haz-

ardous incident. For AAL systems to accurately detect

such behavior, they require advanced reasoning and

data analytics capabilities to consider the context of

human activity and behavior. The primary necessity to

recognize abnormal human behaviors is human behav-

ior recognition. The latter enables AAL systems to

learn about the behavior of users and provide suit-

able assistance services. For instance, human behav-

ior recognition is necessary to help users maintain

a healthy lifestyle, and consequently, help them pre-

vent and manage chronic diseases [16]. Despite the

fact that human behavior and human activity are often

used interchangeably in the literature [17], [18], [19],

there are few existing studies that distinguish these

two terms; in general, human behavior refers to a per-

son’s frequent activities in many different situations

[20] or activity routines [21], [20], [6]. This definition

is general and doesn’t consider different attributes of

human behavior context. Therefore, proposing com-

prehensive and machine-understandable definitions of

normal human behavior and abnormal human behav-

ior that consider different attributes of human behavior

context [22] is the main challenge in recognizing nor-

mal and abnormal human behaviors. Our proposed

definition of abnormal human behavior includes six

different types : (i) unexpected recurrent activities in

specific locations, (ii) unexpected recurrent activities

involving specific objects, (iii) unexpected recurrent

activities at specific times of day, (iv) unexpected

recurrent activities of specific durations, (v) unex-

pected recurrent activities with specific frequencies

per day, and (vi) unexpected recurrent sequences of

activities. In the human behavior and abnormal human

behavior recognition domains, handling the uncer-

tainty of captured context attributes and recognized

human activities is significant. Moreover, handling the

uncertainty of sensor data is considered as a primary

requirement, since human activities and behaviors are

generally recognized by exploiting data collected from

sensors worn by the user or disseminated in the envi-

ronment. Sensor data are usually subjected to some

level of imperfection due to the hardware restric-

tions of sensors. In addition, the quality of sensor

data is often reduced by sensor failures or malfunc-

tions. Therefore, handling imperfect sensor data is a

requirement to reduce information misunderstandings

[23]. While existing approaches to human activity and

behavior recognition have made significant progress,

they are still limited in their ability to accurately

identify and classify abnormal behaviors in complex,

real-world environments. This is due in part to chal-

lenges such as variability in human behavior and

the difficulty of detecting subtle or context-dependent

cues. Additionally, current approaches often do not

consider the various contextual attributes of human

activity, such as location, involved objects, duration,

frequency, time of day, and sequence of human activ-

ities. Although some studies have considered some

of these contextual factors [24], [6], most of these

existing approaches do not allow for handling uncer-

tainty in activity predictions, making it difficult to

apply them in real-world scenarios. By addressing

these limitations, our proposed framework has the

potential to improve the accuracy and usefulness of

abnormal human behavior recognition systems. In this

paper, to deal with these limitations, a hybrid and

context-aware framework exploiting the advantages of

data-driven and knowledge-driven approaches is pro-

posed to recognize human behaviors and abnormal

human behaviors. In this approach, machine-learning

models are exploited to recognize human activities,

and ontology and commonsense reasoning are used to

capture context and recognize normal and abnormal

human behavior. The proposed framework is evalu-

ated using two datasets, namely Orange4Home [25]

and UCI HAR [26] datasets in terms of precision,

recall, F-measure, and accuracy.

The contributions of this paper are as follows:

• Development of a hybrid and context-aware

approach for recognizing human behavior, which

incorporates context attributes using machine-

learning models, HAT ontology, and PASP.



• Development of a hybrid and context-aware

approach for detecting abnormal human behavior,

which considers human behavior context and han-

dles uncertainty in activity predictions and abnor-

mal human behavior rules using probabilistic rea-

soning.
• Evaluation of the proposed framework for recogniz-

ing human activities, human behaviors, and abnor-

mal human behaviors using two datasets, namely

Orange4Home [25] and UCI HAR [26] datasets,

based on precision, recall, F-measure, and accuracy.

The remainder of the paper is structured as fol-

lows: In section II, we review related works in the

field of Human Activity Recognition (HAR), human

behavior, and abnormal human behavior recognition.

Section III provides an overview of the datasets used

in this study. In section IV, we detail the proposed

framework. Section V presents the results of the

experiments conducted to evaluate the framework’s

performance. Lastly, in section VI, we discuss the

conclusions and future perspectives of our research.

2 Related Works

This section presents and analyzes the state-of-the-art

human activity, human behavior, and abnormal human

behavior recognition domains.

2.1 Human Activity Recognition (HAR)

The human activity recognition approaches can

be classified into three main categories [27]: (1)

data-driven approaches [28], (2) knowledge-driven

approaches [29], and (3) hybrid approaches [30],

[31]. Data-driven approaches strongly depend on data,

which is usually subject to different imperfections:

imprecision [32], uncertainty, ambiguity [32], incom-

pleteness, conflict, etc. Many machine learning mod-

els are used in HAR domain to cope with mentioned

problems such as Support Vector Machine (SVM)

[33], Naive Bayes (NB) and K-Nearest Neighbour

(K-NN), [34], Decision Tree (DT), K-mean [35],

Random Forest (RF) [28], Hidden Markov Models

(HMMs) [36]. Several deep learning models are also

used in HAR domain such as a Convolutional Neu-

ral Network (CNN) model in [37] or CNN-LSTM

models in [38] and [39]. In [40], an intelligent atten-

dance monitoring system is proposed which uses

spatio-temporal human action recognition, combining

skeleton gait, multi-action body silhouette, and face

recognition. It utilizes temporal weighted KNN and

multiple KNN algorithms. In [41], an overview of the

latest research and developments in the field of human

activity recognition and behavior analysis is provided.

A novel context-aware mutual learning method is

proposed in [42] to address three important issues:

overfitting, distribution deviation, and lack of con-

textual information, which are the main problems of

data-driven approaches. The proposed method uses a

semi-supervised mutual learning framework to reduce

overfitting by training the main and auxiliary net-

works together with supervised information from each

other. It also introduces a distribution-preserving loss

to prevent deviation of the distribution by minimizing

the distance between predicted and labeled class dis-

tributions. Lastly, a context-aware aggregation mod-

ule is adopted to extract richer information from a

broader range of sequences. In [43], different data-

driven HAR approaches are reviewed for processing

data from supervised, unsupervised, ensembled, deep,

reinforcement, transfer learning, and metaheuristics

approaches.

Knowledge-driven approaches do not depend on

data, but they rely on the experts’ knowledge. In these

approaches, activities are recognized using knowledge

representation and automated reasoning models [44].

These approaches have evolved from earlier attempts

in First-Order Logic (FOL) [45] towards more for-

mal logic models [46]. The main advantage of these

approaches is their ability in knowledge representa-

tion and in verifying the correctness of properties in

their axiomatizations [47]. In [48], an Event Calcu-

lus (EC)-based framework is proposed for modeling

high-level activities, consisting of more than one event

performed consecutively or simultaneously. In this

framework, sensor data are analyzed to recognize the

occurrence of events; the recognized events are then

exploited by a reasoning engine for identifying high-

level activities, such as having breakfast. In [49] and

[50], EC is exploited to recognize long-term activi-

ties. Ontologies have been broadly exploited to infer

human activities due to their powerful semantic rep-

resentation of real-world and reasoning capabilities

[51]. In [52], an ontology is used to model sensors

and activities as classes considering object-based and

location-based concepts of activities; these concepts

are exploited by reasoning approaches to recognize

human activities. Different ontologies are proposed

in the literature to represent different human activity

concepts in [53], [54].

In [55], the advantage of ontology-based

approaches in comparison to data-driven ones [55]



are presented. This study also shows that the use of

ontologies in case-based reasoning approaches allows

dealing with the overfitting problem in machine-

learning-based approaches in the case of a small set

of labeled training data [56]. In [57], Web Ontology

Language (OWL)-Description Logics (DL) is used

to recognize high-level activities by exploiting con-

text features that allow modeling certain aspects of

the physical environment. This study indicates how

expressive, sound, and decisive algorithms can be

exploited to detect inconsistencies among context

features and recognize human activities. Ontological

representations provide the means to reuse a com-

monly agreed definition of activity concepts. The

expressiveness limitations of OWL 1 have been rec-

ognized in various fields; therefore, this language was

extended while keeping the decidability of its OWL

1 DL fragment. The result of this extension is the

language OWL 2. OWL 2 introduces new functional-

ity in comparison to OWL 1; some of the additional

features are syntactic sugar that makes things easier

to read or to express, e.g., disjoint union of classes,

while others offer new expressivity, including keys,

property chains, richer data types, richer data ranges,

qualified cardinality restrictions, asymmetric property,

reflexive property, and disjoint property, and enhanced

annotation capabilities [58]. In [54], the use of OWL

2 is investigated for recognizing high-level activities.

In [59], [60], [61], [62], [63], [64], [65], [66], [67],

[68], and [29], human activities are recognized using

ontology-based approaches. In [69], the proposed

approach utilizes domain knowledge, ontologies, and

semantic reasoning for both coarse-grained and fine-

grained activity recognition. The authors analyze the

characteristics of smart homes and human activities,

present a generic system architecture, and describe

the underlying ontology-based recognition process.

The paper [70] provides a comprehensive survey of

the progress made in sensor-based activity recogni-

tion, which is gaining increasing attention in various

disciplines and applications. They highlight the

strengths and weaknesses of these approaches, cate-

gorizing them into data-driven and knowledge-driven

approaches, and providing insights into promising

directions for future research.

Hybrid approaches combine data-driven and

knowledge-based approaches to address their limita-

tions and exploit their advantages. In [71], a hybrid

approach that exploits a Markov Logic Network

(MLN) is proposed for HAR. This study is improved

in [30] via the consideration of probabilistic ontology-

based activity recognition. MLN is also used in [72]

where low-level activities are modeled using MLN

soft rules learned from contextual characteristics of

activities, such as objects, time, and location of activ-

ities while high-level activities are modeled using

MLN hard rules. In [73], a hybrid approach exploiting

ontological modeling and production rules is pro-

posed for activity recognition and uncertainty han-

dling. In [74], a probabilistic EC-based approach is

proposed to recognize human activities. This approach

allows handling the data uncertainty using a linear-

time algorithm, where data uncertainty refers to

incomplete or missing events due to a malfunction

of sensors. In [75], a hybrid HAR approach using

ontology-based reasoning combined with machine-

learning models, called Combined Ontological/Sta-

tistical Activity Recognition (COSAR), is proposed.

In [76], a hybrid approach exploiting ontology and

an iterative process is proposed for activity recog-

nition and assistance in ambient assisted living. In

[77], a hybrid approach using machine-learning mod-

els and ontological reasoning is proposed for HAR. In

this study, machine-learning models, such as Extreme

Learning Machines (ELM), are initially used to rec-

ognize low-level activities. Ontological reasoning is

exploited to recognize high-level activities. In [78],

a hybrid HAR approach using a Gaussian Mixture

Models (GMM) model, multi-class SVM model, and

ontology-based reasoning is proposed. The authors of

[79] propose a fine-grained HAR method that fuses

multimodal data from single objects and handles the

imprecise nature of non-binary sensor measurements.

The approach leverages fuzzy ontology to model fine-

grained actions and a fuzzyDL reasoning tool to

classify action completion. In [80], a hybrid HAR

approach using HMM and symbolic reasoning is pro-

posed. In [80], a framework for HAR is proposed,

which represents composite activities using a hierar-

chical structure of lower-level actions and gestures,

transformed into formal logical formulas and rules

that are resolved using automated reasoning.

Hybrid approaches provide promising benefits by

exploiting the advantages of both data-driven and

knowledge-driven approaches. These approaches can

be used in a manner considering the human context

and consequently provide better HAR performance.



2.2 Human Behavior Recognition

It is common to interchange the terms human behav-

ior and human activity in the literature [17], [18], [19].

GMM and Gaussian mixture regression models are

used in [17] to recognize human behaviors. In [18], a

CNN model is used to automatically capture the spa-

tial data features. In order to recognize human behav-

iors, a Multi-Layer-Perceptron (MLP) model is used.

In [81], a framework exploiting Dynamic Bayesian

Network (DBN) is proposed to recognize human

behaviors. In [19], human behaviors are recognized

using a fuzzy inference-based approach. In [82], dif-

ferent ontologies and a Restricted Boltzmann Machine

are exploited to recognize human behaviors. In [83],

a hybrid model combines the Planning Domain Defi-

nition Language (PDDL), a predicate-based language,

with the DBN model to recognize human behaviors.

The PDDL language models human behaviors, while

the DBN model estimates the probability distribution

over the activities for human behavior recognition.

In the mentioned studies, the terms human behavior

and human activity are not distinguishable; however,

these terms are different. Although there are various

definitions of human behavior, the latter can be gen-

erally defined as activity routines [20], [6] or frequent

activities [20].

The article [20] proposes an approach for extract-

ing human behaviors using a Markov Decision Pro-

cess (MDP) framework [84] and the Maximum Causal

Entropy (MaxCausalEnt) algorithm [85]. This method

enables the extraction of behaviors by modeling the

decision-making process of the human subject in a

probabilistic manner, using the MaxCausalEnt algo-

rithm to estimate the probability distribution of the

subject’s actions given the observed context. The arti-

cle [6] examines human behavior in various contexts,

such as specific activities (e.g., eating), days (e.g.,

Friday), times (e.g., 18:00), or combinations thereof.

The authors propose a method for mining contex-

tualized sequential patterns using a contextualized

prefix tree. These patterns are sequences of activi-

ties that frequently occur together within a specific

context. However, this approach is unable to han-

dle uncertain information. The article [86] presents a

new method for recognizing periodic human activities

using a novel tree-based data structure called a Tempo-

ral Correlated-Periodic tree (TECP-tree). To construct

the TECP-tree, the authors propose a TECP-growth

algorithm, which is based on frequent pattern mining

algorithms. To ensure that only correlated activities

are discovered, the authors use a productiveness test

to model the interdependency between the discov-

ered patterns. Additionally, the user context is adapted

to the discovered patterns by modeling the varia-

tion in the user’s activity context. In [87], a human

behavior recognition approach based on data fusion

incorporates room-level location information to trig-

ger sub-classification models pre-trained by wearable

data. is proposed. In [88], a behavior is modeled using

a mapping from a state to an action; where the former

is the set of conditions of the agent, and the latter is

the expected activity regarding those conditions.

Previous studies on human behavior recognition

have had limited consideration of different human

behaviors due to difficulties in acquiring large labeled

data in data-driven approaches or limitations in han-

dling uncertainty in knowledge-driven approaches.

However, handling uncertain knowledge and data

is crucial in recognizing complex human behaviors.

The existing hybrid approaches have also struggled

to define human behaviors based on different con-

text attributes and their uncertainty. In [24], a novel

human behavior recognition approach that considers

four context attributes of human activity is proposed:

activity, activity duration, activity location, and human

posture. The approach uses an HMM model to recog-

nize human activities based on location information

and a Boolean method to check compatibility with

human posture. The Viterbi algorithm is then used to

find the most probable activity using input sequences.

However, this study does not consider other important

human behavior contexts such as time of day, involved

objects, and frequency of activities.

2.3 Abnormal Human Behavior

Recognition

In the literature, abnormal human behavior is defined

as unexpected behaviors of a user as they are dif-

ferent from his/her usual behaviors [5]. The authors

of [89] propose a probabilistic spatiotemporal model

for recognizing human daily behaviors. Anomalies,

which are defined as significant changes from the

learned behaviors, are detected using a cross-entropy

measure. In [90], the authors suggest using a DBN

for identifying specific human behavior patterns and

then employing the Likelihood Ratio Test (LRT) to

detect abnormal behaviors by measuring cumulative

abnormality. The data-driven approaches intended to



detect abnormal human behaviors often use machine-

learning models, such as Support Vector Data Descrip-

tion (SVDD) [91], SVM [5], and Recurrent Neural

Network (RNN) [92] models. In [93], an algorithm is

proposed to detect abnormal patterns based on past

events. A rule is fired for the current day if cer-

tain events occur, and the number of matching cases

from the past 5-8 weeks is considered to define nor-

mal behavior. In [94], a rule-based approach is pro-

posed to detect abnormalities in sleeping behavior by

considering location, time, and activity duration. In

[95], an approach based on Intertransaction Associ-

ation Rule (IAR) [96] mining is proposed to detect

abnormal behaviors. This procedure allows for find-

ing abnormal human behaviors based on remarkable

differences in the number of recognized patterns,

such as a significant drop in the number of recog-

nized patterns indicating abnormal behavior. In [97],

a hybrid approach using machine-learning models and

temporal reasoning is proposed to recognize abnor-

mal human behavior. Temporal relations among daily

activities are defined using 13 Allen’s temporal rela-

tions. Frequent sequential patterns are captured using

an Apriori algorithm. Probability is then calculated

based on the occurrence of events and their temporal

relationships, and abnormal human behavior is rec-

ognized if the probability approaches 1. In [98] and

[73], MLN is used to detect and recognize abnor-

mal human behaviors. In [98], the starting and ending

times of activities are analyzed using a knowledge-

based inference engine. In [73], a causal association

rule mining algorithm (CARMA) is used with MLN

to identify abnormal behaviors without expert inter-

vention. In [99], a hybrid framework using an RF

model and a reasoning approach is proposed to recog-

nize human behavior and detect abnormal behaviors.

The RF model classifies events into activities, while

a refined method called Smart Aggregation character-

izes behaviors based on activity conditions. OWL 2

language is used in a reasoning approach to incorpo-

rate external knowledge about human behaviors and

detect abnormalities. In [27], a hybrid approach is pro-

posed to recognize abnormal human behaviors using

an HMM model trained with normal and abnormal

behavior samples. A statistical method detects abnor-

malities, while a forecasting technique predicts trends

in physiological parameters. A fuzzy fusion process

combines outputs for a final decision and alerts health-

care providers. In [100], a K-means model recognizes

human activities, and a sequential pattern mining algo-

rithm identifies the most frequent activity sequences

for each user. To recognize abnormal behaviors, an

ontology is employed to formally represent activities,

and new activity sequences are compared to recog-

nized frequent sequences using the Longest Common

Subsequence (LCS) algorithm. In [101], the proposed

approach exploits the multi-label MLN classification

method to recognize resident types based on their

activity habits and preferences in a multi-occupancy

scenario. The method includes activity preference fea-

tures such as time sequence, duration, period, and

location, and uses reasoning to determine family

roles such as mother, father, daughter, etc. The paper

[102] provides an extensive review and comparison of

abnormal human behavior recognition approaches.

Although some of the mentioned abnormal human

behavior recognition approaches allow considering

context attributes of human activity, such as sequence

and duration of human activities, they do not take

into account comprehensive human behavior context,

such as considering the location, involved objects, fre-

quency, time of the day, duration, and sequence of

activities. Moreover, some of the above-mentioned

approaches for human behavior recognition and

abnormal human behavior recognition do not allow for

handling the uncertainty of activity predictions. In this

paper, a hybrid and context-aware framework using

machine-learning models, HAT ontology, and PASP is

proposed to deal with these challenges.

3 DATASETS DESCRIPTION

In this section, the datasets used in the study are

described.

3.1 Orange4Home dataset [25]

This dataset was built using 236 sensors collecting

data about the state of doors (open/close), use of elec-

trical equipment, water consumption, etc.; these data

are of different types: binary, integer, real number, or

categorical. An instrumented home with two floors

was equipped with these sensors in different locations,

see Fig. 4. To build this dataset, seventeen daily liv-

ing activities were performed by one occupant during

four consecutive weeks during working days. Three

main context attributes of human activity are consid-

ered in this dataset, namely time, location, and activity.

Table 1 shows activities grouped by their locations

considered in this dataset. The Orange4Home dataset

was chosen for the evaluation of the proposed frame-

work due to its data sequential structure and long-term



Fig. 1: Architecture of the proposed framework.

Table 1: List of activities grouped by their locations

considered in the Orange4Home dataset.

Location Activities

Entrance Entering, Leaving

Kitchen Preparing, Cooking, Washing the dishes

Living

Room

Eating, Watching TV, Computing

Toilet Using the toilet

Staircase Going up, Going down

Bathroom Using the sink, Using the toilet, Showering

Office Computing, Watching TV

Bedroom Dressing, Reading, Napping

All

locations

Cleaning

recording, which are required for human behavior

recognition.

3.2 UCI HAR dataset [26]

In this dataset, participants in this study were fitted

with a waist-mounted smartphone (Samsung Galaxy

S II) equipped with inertial sensors (accelerometers

and gyroscopes) to collect data related to their move-

ments. A sampling rate of 50Hz is used to collect

triaxial linear acceleration and angular velocity sig-

nals. Thirty participants wear smartphones on their

waists while performing six activities: (1) Walking, (2)

Walking-upstairs, (3) Walking-downstairs, (4) Sitting,

(5) Standing, and (6) Laying.

4 Proposed Framework

In this framework, probabilistic reasoning and

machine-learning models are combined to better char-

acterize abnormal human behaviors by considering

different context attributes of human behavior and

handling their uncertainties. The framework consists

of five main modules: (1) HAR, (2) context attributes

extraction, (3) mapping to the HAT ontology, (4)

human behavior recognition, and (5) abnormal human

behavior recognition. In the first module, a set of

labels describing ongoing human activity is gener-

ated by using machine-learning models of the LSTM

type. In the second module, the obtained labels are

exploited to extract the six attributes characterizing

human behavior: frequent activities in specific loca-

tions, frequent activities with specific objects, frequent

activities in particular dayparts, frequent activities

with specific duration ranges, recurrent daily activi-

ties with specific frequencies, frequent sequences of

activities. The third module conceptualizes human

behavior context attributes using the HAT ontology.

Modules fourth and fifth focus on PASP, which is

a probabilistic version of ASP. PASP is exploited to

represent human behavior context attributes and infer

human behaviors. Abnormal human behaviors can be

detected using PASP. In the latter, besides assigning a

probability value to each rule to handle the uncertainty

of defined PASP rules, a probability value is assigned

to each predicate or fluent used in rules to handle the

uncertainty of extracted attributes of human behavior

context. An overview of the proposed framework can

be seen in Fig. 1.



4.1 HAR

The input data D can be represented as a set of pairs

formed from the data Xi and a vector of labels Yi

[103]:

D = {(Xi, Yi) ∥ 1 ≤ i ≤ N} (1)

with i ∈ {1, 2, ..., N}; N represents the total number

of data samples and Xi the ith data sample. Each data

sample is composed of d data features. A vector of

labels Yi, which is assigned to the data sample i, is

composed of three labels:

Xi = {x1
i , x

2
i , ..., x

m
i , ..., xd

i } (2)

Yi = {y1i , y
2
i , y

3
i } (3)

where y1i , y2i , and y3i represent respectively the human

activity, activity location, and involved objects labels

assigned to the ith data sample. Each label has a spe-

cific number of classes; for instance, the number of

classes for the activity label is q while it is w for the

location label. Formalizing these labels is as follows

[103]:

y1i ∈ {c11, c
1
2, ..., c

1
q}

y2i ∈ {c21, c
2
2, ..., c

2
w}

y3i ∈ {c31, c
3
2, ..., c

3
z} (4)

where q, w, and z represent respectively the

number of classes for activity, activity location, and

involved objects labels. Three models are used by the

HAR module to classify input data into the mentioned

labels: activity recognition, activity location recog-

nition, and involved object recognition models. The

HAR module classifies input data independently into

these three labels. Functions fA, fL, and fO are used

to formalize these models, such as:

ŷ1i = fA(Xi), ŷ2i = fL(Xi), ŷ3i = fO(Xi) (5)

where ŷ1i , ŷ2i , and ŷ3i indicate the predicted labels for

human activity, activity location, and involved object

in the activity, respectively. Prediction functions of fA,

fL, and fO predict the activity, location, and object,

respectively. LSTM models are used as these predic-

tion functions. LSTM [104] is a specific kind of RNN

with the capability of learning long-term dependencies

between the input data. LSTMs generally avoid the

long-term dependency problem and are ideally suited

to time-series models[105]. Therefore, LSTM can be

used to model human daily living activities because

they are time-series data. Fig. 2 depicts the archi-

tecture of the used LSTMs. Each model consists of

five layers: (1) an LSTM layer containing 100 neu-

rons, (2) a dropout layer (fraction rate of 0.5), (3)

an LSTM layer containing 50 neurons, (4) a dropout

layer (fraction rate of 0.5), and (5) a dense layer con-

taining a number of neurons same as the number of

classes. Adam is assigned to the optimization function

while categorical-crossentropy to the loss function. A

grid search (parameter sweep) is used to estimate the

hyperparameters of this model.

4.2 Context Attributes Extraction

In this paper, an algorithm is proposed to extract the

five context attributes of them; the context attribute

related to frequent activities in particular dayparts are

captured using PASP rules exploited in the human

behavior recognition module. We define a novel func-

tion g that formalizes this algorithm:

Rloc, Robj , Rdur, Rfreq, Rseq = g(ŷA, ŷL, ŷO) (6)

where the list of frequent activities in specific loca-

tions is represented by Rloc, with specific objects

Robj , within specific ranges of duration Rdur, with

specific frequencies Rfreq , the list of the frequent

sequences of activities is represented by Rseq . Seven

hash tables, namely locations, objects, minimum dura-

tion, maximum duration, minimum frequency, max-

imum frequency, and previous activity, are used in

the developed algorithm to extract the mentioned five

lists. L, O, Dmin, Dmax, Fmin, Fmax, and S respec-

tively represent locations, objects, minimum duration,

maximum duration, minimum frequency, maximum

frequency, and previous activity. Each table is ded-

icated to each context attribute of human behavior.

Activities are mapped to one list of context attributes

of human behavior using a hash table. For instance,

the extraction of minimum frequency Fmin and max-

imum frequency of an activity Fmax is described in

Algorithm 1. The other context attributes used in the

human behavior definition are extracted similarly.

4.3 Mapping to an ontology

In the HAT ontology, we provide a formal speci-

fication of shared conceptualizations to characterize

human activities, human behaviors, and their contexts

using classes, individuals, and relations [106]. Tak-

ing inspiration from ConceptNet semantic network

[107], the HAT ontology is developed. ConceptNet is



Fig. 2: Architecture of the LSTM model.

Algorithm 1 : Context attributes extraction

Input: B = {(Timei, Activityi, Locationi, Objecti)};
0 ≤ i ≤ N

Output:

Fmax : frequency ← activity
Fmin : frequency ← activity

1: LetA : the set of all activity types

2: Let THR(activity) : the minimum number of acceptable recurrence

for an activity
3: Let FcurrentDay : frequency ← activity ▷Number of

repetition of each activity in a day

4: Let FallDays : frequency[ ]← activity ▷Collection of

FcurrentDay for all days

5: Let indexdate = 0
6: for i = 1 to N do

7: if Date(Timei) = Date(Timeindexdate
) then

8: increment FcurrentDay(Activityi)
9: else ▷if the date has changed

10: for a ∈ A do ▷append the current day counter to the list of

frequencies and reset the counter

11: FallDays(a)← FallDays(a)∥FcurrentDay(a)
12: FcurrentDay(a) = 0
13: indexdate = i
14: end for

15: end if

16: end for ▷FallDays is filled with the different frequency of each activity

17: for a ∈ A do

18: if NonZeroCount(FallDays(a)) ≥ THR(a) then ▷filtering

the recurrent activities

19: Fmax ←Max(FallDays(a))
20: Fmin ←Min(FallDays(a))
21: end if

22: end for

23: return Fmax,Fmin

a knowledge graph that allows linking terms, such as

words and phrases of natural language with labeled

edges [107], e.g., the terms oven and cooking are

linked using the labeled edge is used for. Fig. 3

illustrates the overview of the HAT ontology mod-

eled using the Semantic OWL [108]. We define this

Fig. 3: Overview of the HAT ontology [103].

ontology in two upper-level concepts, namely Event

and Object. From these two concepts originate six

additional concepts: Activity, Location, Time, Physi-

cal Object, Duration, and Frequency. These concepts

are connected using six different relationships, namely

has place, has frequency, has duration, has time, is

used for, and is a. Table 2 shows the formal rela-

tionships between these concepts. Human behavior

and abnormal human behavior recognition modules

use the concepts and relationships defined in the HAT

ontology to determine rules and predicates.

4.4 Human Behavior Recognition

In the human behavior recognition module, the out-

puts of the mapping to the HAT ontology module are

exploited to characterize human context from a human

behavior point of view. In this module, PASP, a prob-

abilistic version of Answer Set Programming (ASP),



Table 2: Formalized relationships between the main

concepts in the HAT ontology [103].

Object(x) ∨ Event(x) → Thing(x).
Location(x) ∨ Activity(x) → Event(x).
Activity(a) → ∃o Object(o) ∧ isusedfor(o, a).
Activity(a) → ∃l Location(l) ∧ hasplace(a, l).
Activity(a) → ∃t Time(t) ∧ hastime(a, t).
Activity(a) → ∃d Duration(d) ∧ hasduration(a, d).
Activity(a) → ∃f Frequency(f) ∧ hasfrequency(a, f).

is used to infer human behaviors. ASP is a declarative

programming paradigm intended to solve Nondeter-

ministic Polynomial (NP) and NP-complete search

problems [109]. ASP is used for knowledge represen-

tation and reasoning [110]. Knowledge is represented

using answer-set programs while reasoning is per-

formed using answer-set solvers. In ASP, the syntax

is derived from Prolog, and the semantics are defined

based on Gelfond et al.’s stable model semantics.

[111]. In formal terms, ASP rules are as follows:

l : − b1, ..., bm, not bm+1, ..., not bm+n (m,n ≥ 0).

l, the left-hand side of the rule, is called a head,

and b1, ..., bm, not bm+1, ..., not bm+n, the right-hand

side, is called its body. not is a negation symbol,

which is used for representing the non-monotonic

default negation, or the epistemic negation [112].

Facts are rules with an empty body and a single dis-

junct in the head, while constraints are rules with an

empty head.

A collection of ASP rules makes up an ASP

program. An ASP program uses S as a set of

ground atoms; when {b1, ..., bm} ⊆ S and S ∩
{bm+1, ..., bm+n} = ∅, the body of a rule is satisfied.

Whether S satisfies a constraint depends on whether

S satisfies the body, whereas whether S satisfies a rule

depends on whether it satisfies h ∈ S. In the formal

term, an answer set is defined as follows:

Grounding is used to replace variables used in

ASP programs with ground atoms, resulting in a set of

ground atoms called S. A Reduct IS does not contain

negated atoms. The Reduct is achieved by using two

steps: (1) drop rules with not l in their body, where l

is atom l ∈ S, (2) from all other rules, drop literals that

are not l. Then, the answer set S is the minimal model

of (IS).

In general, ASP is described by the following

characteristics: [109], [113]:

• Non-monotonic reasoning: ASP allows invaliding

some inferences by adding more knowledge, i.e.,

the inferences are changed by adding more knowl-

edge [109]. For instance, the knowledge domain

contains: (i) the object book is located in the loca-

tion bedroom. (ii) the object pan is located in the

location kitchen. (iii) the user Adam uses the object

book. (iv) the activity reading is recognized when

the object book is used. (v) the activity cooking is

recognized when the object pan is used.

From the above sentences, ASP allows inferring

that Adam performs the activity reading. However,

if one another fact is added to the knowledge base,

such as ”the user Adam uses the object pan”, the

above conclusion is then invalidated.
• Postdictive reasoning: ASP allows exploiting

knowledge about the present to retrospectively

obtain additional knowledge about the past [113].

For instance, the knowledge domain contains: (i)

the location bedroom is recognized in time t1, (ii)

the location toilet is recognized in time t3, (iii)

the location bedroom is connected to toilet via the

location kitchen.

ASP allows inferring that the user was in the loca-

tion kitchen between the time t1 and the time

t3.
• Handling the frame problem: ASP allows repre-

senting the effects of each action in logic without

having to represent a variety of intuitively apparent

non-effects [114].

In this study, the additional condition is considered

to infer a new fact, prule×Pact×Ploc should be greater

than its complement, 1−(prule×Pact×Ploc). It means

that the inferred fact will be considered in the answer

set of PASP programs if and only if the probability

of the inferred fact is more than the probability of its

complement.

Several axioms are proposed to recognize human

behaviors based on activities, locations, involved

objects, activity duration, activity frequencies, and

activity sequences.

Axiom 1. behActLocObj(Act, Loc,Obj, Pact ×
Ploc × Pobj) : −act(Act, T, Pact), loc(Loc, T, Ploc),
obj(Obj, T, Pobj)

Axiom 1 describes human behaviors when a spe-

cific activity is executed by the user in a particular

location using a specific object, e.g., sitting on a chair

in the bedroom. The human behavior without loca-

tion or object can be inferred from the other Axioms

derived by the Axiom 1. The temporal relationships



among human activities are necessary to better char-

acterize human behaviors. Therefore, Allen’s interval

algebra [115] is used to model these relationships

among human activities using PASP.

Axiom 2. start(Act1, Act2, P1×P2):- act(Act1, T1s,

D1, P1), act(Act2, T2s, D2, P2), T1s = T2s.

Axiom 3. overlap(Act1, Act2, P1 × P2):- act(Act1,

T1s, D1, P1), act(Act2, T2s, D2, P2), T2s < T1s+D1,

T1s < T2s, T1s +D1 < T2s +D2

Axiom 4. during(Act1, Act2, P1 × P2):-act(Act1,

T1s, D1, P1), act(Act2, T2s, D2, P2), T1s > T2s,

T2s +D2 > T1s +D1.

Axioms 2, Axiom 3, and Axiom 4 are some of the

used axioms to represent temporal information start,

overlap, and during, respectively. Actm represents

the mth activity. Tms and Dm represent the starting

time and duration of the activity Actm.

Axiom 5.

SequentialActivity(Act1, Act2, ..., Actn, Tns, P1 ×
P2, ...,×Pn) :- act(Act1, T1s, D1, P1), act(Act2, T2s,

D2, P2), ..., act(Actn, Tns, Dn, Pn), meet(Act1,

Act2), ..., meet(Actn−1, Actn).

Axiom 5 is used to represent the sequences of

activities. This axiom defines the fact that there is an

activity sequence when each activity in the sequence

has a temporal relationship meet with its next activity

in the activity sequence. This temporal relationship is

inferred when the ending point of an activity Act1 is

equal to the starting point of another activity Act2. In

this study, n, used in this axiom, sets to 4. It is notice-

able that the activity sequence inferred using PASP is

more comprehensive in comparison with those cap-

tured using the module of context attributes extraction

since the latter is the most straightforward case of the

former one, i.e., n is equal to two.

Axiom 6. daypart(Act, T, P1) : −act(Act,Ts, D1, P1),
Ts < THe, Ts +D1 ≥ THs.

daypart(Act, T, P1) : −act(Act, Ts, D1, P1), Ts >Ts+
D1, Ts +D1 ≥ THs.

The daypart of activities is an important context to

recognize human behaviors, e.g., eating breakfast in

the early morning. In this study, ten different dayparts

are considered; therefore, ten axioms are defined to

represent these dayparts. The main structure of these

axioms is shown in Axiom 6, where daypart repre-

sents the temporal parts of a day. THs, and THe

illustrate respectively starting time and ending time

of the daypart. These thresholds are defined in the

HAT ontology. Table 3 shows the threshold bound-

aries of each specific daypart, e.g., when an activity

happens from 10:00 to 10:30, the morning is assigned

to the daypart of this activity. When an activity period

exceeds midnight, the value of the ending point of

that activity might be less than the value of its starting

point due to the time changes from 23:59 to 00:00 at

midnight. The second rule of the Axiom 6 is defined

to handle this challenge.

Table 3: Definition of ten different dayparts to analyze

human behaviors.

Temporal parts of a day

(daypart)

Threshold of

starting time

(THs)

Threshold of

ending time

(THe)

NightAfterMidnight 0 5

EarlyMorning 5 8

Morning 8 11

LateMorning 11 12

Noon 12 13

EarlyAfternoon 13 14

Afternoon 14 16

LateAfternoon 16 18

Evening 18 21

NightBeforeMidnight 21 24

Axiom 7.

loc(Loc2, Ts, D1, P1× (1−P2)× (1−P3)...×P6):-
activity(Act, Ts, D1, P1), object(Obj1, Ts, D1, P2),
not location(Loc1, Ts, D1, P3),
¬relatedLocObj(Loc1, Obj1, P4),
not relatedLocObj(Loc2, Obj1, P5),
relatedActLoc(Act1, Loc2, P6), Loc1 ! = Loc2.

Axiom 7 is used when the location infor-

mation is not complete; PASP allows inferring

the activity location from the facts related to

the current activity and involved object. Where

relatedLocObj(Loc2, Obj1, P5) represents

that there is a relationship between location

Loc2 and object Obj1 with the probability P5.

relatedActLoc(Act1, Loc2, P6) depicts that activity

Act1 and location Loc2 are related with the probabil-

ity P6. To make it simple, the temporal information

of activity, object, and location are presumably iden-

tical in Axiom 7, e.g., Ts is the same starting point



for activity, object and location. There are two nega-

tions in this Axiom: strong negation (i.e., classical

negation)(¬) and non-monotonic negation (i.e., epis-

temic negation) (not). For example, ¬F means that F

is false, while not F means that F is not known or F

cannot be shown.

Axiom 8.

location(Loc3, T3s, D3, P1 × P2 × (1− P3)× P4):-
location(Loc1, T1s, D1, P1), location(Loc2, T2s, D2,

P2),¬link(Loc1, Loc2, P3), access(Loc1, Loc2, Loc3,

P4), T1s < T2s, T1e < T3s < T2s, Loc1 ! = Loc2,
Loc1 ! = Loc3, Loc2 ! = Loc3.

Axiom 8 exploits the ability of PASP in post-

dictive reasoning; this axiom is used to infer facts

related to the user’s previous location based on his/her

current location. The predicate link(Loc1, Loc2, P3)
represents that two locations Loc1 and Loc2
are linked with the probability P3. The predi-

cate access(Loc1, Loc2, Loc3, P4) illustrates that two

locations Loc1 and Loc2 are only accessible through

the location Loc3 with the probability P4.

4.5 Abnormal Human Behavior

Recognition

We divide abnormal human behavior into six types:

(1) Unexpected activities that occur repeatedly in spe-

cific locations, (2) Unexpected activities that occur

repeatedly with specific objects, (3) Unexpected activ-

ities that occur repeatedly in particular dayparts,

(4)Unexpected activities that occur repeatedly within

particular ranges of duration, (5) Unexpected activi-

ties that occur repeatedly with particular frequencies

per day, and (6) activities that occur repeatedly in

unexpected sequences. In the abnormal human behav-

ior recognition module, PASP is exploited to recog-

nize abnormal human behaviors while handling the

uncertainty of human contexts, e.g., human activity,

location, object, etc; i.e., using PASP, probabilistic

inferences can be made about abnormal human behav-

iors. The concepts defined in the HAT ontology are

used to define these rules. In consequence, PASP rules

are weighted by their truth degree, which is achieved

by optimizing a pseudo-likelihood measure [116].

Several axioms are defined to recognize abnor-

mal human behaviors based on activities, locations,

involved objects, activity duration, activity frequen-

cies, and activity sequences.

Axiom 9. abnormalActLoc(act, loc, T, prule ×
Pact × Ploc) : − act(act, T, Pact), loc(loc, T, Ploc)

Axiom 9 is exploited to describe the first type

of abnormal human behaviors, e.g., sleeping at the

entrance. It is noticeable that 116 PASP rules are

generated using different pairs of activities and their

unexpected location based on this axiom.

Axiom 10. abnormalActObj(act, obj, T, prule ×
Pact × Pobj) : − act(act, T, Pact), obj(obj, T, Pobj)

Axiom 10 is used to represent the second type

of abnormal human behaviors, e.g., sleeping with a

coffee machine.

Axiom 11. abnormalActDaypart(act, daypart, T,
prule × Pact × Pdaypart):-act(act, T, Pact),
daypart(act, T, Pdaypart)

The third type of abnormal human behaviors is

represented using Axiom 11, e.g., walking after mid-

night.

Axiom 12. abnormalActDuration(act, dur,
T, prule×Pact×Pdur) : −act(act, T, Pact), dur(dur,
T, Pdur), dur > DTHmax

abnormalActDuration(act, dur, T, prule ×
Pact×Pdur) : −act(act, T, Pact), dur(dur, T, Pdur),
dur < DTHmin

The fourth type of abnormal human behaviors is

represented using Axiom 12, e.g., eating with a dura-

tion of three hours. To recognize this type of abnormal

behavior, two thresholds are defined for each activ-

ity, namely the threshold of minimum duration and the

threshold of maximum duration.

Axiom 13. abnormalActFreq(act, freq, T, prule ×
Pact×Pfreq) : −act(act, T, Pact), freq(freq, T, Pfreq),
freq > FTHmax

abnormalActFreq(act, freq, T, prule × Pact ×
Pfreq) : −act(act, T, Pact), freq(freq, T, Pfreq),
freq < FTHmin

Axiom 13 is used to represent the fifth type of

abnormal human behavior. To recognize this type of

abnormal behavior, two thresholds, namely the thresh-

old of minimum frequency and threshold of maximum

frequency, are defined for each activity.



Table 4: List of abnormal human behaviors with their fluents in PASP.

Description Fluents

unexpected behavior in particular locations AbnormalActLoc(act, loc, time)

unexpected behavior with particular objects AbnormalActObj(act, obj, time)

unexpected behavior in particular dayparts AbnormalActTime(act, timeday, time)

unexpected behavior with particular duration AbnormalActDur(act, dur, time)

unexpected behavior with particular frequencies AbnormalActFreq(act, freq, time)

unexpected behavior with particular activity sequences AbnormalSeqAct(act1, act2, time)

Axiom 14. abnormalActSeq(act1, act2, T, prule ×
Pseq) : −sequentialActivity(act1, act2, T, Pseq)

Axiom 14 is exploited to describe the sixth of

abnormal human behaviors. 227 PASP rules are gen-

erated using a different sequence of activities based on

this axiom.

PASP is more suitable than standard rule-based

approaches, such as Semantic Rule Markup Language

(SRML) for human behavior and abnormal human

behavior recognition due to the elimination of unused

rules during weight learning. SRML provides a frame-

work for representing rules in a way that is easily

understandable by both humans and machines, and it

can be used to define complex rule sets for behav-

ior recognition. It can also incorporate context-specific

knowledge and reasoning, which can be useful for

recognizing abnormal behavior in specific situations.

However, SRML may not be as effective for proba-

bilistic reasoning and dealing with uncertain or incom-

plete data. On the other hand, PASP provides a prob-

abilistic framework for reasoning about uncertain and

incomplete data. This can be useful for recognizing

abnormal behavior when there is a high degree of

uncertainty, or when there is incomplete information

about the situation. PASP allows handling the uncer-

tainty of predictions of human activity, activity loca-

tion, and involved objects through the weight learning

process and probabilistic reasoning; the erroneous

predictions of machine-learning models are handled

using PASP by assigning a probability value to each

predicate and fluent used in the rules besides assign-

ing a probability value to each rule. Therefore, PASP

allows for dealing with the misclassification in pre-

dictions of activities, activity locations, and involved

objects in activities.

5 EXPERIMENTS, RESULTS,

AND DISCUSSION

An evaluation of the proposed framework is presented

in this section in terms of F-measure, accuracy, pre-

cision, and recall on the Orange4Home [25] and the

UCI HAR, [26] datasets. Since the objective of the

proposed framework is human behavior and abnor-

mal human behavior recognition, the evaluations are

performed using different experiments to show the

effectiveness of the proposed framework to infer new

facts about human behavior context and to recognize

abnormal human behaviors. The framework is imple-

mented and evaluated on a computer equipped with an

Intel i7-8650U 2.11GHz CPU and 32GB RAM. The

modules HAR and capturing human behavior con-

texts are implemented in Python 3.8 using the Keras

deep learning library. The mapping to ontology mod-

ule is implemented in Protégé 5.5 and Python 3.8

using the Owlready2 library. The modules of human

behavior and abnormal human behavior recognition

are implemented using CLINGO 5.4.0.

5.1 HAR performance

Precision, recall, F-measure, and accuracy are the met-

rics used to evaluate LSTM models in HAR. With the

Orange4Home dataset, two independent LSTM mod-

els are trained independently for activity and activity

location recognition since this dataset contains activ-

ity and location labels. The obtained results given in

Table 5 show that the LSTM models allow recognition

activities and activity locations with high accuracy.

The LSTM model dedicated to activity recognition

achieves more than 95% in terms of all performance

metrics while the LSTM model dedicated to location

recognition gives more than 97%. The reason for this

is that there is more differentiation between the classes

of location in comparison to the activity classes due

to the environmental sensors used in Orange4Home

dataset.

The normalized confusion matrices for activity

and location recognition are respectively shown in Fig.



(a) Ground floor (b) First floor

Fig. 4: Layout of the instrumented home used for the construction of the Orange4Home dataset [25].

Table 5: Performance obtained with the LSTM mod-

els using the Orange4Home dataset [117].

Performance metrics Activity recognition Location recognition

Precision 96.00 97.98

Recall 95.71 97.89

F-measure 95.63 97.83

Accuracy 95.71 97.90

5 and Fig. 6 to analyze recognition based on each

class. Fig. 5 shows that the rate of activity recogni-

tion of most classes is higher than 90%. Two activities

Going-up and Going-down are recognized with high

accuracy using the LSTM model. Moreover, Fig. 6

shows that the location Staircase, which is the location

of these two activities, is correctly classified.

Fig. 5: Normalized confusion matrix for activ-

ity recognition based on the LSTM model on the

Orange4Home dataset.

Fig. 6: Normalized confusion matrix for location

recognition based on the LSTM model on the

Orange4Home dataset.

The LSTM model dedicated to HAR is compared

with MultiLayer Perceptron (MLP) and SVM mod-

els used in [118] using the Orange4Home dataset.

In [118], these models are exploited in two config-

urations, Home and Place-based. In the first config-

uration, a single classifier is used for activity clas-

sification, while for the second configuration, eight

classifiers assigned to eight places of the instrumented

home are used for activity classification, i.e., in the

Place-based configuration, each classifier is assigned

to a place of the home. Table 6 shows the results

obtained using the LSTM, MLP, and SVM models in

both configurations. The LSTM model shows superi-

ority in comparison to other models due to the fact

that MLP and SVM models do not take into account



Table 6: Comparing LSTM model performance with

other approaches used in [118] on the Orange4Home

dataset [117].

Models F-measure

Approaches used in [118]

Home SVM 89.61

Home MLP 77.85

Place-based MLP 93.05

Place-based SVM 92.08

Proposed Approach

Proposed LSTM model 95.63%

Table 7: Performances achieved utilizing the LSTM

models on the UCI HAR dataset [117].

Evaluation Metrics Activity

Recognition

Precision 94.08

Recall 94.03

F-measure 94.05

Accuracy 97.98

temporal relationships between activities, while the

LSTM model is more suitable for time series.

In the case of the UCI HAR dataset, there is

only one label, the activity label; therefore, an LSTM

model is used for activity recognition. The obtained

results, reported in Table 7, show that this model

achieves a performance greater than 94% in terms of

F-measure, accuracy, precision, and recall.

Fig. 7 shows the normalized confusion matrix for

activity recognition based on the LSTM model on the

UCI HAR dataset. One can observe that the model

obtained the best performance results in recognizing

the Laying activity. This is explained by the fact that

this activity consists of the different orientations of the

accelerometer compared with other activities, which

makes the Laying activity the most distinguishable

activity. Hence, this activity is well-classified. Fig.

7 also shows high confusion between the activities

Sitting and Standing. This can be explained by the

fact that the positioning of the sensors cannot clearly

differentiate these two activities [119].

In the case of the UCI HAR dataset, the LSTM

model is compared with approaches used in [33],

namely KNN and the SVM model. Table 8 demon-

strates the superiority of the LSTM model due to the

fact that LSTM models can model activity sequences

and temporal relationships while other models cannot.

Fig. 7: Normalized confusion matrix obtained using

the LSTM model on the UCI HAR dataset.

Table 8: Comparing the performance of the LSTM

model with the approaches used in [33] on the UCI

HAR dataset [117].

Models F-measure

Proposed Approaches in [33]

KNN 90.16

SVM 93.79

Proposed Approach

Proposed LSTM model 94.05%

5.2 Baseline models

To show the ability of the LSTM model to recognize

human activity, different baseline models, namely DT,

RF, SVM, KNN, and CNN, commonly used in HAR,

are applied to both datasets, the Orange4Home dataset

and the UCI HAR dataset. The parameters of baseline

models are estimated using a grid search technique,

see Table 9 and Table 10. The results obtained in the

case of the Orange4Home dataset and the UCI HAR

dataset are respectively shown in Table 11 and Table

12. According to these results, the LSTM model out-

performs the baseline models on every performance

metric. In the case of the Orange4Home dataset, the

LSTM model achieves 95.63% in terms of F-measure;

however, RF model yields 67.78%. The performance

obtained with the DT model and KNN model is simi-

lar in terms of all performance metrics. The RF model

provides better results than the DT, KNN, and SVM

models in terms of F-measure, accuracy, precision,

and recall. However, the CNN model outperforms the

RF model in terms of all performance metrics. As can

be seen, the LSTM model yields the best results in



comparison to the other ones. In the case of the UCI

HAR dataset, the LSTM model achieves 95.63% in

terms of F-measure while 90.93%, 87.87%, 83.90%,

74.50%, and 72.50% are respectively obtained with

CNN, SVM, RF, KNN, DT models. The LSTM model

yields the best results, followed by CNN, SVM, RF,

KNN, and DT models, in terms of F-measure, accu-

racy, and recall.

5.3 Human behavior recognition

performance

PASP has been implemented using CLINGO [121],

an ASP system for grounding and solving logic pro-

grams; CLINGO takes such a logic program and

computes answer sets representing solutions to the

given problem. Human behavior recognition is eval-

uated using two different metrics. The first one is

the number of inferred facts related to the context

attributes of human behavior from facts related to

other attributes, while the second one is the number of

inferred facts related to the location context attribute

when the facts related to this context attribute are

incomplete. Moreover, the accuracy of inferred facts

related to the location context attribute is evaluated to

show the effectiveness of the proposed framework in

dealing with incomplete information.

5.3.1 Inferred facts related to the human

behavior context

Table 13 shows the obtained performance in terms

of inferred facts related to the human behavior con-

text and its computation time. It can be observed that

the initial facts are related to the activity and location

context attributes, while the inferred facts are related

to the temporal relations, daypart, and sequences of

activities context attributes. In this evaluation, the

number of initial facts varies from 50 to 700. The

obtained results show that the human behavior recog-

nition module generates a significant number of facts

related to human behavior context, up to 2103 facts.

Most inferred facts are related to the temporal con-

text attribute, i.e., the temporal relationships between

activities, such as before, after, and equals. One can

also observe that when the number of initial facts

is between 50 and 100, the number of inferred facts

related to the temporal relations between activities

is relatively high (926 facts); however, this number

increases slightly when the number of initial facts

becomes greater than 100. This can be explained by

the fact that the user’s activities are similarly repeated;

therefore, the number of inferred facts related to the

temporal relations between activities is limited. The

number of inferred facts related to the daypart con-

text attribute depends on the number of initial facts

related to the activity context attribute. When the num-

ber of initial facts varies from 50 to 100, the number

of inferred facts related to the daypart context attribute

varies from 15 to 26; when the number of initial

facts varies from 100 to 600, the number of inferred

facts increases slightly, up to 34 facts. This is due

to the repeated activities in the specific dayparts. In

the Orange4Home dataset, there are 17 activities and

ten different dayparts; some of the activities cannot

take place in specific dayparts; therefore, the possible

inferred facts related to the daypart context attribute

are few; consequently, when the number of initial facts

related to the activity context attribute is greater than

100, the number of the inferred facts related to the

daypart context attribute is few. The increasing num-

ber of inferred activity sequence context attribute is

explained by the fact that when there is more than

100 initial facts related to the activity context attribute,

there are few inferred facts related to the temporal

context attribute, which results in the saturation of

inferred facts related to the activity sequence context

attribute. The computation time needed for reasoning

increases with the number of initial facts related to the

activity context attribute.

5.3.2 Handling incomplete information

To show the ability of the human behavior recognition

module to deal with incomplete information, another

evaluation is performed. In this evaluation, the facts

related to the location context attribute are removed

from the initial facts, and then the facts related to the

location context attribute are inferred using PASP. The

latter allows inferring them accurately due to the fact

that the activities and their related locations are rep-

resented with commonsense knowledge. An accuracy

rate of 83.43% is obtained in the case of 350 initial

facts related to the activity context attribute. Table 14

shows the performance in terms of accuracy obtained

with the human behavior recognition module for infer-

ring facts related to the location context attribute.

Since each activity is performed in one location, the

number of inferred facts related to the location con-

text attribute is the same as that of initial facts related

to the activity context attribute. The obtained results

show that the accuracy of the inferred location context



Table 9: Baseline models parameters in the case of the Orange4Home dataset.

Model Parameters Testing values Optimal values

KNN Algorithms [auto, ball tree, kd tree, brute] brute

N neighbors [1,2,3,4,5,6,7,8,9,10] 10

SVM C [ 0.1, 1,10] 10

γ [0.001, 0.01, 0.1] 0.001

Kernel [rbf, poly] rbf

CNN Optimizer [sgd, adam] adam

Activation function [relu, tahnh] relu

DT max depth [1,10,20,30,40,50,60,70,80,90,100] 30

RF n estimators [1,20,40,60,80,100,120] 120

max depth [1,20,40,60,80,100] 100

min samples split [2,3,5,7] 7

min sample leaf [1,2,4] 1

bootstrap [True, False] True

max features [auto, sqrt] auto

Table 10: Baseline models parameters in the case of the UCI HAR dataset.

Model Parameters Testing values Optimal values

KNN Algorithms [auto, ball tree, kd tree, brute] auto

N neighbors [1,2,3,4,5,6,7,8,9,10] 1

SVM C [ 0.1, 1,10] 1

γ [0.001, 0.01, 0.1] 0.01

Kernel [rbf, poly] rbf

CNN Optimizer [sgd, adam] adam

Activation function [relu, tahnh] relu

DT max depth [1,10,20,30,40,50,60,70,80,90,100] 70

RF n estimators [1,20,40,60,80,100,120] 120

max depth [1,20,40,60,80,100] 20

min samples split [2,3,5,7] 3

min sample leaf [1,2,4] 1

bootstrap [True, False] False

max features [auto, sqrt] auto

Table 11: Comparing the performance of the LSTM

model with baseline models for activity recognition on

Orange4Home dataset.

Models F-measure Accuracy Precision Recall

DT 66.34 73.56 70.54 73.56

KNN 67.08 73.64 69.60 73.64

RF 67.78 74.36 74.36 72.39

SVM 65.28 69.45 72.85 72.85

CNN 76.75 77.64 75.35 84.70

LSTM 95.63 95.71 96.00 95.71

Table 12: Performance obtained using the LSTM

model and baseline models in the case of activity

recognition using the HAR dataset.

Models F-measure Accuracy Precision Recall

DT 72.50 72.58 72.49 72.58

KNN 74.50 73.87 82.75 73.87

RF 83.90 78.18 91.65 78.18

SVM 87.87 87.89 87.97 87.87

CNN 90.93 90.94 91.27 90.94

LSTM 95.63 95.71 96.00 95.71

attribute remains similar after the first 100 facts related

to the activity context attribute. This is due to the fact

that the dataset contains repetitive activities and loca-

tions; it can be argued that the first 100 facts associated

with the activity context attribute are almost sufficient

to represent the entire dataset.

5.4 Abnormal human behavior

recognition performance

Since the Orange4Home and UCI HAR datasets

do not include the involved objects label in each

sample data, abnormalities related to the “recurrent

unexpected activities with specific objects” abnormal

human behavior is not taken into account in the eval-

uation. In the case of the Orange4Home dataset, five

abnormal human behaviors, namely AbnormalActLoc,

AbnormalActTime, AbnormalActDur, AbnormalAct-

Freq, and AbnormalSeqAct, are considered, see Table

4. In the case of the UCI HAR dataset, two

abnormal human behaviors, namely AbnormalActDur

and AbnormalSeqAct are considered. This can be

explained by the fact the UCI HAR dataset does not

include activity location label and time information.

Due to the fact that neither of the datasets used in

this study includes abnormal behaviors, these latter

are randomly injected into the datasets to simulate

their presence, allowing the framework to be evaluated



Table 13: Performance of the human behavior recognition module in terms of inferred context attributes of human

behavior [120].

Number of initial facts 50 100 200 300 400 500 600 700

Activity context attribute 25 50 100 150 200 250 300 350

Location context attribute 25 50 100 150 200 250 300 350

Number of inferred facts 661 1145 1304 1474 1628 1785 1945 2103

Temporal context attribute 545 926 932 935 936 937 938 939

Daypart context attribute 15 26 30 32 33 34 34 35

Activity sequence context attribute 46 69 72 89 92 98 107 114

Time consumption (ms) 13 22 43 53 80 128 182 236

Table 14: Performance of the human behavior recognition module when the facts related to the location context is

incomplete [120].

# Initial facts related to the activity context attribute 25 50 100 150 200 250 300 350

# Inferred facts related to the location context attribute 25 50 100 150 200 250 300 350

Accuracy of inferred ones 72.00 80.00 83.00 84.00 83.5 84.0 84.66 83.43

based on its ability to detect and classify abnormal

behaviors under random selections of time of injection

and type of human abnormal behaviors.

The results obtained in the case of the

Orange4Home dataset and the UCI HAR dataset are

respectively shown in Table 15 and Table 16. The

results show that PASP achieves greater than 93%

on average in terms of F-measure, accuracy, preci-

sion, and recall for both datasets. One can observe

that 100% precision is yielded using PASP, which

means that abnormal human behaviors are correctly

recognized. In other words, there is no false positive

in the PASP-based abnormal human behavior recog-

nition. The latter yields better results in the case of

the AbnormalActTime abnormal human behavior due

to its dependency on one activity prediction while it

depends on multiple activity predictions in the case

of the AbnormalActDur, and the AbnormalActFreq

abnormal human behaviors. Table 16 shows that a

better performance is obtained using PASP in the case

of the AbnormalSeqAct abnormal human behavior

in comparison to the case of the AbnormalActDur

abnormal human behavior. In terms of precision,

the performance obtained with PASP is also 100%

in the cases of the AbnormalSeqAct and Abnor-

malActDur abnormal human behaviors. These results

show clearly the effectiveness of the PASP-based

framework to recognize accurately abnormal human

behaviors.

Since SVM and MLN are two of the most common

models used for abnormality recognition [5], [122],

[73], these models are selected as baselines for the

evaluation of the abnormal human behavior recogni-

tion module. In the SVM model, the kernel function

is Radial Basis Function (RBF). This kernel is defined

Table 15: Performance obtained utilizing PASP

for abnormal human behavior recognition on the

Orange4Home dataset [117].

Abnormality types Precision Recall F-measure Accuracy

AbnormalSeqAct 100 88.45 93.87 95.93

AbnormalActFreq 100 94.11 96.96 99.00

AbnormalActDur 100 91.89 95.77 98.97

AbnormalActTime 100 98.10 99.04 99.82

AbnormalActLoc 100 94.21 97.02 98.26

Average 100 93.35 96.53 98.39

Table 16: Performance obtained utilizing PASP for

abnormal human behavior recognition on the UCI

HAR dataset [117].

Abnormality types Precision Recall F-measure Accuracy

AbnormalSeqAct 100 100 100 100

AbnormalActDur 100 96.15 98.04 99.87

Average 100 98.07 99.02 99.93

on two samples v and v′ as follows:

K(v, v′) = exp(−
∥v − v′∥2

2σ
) (7)

The two samples v and v′ represent the feature vec-

tors in input spaces. ∥v − v′∥2 is seen as Euclidean

distance between the two feature vectors [123]. Two

main parameters of the SVM model, γ and C, set

respectively one and ten, which are obtained using a

greed search technique. The fundamental of MLN is

weighted FOL rules that allow for probabilistic rea-

soning. Since there is a need to exploit both hard con-

straints and soft ones to recognize abnormal human

behaviors, MLN is suitable to contextualize the notion

of hard and soft constraints for abnormal human

behavior recognition. Hard constraints are rules with



Table 17: Performance obtained using SVM and MLN on the Orange4Home dataset.

SVM MLN

Abnormality types ActLoc ActTime ActDur ActFreq SeqAct ActLoc ActTime ActDur ActFreq SeqAct

precision 95.22 98.66 81.47 66.45 76.61 89.40 94.98 72.00 81.25 87.76

recall 95.11 98.66 79.59 81.52 72.85 94.63 99.53 97.29 76.47 70.37

F-measure 95.14 98.66 74.53 73.22 72.71 91.94 97.20 82.75 78.78 78.11

accuracy 95.11 98.66 79.59 81.52 72.85 95.03 98.28 94.86 93.06 86.12

Table 18: Performances obtained using SVM and MLN on the UCI HAR dataset.

SVM MLN

Abnormality types ActDur SeqAct ActDur SeqAct

precision 80.98 62.04 96.15 90.44

recall 84.89 77.31 96.15 94.53

F-measure 84.17 70.24 96.15 92.44

accuracy 84.17 70.24 99.15 94.69

certainty, whereas soft constraints are rules without

certainty. The learning task of MLN consists of two

subtasks: (1) structure learning and (2) weight learn-

ing. The structure of MLN can be learned using rules

written by experts while weight learning is an opti-

mization problem. In the MLN, an expert defines the

FOL rules about abnormal human behaviors based on

the context attributes characterizing these behaviors,

whereas weights are learned by optimizing iteratively

a pseudo-likelihood measure. In this experiment, the

total number of defined FOL rules to recognize abnor-

mal human behaviors is 433.

Table 17 and Table 18 show the results obtained

using MLN and SVM in the case of Orange4Home

and UCI HAR datasets. In the case of the

Orange4Home dataset, the SVM model achieves

83.68% in terms of precision while the MLN and

PASP yield 85.08 and 100%, respectively, see Table

17 and Table 15. In the case of the UCI HAR dataset,

the SVM model gives 71.51% in terms of average

precision while MLN achieves 93.29%. These results

show the superiority of the MLN-based framework

in comparison to the SVM-based one due to the fact

that the latter is limited in considering the context

attributes of human behavior, whereas MLN allows

handling the uncertainty of rules by exploiting proba-

bilistic rules. The superiority of PASP in comparison

to MLN can be explained by the fact that MLN allows

handling the uncertainty of rules while the uncertainty

of both rules and predictions is handled using PASP.

In other words, MLN does not allow considering the

uncertainty of activity and activity location predictions

whereas PASP allows handling them by assigning a

probability value to each rule and a probability value

to each predicate and fluent used in the rules.

6 Conclusion and Future Works

In this paper, a hybrid and context-aware framework

is proposed for human behavior and abnormal human

behavior recognition in AAL systems. LSTM models

are firstly used to classify input data, i.e., sensor data,

into activity, activity location, and involved object

labels. Different context attributes of human behav-

ior are extracted from the recognized labels. These

attributes are conceptualized using the HAT ontol-

ogy. PASP, exploiting a set of probabilistic rules, is

then used to recognize human behaviors by inferring

new facts about human context while handling uncer-

tain rules and captured context attributes. PASP is

also exploited to recognize abnormal human behaviors

using probabilistic rules. The proposed framework is

first evaluated in terms of activity recognition. The

obtained results show that the LSTM model yields

higher performance in comparison to the DT, KNN,

RF, SVM, and CNN models in terms of all evalua-

tion metrics. This can be explained by the fact that the

LSTM model is well-suited to model time series. This

framework is then evaluated in terms of inferred facts

related to the human behavior context and in the case

of handling incomplete information. The proposed

framework is finally evaluated and compared with the

MLN and SVM models in terms of abnormal human

behavior recognition. In comparison with MLN and

SVM models, the proposed framework achieves supe-

rior results due to the fact that handling the uncertainty



of activity and location predictions impacts abnormal

human behavior recognition performance.
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