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Application of a Novel Grey Model GM (1, 1, exp×sin, exp×cos) in China’s GDP Per Capita 
Prediction   

  
Maolin Cheng ▪ Bin Liu 

 
Abstract: In the grey prediction, the GM (1, 1) model is an important type, but it sometimes shows big 
prediction errors and thus has limitations in applications. To improve the prediction precision of GM (1, 1) 
model, the paper improves from the following two aspects: (1) to improve the data’s adaptability to the 
model, the paper transforms the accumulated generating sequence of original time sequence to make the 
transformed sequence meet the laws presented by the model; (2) because the traditional GM (1, 1) 
model’s residual sequence generally shows a sine-cosine fluctuating state with a weak tendency, the 
paper extends the grey action of traditional GM (1, 1) model. The extended grey model is called the GM 
(1, 1, exp×sin, exp×cos) model. The paper gives the parameter optimization and time response equation 
of GM (1, 1, exp×sin, exp×cos) model. The traditional optimization method has its limitations, generally 
requiring the information such as the gradient value of objective function, and shows a slow convergence 
rate and poor precision. The paper gives a modern intelligent optimization algorithm, i.e. the particle 
swarm optimization algorithm (PSO), which has strong robustness and a fast convergence rate and can be 
realized easily and used flexibly. To improve the algorithm’s convergence rate and precision, the paper 
improves the traditional PSO properly. According to the model and method proposed, the paper builds a 
GM (1, 1, exp×sin, exp×cos) model for China’s GDP per capita. Results show that the model has high 
precision.     
Keywords: GM (1, 1, exp×sin, exp×cos) model, parameter estimation, time response equation, 
prediction precision 
Mathematics Subject Classification 93B40 · 60G25 
 
1. Introduction 
 
The grey prediction is an important method of statistical prediction. Currently, the grey prediction has 
been used widely in the fields like industry, agriculture, commerce and economy (Cao et al. 2020; Liu et 
al. 2019), and other fields, such as environment, energy, society and military (Cai et al. 2021; Hu 2020; 
Huang et al. 2021; Qi and Cheng 2021; Xu and Dang 2018). The grey prediction models used widely 
include the GM (1, 1) model (Tong 2021; Wang and Zhao 2020), the GM (1, 1) power model (Cheng and 
liu 2021), the GM (1, N) model (Xie and Wu 2021) and the GM (N, 1) model (Xu and Dang 2015). In the 
models, the GM (1, 1) model is an important type, but it has big prediction errors sometimes and thus is 
limited in the applications. To improve the prediction precision of GM (1, 1) model, many scholars have 
made related studies. Wang and Lu (2020) constructed the background value as a variable using the 
Lagrange’s mean value theorem. Meanwhile, they set the initial value as a variable and determined the 
minimum value of average relative error using the time response time to build a grey GM (1, 1) model. 
The example proved that the improved model was superior to other models. Chen and Zhu (2021)  
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constructed the background value using a continuous monotonous piecewise rational linear interpolation 
spline and built a novel GM (1, 1) model, offering a more rational formula for the calculation of 
background value. The new GM (1, 1) model had higher effectiveness and accuracy compared with the 
classic GM (1, 1) model in terms of data processing. Mi et al. (2021), considering China’s cross-border 
e-commerce as the typical research object, introduced the new information priority principle to the grey 
model, and proposed an improved grey GM (1, 1) model to predict the future development trend based on 
exploring the overall dynamic variation laws. Wang and Sun (2021) proposed a new method based on the 
X12-GM (1,1) combined model. The method first got the long-term trend factor, periodic variation factor 
and seasonal factor of data using the X12 model, and then fitted and predicted the long-term trend factor 
and periodic variation factor using the GM (1, 1) model, and finally multiplied the fitting value and 
prediction value of GM (1, 1) by the seasonal factor, respectively, to get the fitting value and prediction 
value of original sequence. According to the volatility and instability of modern finance, Rathnayaka and 
Seneviratna (2020) proposed an unbiased GM (1, 1) mixed method based on the Taylor series 
approximation to handle the noise and uncertain data in multidisciplinary systems. According to the 
exponential growth trend and seasonal fluctuating pattern of China’s wind power generation, Qian and 
Wang (2020) proposed a new seasonal prediction method integrating the HP filter into the grey model 
GM (1, 1) on the basis that the grey GM (1, 1) model could capture the exponential growth trend and the 
Hodrick-Prescott filter could handle the seasonal factor. To improve the fitting and prediction result of 
unequal-interval GM (1, 1) model, on the basis of analyzing the model’s main factors causing errors, 
Tang and Lu (2020) proposed an unequal-interval GM (1, 1) model based on grey derivative and 
accumulated generating method improvements. Finally, they verified the effectiveness and practicability 
of the improved unequal-interval GM (1, 1) model. The scholars mainly extended and optimized the grey 
model in terms of background value (Jiang and Zhang 2015; Xu et al. 2015), grey derivative (Li and Wei 
2009; Wang and Li 2019), parameter optimization (Ding 2018; Xu et al.2016) and extrapolation (Ding 
2019; Zeng and Li 2016), and further promoted modeling precision and application fields. To further 
improve the prediction precision of GM (1, 1) model and give data better adaptability to the model, the 
paper first transforms the accumulated generating sequence of original time sequence, and then, 
considering the traditional GM (1, 1) model’s residual sequence is generally in a sine-cosine fluctuating 
state with the weak-tendency variation, extends the traditional GM (1, 1) model’s grey action. The newly 
extended grey model is called the GM (1, 1, exp×sin, exp×cos) model. To avoid big average simulation 

relative error 1( )MAPE or big average prediction relative error 2( )MAPE , the paper makes the 

objective function be the minimum of 1 2max( , )MAPE MAPE . Because the optimization problem has 

many parameters and the traditional optimization has limitations, the paper gives a modern intelligent 
optimization algorithm, i.e. the particle swarm optimization (PSO). The PSO has strong robustness and a 
fast rate of convergence and can be realized easily and used flexibly. To improve the convergence rate 
and precision, the paper improves the traditional PSO properly. We get the model’s parameter using the 
improved PSO and then make a simulation and prediction using the time response equation derived. With 
the model and method proposed, the paper builds a GM (1, 1, exp×sin, exp×cos) model for China’s GDP 
per capita. Results show that the model has high precision.  
 
2. The Method to Build the Traditional Grey GM (1, 1) Model 
 

Definition 1: Suppose the original time sequence is { }(0) (0) (0) (0)(1), (2), , ( )X x x x n=  and its first-order 
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accumulated generating sequence ( 1 AGO− ) is { }(1) (1) (1) (1)(1), (2), , ( )X x x x n=   in which 

(1) (0)

1
( ) ( ), 1,2, ,

k

i
x k x i k n

=

= =∑  . 

Definition 2: Call { }(1) (1) (1) (1)(1), (2), , ( )Z z z z n=   the background value sequence of (1) ( )x k  in which 

( )(1) (1) (1)1( ) ( ) ( 1) , 2,3, ,
2

z k x k x k k n= + − = 
.                                

Definition 3: Call (0) (1)( ) ( )x k az k b+ =  the grey differential equation of grey GM (1, 1) model.  

Definition 4: Call 
(1)

(1)( ) ( )dx t ax t b
dt

+ = the whitening equation of grey GM (1, 1) model.  

Theorem 1 (Liu 2021): The parameter estimate of grey GM (1, 1) model is 

1( )
a

B B B Y
b

−  ′ ′= 
 

                                                      

where 
(0) (1)

(0) (1)

(0) (1)

(2) (2) 1
(3) (3) 1

,

( ) ( ) 1

x z
x z

Y B

x n z n

   −
   −  = =
  
    −   

  

.

 

Theorem 2 (Liu 2021): The time response function of grey GM (1, 1) model is 

        (1) (1) ( 1)ˆ ( ) ( (1) ) a tb bx t x e
a a

− −= − + .                                       

According to the time response function sequence, we can get the simulation value and prediction value 

of original sequence from (0) (1) (1)ˆ ˆ ˆ( ) ( ) ( 1)x k x k x k= − − . 

 
3. The Form of Extended Grey Model GM (1, 1, exp×sin, exp×cos) 
 
To make data have better adaptability to the model, the paper first improves the accumulated generating 

sequence of (0) ( )x t , i.e. making a new transformation, to make the new transformed sequence meet the 

laws presented by the model. Then, have the following definition. 

Definition 5: Suppose the original time sequence is { }(0) (0) (0) (0)(1), (2), , ( )x x x x n=   and the new 

accumulated generating sequence is { }( ) ( ) ( ) ( )(1), (2), , ( )r r r rx x x x n=   in which 
(0)

( )

1

( )( )  ,  
k

r
i

i

x ix k
v g r=

=
+ ⋅∑

 0, 0,0 1, 1,2, ,v g r k n≥ ≥ < ≤ =  . 
Then, considering the traditional GM (1, 1) model’s residual sequence generally shows a sine-cosine 
fluctuating state with the weak-tendency variation, we extend the traditional grey model’s structure to 
meet the requirements of this type of modeling. Then, have the following definitions. 

Definition 6: Suppose the original time sequence is { }(0) (0) (0) (0)(1), (2), , ( )x x x x n=  , the new 
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accumulated generating sequence is { }( ) ( ) ( ) ( )(1), (2), , ( )r r r rx x x x n=   and the new background value is 

( ) ( )

-1
( )= ( )

kr r

k
z k x t dt∫ . Call  

( ) ( )
1 0

1
( ) ( ) ( sin( ) cos( ))i

p
b kr r

i i i i
i

x k a z k c e c s k d s k
=

+ = + +∑   

the grey differential equation of extended grey model GM (1, 1, exp×sin, exp×cos).  
Definition 7: Call  

( )
( )

0
1

( ) ( ) ( sin( ) cos( ))i

r p
d tr

i i i i
i

dx t ax t c e c s t d s t
dt =

+ = + +∑   

the whitening equation of extended grey model GM (1, 1, exp×sin, exp×cos). 

Especially, when 0, 0i ic d= = , the equation above is the whitening equation of traditional grey GM (1, 

1) model.  
 
4. The Time Response Equation of Extended Grey Model GM (1, 1, exp×sin, exp×cos) 
 

Theorem 3: The sequence { }( ) ( ) ( ) ( )(1), (2), , ( )r r r rx x x x n=  , and then the whitening equation of 

extended grey model GM (1, 1, exp×sin, exp×cos) is 

( )
( )

0
1

( ) ( ) ( sin( ) cos( ))i

r p
b tr

i i i i
i

dx t ax t c e c s t d s t
dt =

+ = + +∑ , 

and then its time response equation is  
( 1)

( ) ( 1) ( ) 0

( ) ( )

2 2 2 2
1 1

( )

2

( 1)( ) (1)

[( )sin( ) cos( )] [( )sin( ) cos( )]
( ) ( )

[( ) cos( ) sin( )]
( )

i i

i

a t
r a t r

a b t a ba ap p
i i i i i i i i i i

i ii i i i

a b ta
i i i i i

i

c ex t e x
a

c e e a b s t s s t c e e a b s s s
a b s a b s

d e e a b s t s s t
a b

−
− −

+ +− −

= =

+−

 −
= +


+ − + −

+ −
+ + + +

+ +
+

+

∑ ∑
( )

2 2 2
1 1

[( ) cos( ) sin( )]
( )

ia bap p
i i i i i

i ii i i

d e e a b s s s
s a b s

+−

= =

+ +
− + + + 

∑ ∑

. 

Proof： 

( )
( )

0
1

( ) ( ) ( sin( ) cos( ))i

r p
b tr

i i i i
i

dx t ax t c e c s t d s t
dt =

+ = + +∑  

            
( )

( )
0

1

( ) ( ) ( sin( ) cos( ))i

r p
b tr

i i i i
i

dx t ax t c e c s t d s t
dt =

= − + + +∑   

Its solution is   
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1 1( ) ( )
01

1

( ) ( )( 1) ( ) ( 1)
01 1 1

1 1

( 1)
( 1) ( ) 0

( ) [ (1) [ ( sin( ) cos( ))] ]

[ (1) sin( ) cos( ) ]

((1)

t

i

i i

ptad ad br r
i i i i

i
p pt t tb a b aa t r a a a

i i i i
i i

a t
a t r

x t e x e c e c s d s d

e x c e d e c e s d e d e s d

c ee x

θ
δ δ θ

θ θθ

θ θ θ

θ θ θ θ θ

−

=

+ +− − − − −

= =

−
− −

∫ ∫= + + +

= + + +

−
= +

∑∫

∑ ∑∫ ∫ ∫

( ) ( )

2 2 2 2
1 1

( ) ( )

2 2
1

1)

[( )sin( ) cos( )] [( )sin( ) cos( )]
( ) ( )

[( ) cos( ) sin( )] [( ) cos(
( )

i i

i i

a b t a ba ap p
i i i i i i i i i i

i ii i i i

a b t a ba ap
i i i i i i i i

i i i

a

c e e a b s t s s t c e e a b s s s
a b s a b s

d e e a b s t s s t d e e a b s
a b s

+ +− −

= =

+ +− −

=





+ − + −
+ −

+ + + +

+ + +
+ −

+ +

∑ ∑

∑ 2 2
1

) sin( )]
( )

p
i i

i i i

s s
a b s=

+
+ + 

∑

.  

  
5. The Linear Parameter Estimation Method of Extended Grey Model GM (1, 1, exp×sin, exp×cos) 
 
Theorem 4: The grey differential equation of extended grey model GM (1, 1, exp×sin, exp×cos) is 

              ( ) ( )
1 0

1
( ) ( ) ( sin( ) cos( ))i

p
b kr r

i i i i
i

x k a z k c e c s k d s k
=

+ = + +∑ . 

For the given , , , , ,i iv g r b sα , have the parameter estimate 

1

0

1
1

1
ˆ ( ) ,

p

p

a
c
c

B d X X X Y

c
d

−

 
 
 
 
 

′ ′= = 
 
 
 
 
  



 

where 

          

(0) (0)1 2
(1) (2) (1) (2)
1 1

1 1

(0) (0)2 3
(1) (2) (1) (2)
1 1

1 1

(0) (0)1

1

( ) ( )(1 ) 1 (2) (2) (2) (2)

( ) ( )(1 ) 1 (3) (2) (3) (3)

( ) ( )(1 )

p pi i
i i

p pi i
i i

n

i
i

x i x i z z z z
v g r v g r
x i x i z z z z

X v g r v g r

x i x i
v g r

α α

α α

α α

= =

= =

−

=

− − −
+ ⋅ + ⋅

− − −
= + ⋅ + ⋅

− − −
+ ⋅

∑ ∑

∑ ∑

∑





      

(1) (2) (1) (2)
1 1

1
1 ( ) (2) ( ) ( )

n

p pi
i

z n z z n z n
v g r=

 
 
 
 
 
 
 
 
 
 + ⋅ 

∑ 

 

(0)

2

(0)

3

(0)

(2)

(3)

( )
n

x
v g r
x

Y v g r

x n
v g r

 
 + ⋅ 
 
 = + ⋅ 
 ⋅⋅⋅
 
 
 + ⋅ 

  

( 1)
(1)

2 2 2 2

( sin( ) cos( )) ( sin( ( 1)) cos( ( 1)))( )
i ib k b k

i i i i i i i i
i

i i i i

e b s k s s k e b s k s s kz k
b s b s

−− − − −
= −

+ +
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( 1)
(2)

2 2 2 2

( cos( ) sin( )) ( cos( ( 1)) sin( ( 1)))( )
i ib k b k

i i i i i i i i
i

i i i i

e b s k s s k e b s k s s kz k
b s b s

−+ − + −
= −

+ +
. 

Proof: The whitening equation of extended grey model GM (1, 1, exp×sin, exp×cos) is 

( )
( )

0
1

( ) ( ) ( sin( ) cos( ))i

r p
b tr

i i i i
i

dx t ax t c e c s t d s t
dt =

+ = + +∑  

            
( )

( )
0

1

( ) ( ) ( sin( ) cos( ))i

r p
b tr

i i i i
i

dx t ax t c e c s t d s t
dt =

= − + + +∑  

i.e.     
(r)

( )
01 1 1 1

1 1

( ) ( ) sin( ) cos( )i i

p pk k k kb t b tr
i i i ik k k k

i i

dx t dt a x t dt c c e s t dt d e s t dt
dt− − − −

= =

= − + + +∑ ∑∫ ∫ ∫ ∫ . 

Let the background value ( ) ( )

1
( ) ( )

kr r

k
z k x t dt

−
= ∫ , 

(1)

1
( 1)

2 2 2 2

( ) sin( )

( sin( ) cos( )) ( sin( ( 1)) cos( ( 1)))

i

i i

k b t
i ik

b k b k
i i i i i i i i

i i i i

z k e s t dt

e b s k s s k e b s k s s k
b s b s

−

−

=

− − − −
= −

+ +

∫
 

(2)

1
( 1)

2 2 2 2

( ) cos( )

( cos( ) sin( )) ( cos( ( 1)) sin( ( 1)))

i

i i

k b t
i ik

b k b k
i i i i i i i i

i i i i

z k e s t dt

e b s k s s k e b s k s s k
b s b s

−

−

=

+ − + −
= −

+ +

∫
, 

and then 

   (r) ( ) ( ) (1) (1) (1) (1)
0 1 1 1 2( ) ( 1) ( ) ( ) ( ) ( ) ( )r r

p p p px k x k az k c c z k d z k c z k d z k− − = − + + + + + +  

(0)
( ) (1) (1) (1) (1)

0 1 1 1 2
( ) ( ) ( ) ( ) ( ) ( )r

p p p pk

x k az k c c z k d z k c z k d z k
v g r

= − + + + + + +
+ ⋅

  .                

Because 
(0) (0)-1

( ) ( ) ( )

1 1

( ) ( )( ) ( 1) (1 ) ( )= (1 )
g g

k k
r r r

k k k ki i
i i

x i x iz k x k x k
v r v r

α α α α
= =

≈ − + − + −
+ ⋅ + ⋅∑ ∑ , get Theorem 

4 using the least square method.  

Estimate the parameter, and then calculate the simulation value and prediction value of (0)x  with 

the following Theorem 5. 

Theorem 5: (0)x ’s simulation value is (0) ( ) ( )ˆ ˆ ˆ( ) ( ( ) ( 1))( ), ( 2,3, , )r r kx k x k x k v gr k m= − − + = ⋅⋅⋅  

and prediction value is (0) ( ) ( )ˆ ˆ ˆ( ) ( ( ) ( 1))( ), ( 1,3, , )r r kx k x k x k v gr k m n= − − + = + ⋅⋅⋅ . 

Proof: Record the original time sequence as { }(0) (0) (0) (0)(1), (2), , ( )x x x x n=   and the new accumulated 

generating sequence is { }( ) ( ) ( ) ( )(1), (2), , ( )r r r rx x x x n=  . Because 
(0)

( )

1

( )( ) ,   1,2, ,
k

r
i

i

x ix k k n
v g r=

= =
+ ⋅∑  , 

then get  
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(0) (0)-1
( ) ( )

1 1

(0)

( ) ( )ˆ ˆ( ) ( 1)=

( )=

k k
r r

i i
i i

k

x i x ix k x k
v g r v g r

x k
v g r

= =

− − −
+ ⋅ + ⋅

+ ⋅

∑ ∑
, 

and then (0) ( ) ( )ˆ ˆ ˆ( ) ( ( ) ( 1))( )r r kx k x k x k v gr= − − + . 

 
6. The Nonlinear Parameter Optimization Method of Extended Grey Model GM (1, 1, exp×sin, 
exp×cos) 
 
6.1 The Nonlinear Parameter Optimization Problem 

In fact, the values of , , , , ,i iv g r b sα  in Theorem 4 are required, which can be determined using an 

optimization method. Suppose there are observation data of n  years in which the data from year 1 to 
year m  are used for modeling and the data from year 1m +  to year n  are used for prediction. For 

(0)x , the simulation value and prediction value are recorded as (0)ˆ ( ), ( 2,3, , )x k k m= ⋅⋅⋅  and 

(0)ˆ ( ) ( 1,3, , )x k k m n= + ⋅⋅⋅， respectively; the average simulation relative is 

(0) (0)

1 (0)
2

ˆ1 ( ) ( ) 100%
1 ( )

m

k

x k x kMAPE
m x k=

−
= ×

− ∑ ; the average prediction relative error is 

(0) (0)

2 (0)
1

ˆ1 ( ) ( ) 100%
( )

n

k m

x k x kMAPE
n m x k= +

−
= ×

− ∑ . To avoid big simulation or prediction error, we 

define the objective function as the minimum of 1 2max( , )MAPE MAPE . Then, have the following 

optimization problem: 

1 2, , , , ,
min max( , )

i iv g r b s
MAPE MAPE MAPE

α
=   

(0) (0)

1 (0)
2

(0) (0)

2 (0)
1

(0) (r) ( )

( 1)
( ) ( 1) ( ) 0

( )

ˆ1 ( ) ( ) 100%
1 ( )

ˆ1 ( ) ( ) 100%
( )

ˆ ˆ ˆ( ) ( ( ) ( 1))( )

( 1)ˆ ( ) (1)
. .

[( )sin( )i

m

k

n

k m

r t

a t
r a t r

a b ta
i i i

x k x kMAPE
m x k

x k x kMAPE
n m x k

x t x t x t v gr

c ex t e x
as t

c e e a b s t

=

= +

−
− −

+−

−
= ×

−

−
= ×

−

= − − +

 −
= +


+

+

∑

∑

( )

2 2 2 2
1 1

( ) ( )

2 2 2 2
1 1

cos( )] [( )sin( ) cos( )]
( ) ( )

[( ) cos( ) sin( )] [( ) cos( ) sin( )]
( ) ( )

( ,

i

i i

a bap p
i i i i i i i

i ii i i i

a b t a ba ap p
i i i i i i i i i i

i ii i i i

s s t c e e a b s s s
a b s a b s

d e e a b s t s s t d e e a b s s s
a b s a b s

a c

+−

= =

+ +− −

= =

− + −
−

+ + + +

+ + + +
+ − + + + + 

∑ ∑

∑ ∑
1

0 1 1, , , , , ) ( )
0 1,  v>0, g>0, 0 r 1

T
p p

i

c d c d X X X Y
b

−



















 ′ ′=


≤ ≤ < ≤



 . 
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It is essentially a nonlinear optimization problem which is solved using the PSO in the paper. 

The fitness function is 1 2( , , , , , ) max( , ) mini iG v g r b s MAPE MAPEα = → . 

6.2 The Basic Idea of the PSO 
Initialize a population randomly in the solution space. The population contains several particles of which the 
positions in the solution space represent the solutions of problems to be solved. A particle determines its flight 

route according to the optimal position ip of itself currently and the optimal position gp of the whole 

population currently in the solution space, approaching the optimal region by steps.   

Suppose 1 2( , , , , , )
i i i id iDx x x x x= ⋅⋅⋅ ⋅ ⋅ ⋅  is the D-dimension position vector of the i th particle, and then 

calculate the fitness value of ix  currently with the fitness function set in advance to measure the 

advantage of particle position; 1 2( , , , , , )i i i id iDv v v v v= ⋅⋅⋅ ⋅ ⋅ ⋅  is the flight speed of particle i , i.e. the 

moving distance of particle; 1 2( , , , , , )i i i id iDp p p p p= ⋅⋅⋅ ⋅ ⋅ ⋅  is the optimal position of particle i  

searched by now; 1 2( , , , , , )g g g gd gDp p p p p= ⋅⋅⋅ ⋅ ⋅ ⋅  is the optimal position of the whole particle swarm 

searched by now.  
In each iteration, each particle updates speed and position according to the following formulas: 

     1
1 1 2 2( ) ( )t t t t

i i i i g iv wv c r p x c r p x+ = + − + −   

       1 1t t t
i i ix x v+ += +   

where 1, 2, ,i m= ⋅⋅⋅ , 1, 2, ,d D= ⋅⋅⋅ , k  is the number of iteration and 1r  & 2r  are the random 

numbers in the range of [0，1]. 
6.3 Improved PSO 
The basic PSO generally has a slow convergence rate and poor precision. The paper proposes an 
improved PSO combining the adaptive variable weight with the adaptive acceleration constant for the 
optimization of parameter.  
(1) Adaptive Variable Weight 
The adaptive variable weight adopts a big w  in the early stage of population evolution to realize the big 
moving speed of particle and a strong global search ability. In the late stage of evolution, it adopts a small 
w  to reduce the moving speed of particle and emphasize the local search, thus improving the precision 
of optimal particle. 

Therefore, the paper uses an inertia weight nonlinear decline strategy, i.e. 

               
max

4(1 0.99( atan( )))tw
T

α

π
= −  

where w  is the adaptive variable weight, t  is the number of iteration, maxT  is the total number of 

iteration and 0α ≥ . 
(2) Adaptive Acceleration Constant 
The paper uses the dynamic acceleration constant as a new parameter adaptation strategy of PSO. The 
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improvement aims to encourage the particle to move in the whole search space in the early stage of 
optimization and improve the rate of convergence approaching the optimal solution in the late stage of 
optimization, i.e.  

1 max max mi
ax

n
m

4(1 0.99( atan( ))) ]( )[1c t
T

c c c α

π
−= − − −

n
ma

2 min max mi
x

4[1 (1 0.99( atan( ))) ]( ) tc c c
T

c α

π
+ −= −−  

where c1 and c2 are adaptive acceleration constants, maxc  and minc are constant parameters set initially, 

t  is the number of iteration, maxT  is the total number of iteration and 0α ≥ . 

6.4  The Parameter Optimization Steps Based on Improved PSO 
Step 1: Initialize the particle swarm and set parameters. To improve the algorithm’s convergence rate and 
precision, may give the ceiling and floor of particle position of initial population in a small range and the 
proper initial value.  
Step 2：Calculate the fitness of particle according to current particle parameter.  
Step 3: Update the historical optimal fitness of particle currently and corresponding position and the 
optimal fitness of population and corresponding particle position.  
Step 4: Calculate the speed and position of particle according to adaptive variable weight w  and 

adaptive acceleration constants 1c  and 2c . 

Step 5: Judge whether the algorithm has reached the number or precision of iteration. If yeas, output the 
optimal particle of population, end; if no, turn to Step 2.  
 
7. Grey Modeling for China’s GDP Per Capita 
 
China’s GDP has been growing rapidly in the recent 20 years. In 2021, under the impact of covid, 
China’s economy still grew by 8.1% with the gross reaching ￥ 114 trillion and the yearly increasing 
amount of ￥0.13 million amounting to the total GDP in year 2003, which was a great achievement. 
With the rapid growth of China’s GDP gross, the GDP per capita also reached $ 12, 000 which as only 
$150 back compared with the GDP per capita of high-income country. The future trend of China’s GDP 
per capita is cared about by everyone, so predicting China’s GDP per capita accurately has great 
significance. The paper builds a grey prediction model for China’s GDP per capita using the extended 

grey model GM (1, 1, exp×sin,exp×cos) proposed. China’s GDP per capita is written as (0) ( )x t  in the 

unit of RMB 1 Yuan. The data came from the China Statistical Yearbook. See table 1 for the specific data. 
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Table 1 : Calculation Results of Grey Modeling for China’s GDP Per Capita 

 
First, build a traditional GM (1, 1) model, i.e. the following model 

           
(1)

(1)( ) ( )dx t ax t b
dt

+ =  

Then, get the parameter estimate through calculation: 

( , ) (-0.105373795, 12624.9646)a b =  . 

In this case, the time response equation is 

Year No. 
Actual Value 

(0) ( )x t  

Traditional GM (1, 1) 
Model 

GM (1, 1, exp×sin, exp×cos) Model 
Proposed 

Simulation 
Value 

Relative 
Error 

% 
Simulation Value 

Relative Error 
% 

2002 1 9506 - - - - 
2003 2 10666 14370.49 34.73 10692.54 0.249 
2004 3 12487 15967.42 27.87 12501.0 0.112 
2005 4 14368 17741.82 23.48 14315.92 0.362 
2006 5 16738 19713.39 17.78 17200.86 2.77 
2007 6 20494 21904.06 6.88 20466.89 0.132 
2008 7 24100 24338.17 0.9882 23979.27 0.501 
2009 8 26180 27042.77 3.296 27658.29 5.65 
2010 9 30808 30047.92 2.467 31437.31 2.04 
2011 10 36277 33387.02 7.966 35288.75 2.72 
2012 11 39771 37097.18 6.723 39204.91 1.42 
2013 12 43497 41219.64 5.236 43193.43 0.698 
2014 13 46912 45800.2 2.37 47272.98 0.769 
2015 14 49922 50889.79 1.939 51469.53 3.1 
2016 15 53783 56544.96 5.135 55813.84 3.78 
2017 16 59592 62828.57 5.431 60339.62 1.25 
2018 17 65534 69810.45 6.526 65082.25 0.689 

   
Simulation 

Value 

Relative 
Error 

% 
Simulation Value 

Relative Error 
% 

2019 18 70078 77568.2 10.69 70078.0 1.13e-6 

2020 19 71828 86188.03 19.99 75363.59 4.92 
2021 20 80976 95765.75 18.26 80976.0 1.71e-7 

Average Simulation Relative Error 
(2002-2018) 

- 9.93 - 1.64 

Average Prediction Relative Error 
(2019-2021) 

- 16.31 - 1.64 

Average Overall Relative Error 
(2002-2021) 

- 10.94 - 1.64 
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(1) (1) ( 1)

0.1053738( -1)

ˆ ( ) ( (1) )

129317.2357 -119811.2357

a t

t

b bx t x e
a a

e

− −= − +

=

  

Calculate and get the simulation values and prediction values of original sequence with 

(0) (1) (1)ˆ ˆ ˆ( ) ( ) ( 1)x k x k x k= − − . See the results in Table 1. With 

(0) (0)

(0)

ˆ( ) ( )( ) 100%
( )

x t x tRE t
x t

−
= × , calculate and get the relative errors of simulation values and 

prediction values of original sequence in the periods. With 

(0) (0)

1 (0)
2

ˆ1 ( ) ( ) 100%
1 ( )

m

k

x k x kMAPE
m x k=

−
= ×

− ∑ , calculate and get the average simulation relative 

error. With 
(0) (0)

2 (0)
1

ˆ1 ( ) ( ) 100%
( )

n

k m

x k x kMAPE
n m x k= +

−
= ×

− ∑ , calculate and get the average 

prediction relative error. See Table 1 for the results.  
Then, build the extended grey model GM (1, 1, exp×sin, exp×cos) proposed, i.e. the following model 

( )
( )

0
1

( ) ( ) ( sin( ) cos( ))i

r p
b tr

i i i i
i

dx t ax t c e c s t d s t
dt =

+ = + +∑  

After calculation, get that when 2p = , the precision is the highest. Now use the improved PSO 

proposed to calculate parameters v, g, r, α, bi and si. The values of fixed parameters in the model are as 

follows: population size 20m = , dimension 8D = , max 500T = ， max 2.5c = ， min 1.5c =  and 

0.5α = . Through calculation, get the values of parameters: 

1 1 2 2( , , , , , , , )
( 17.4591,47.5948,0.1636,0.5895,-1.3456,-2.3018,-0.2133,-0.1429)

v g r b s b sα
=

0 1 1 2 2( , , , , , ) (-0.07028063, 1629.798, 376.5244, 376.7157, 2409.817, -976.4062)a c c d c d =  

In this case, get the time response equation: 

( ) (0.07028063 t)

(0.07028063 t) (-0.2835994 t)

(-0.2835994 t)

ˆ ( ) 16769.35e - 23189.86
+ e {9681.533e  [0.2835994cos(0.142912 t)  -0.142912 sin(0.142912 t) ]
+ 23894.48e  [0.142912cos(0.142912 t)  + 0.283599

rx t =

(-1.415898 t)

(-1.415898 t)

4sin(0.142912 t) ] 
 +51.55732 e  [2.301794 cos(2.301794 t) +  1.415898sin(2.301794 t)] 
-51.58352 e  [1.415898cos(2.301794 t)  -2.301794 sin(2.301794 t)]}

     From (0) ( ) ( )ˆ ˆ ˆ( ) ( ( ) ( 1))( )r r kx k x k x k v gr= − − + , get the simulation and prediction values of 

original sequence. See Table 1 for the relative errors and average relative errors in the periods.  
To compare the traditional PSO and the improved PSO proposed in terms of convergence rate and 

precision, the paper makes a calculation. See Table 2 for the results. Figure 1 gives the variation curves of 
objective functions with the number of iteration of two algorithms. It shows that the improved PSO has 
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the better convergence rate and precision compared with the traditional PSO.    
 

Table 2： The Comparison of Calculation Results of Two PSO Algorithms 
Method Traditional Method Improved Method 

v  18.5242 17.4591 
g  40.5133 47.5948 
h  0.1101 0.1636 
α  0.5903 0.5895 

1b  -1.1616 -1.3456 

1s  -1.8405 -2.3018 

2b  -0.2683 -0.2133 

2s  -0.0505 -0.1429 
Number of Iteration 355   185 

Objective Function Value G  1.65% 1.64% 
 
 

 
Figure 1: Variation Curves of Objective Function Values with Iteration Number of Two 

Algorithms 
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Table 3： Calculation Results of Grey Models for China’s GDP Per Capita Built with Other 

Methods 

 
To compare the model proposed with the grey models proposed in other referencing documents in 

terms of modeling precision, the paper makes calculations. Build a model using the improvement method 
of grey GM (1, 1) power model given by Ma and Wang (2019) and then get the following estimate of 
parameter: 

( , , , ) (-0.08666978, 1815.878, 0.1856846, 0.9601279)a b cα = .  

Then, the time response equation is 

Year No. 

Actual 
Value 

(0) ( )x t  

Model Proposed by Ma and Wang 
(2019) 

Model Proposed by Cheng and   
Liu (2021) 

Simulation Value 
Relative Error 

% 
Simulation Value 

Relative 
Error 

% 
2002 1 9506 - - - - 
2003 2 10666 11677.84 9.49 10546.46 1.12 
2004 3 12487 14113.8 13.0 11733.62 6.03 
2005 4 14368 16444.15 14.4 14293.92 0.516 
2006 5 16738 18814.54 12.4 17335.04 3.57 
2007 6 20494 21293.59 3.9 20606.48 0.549 
2008 7 24100 23925.13 0.726 24019.0 0.336 
2009 8 26180 26743.25 2.15 27541.11 5.2 
2010 9 30808 29777.93 3.34 31164.29 1.16 
2011 10 36277 33057.82 8.87 34889.76 3.82 
2012 11 39771 36611.64 7.94 38723.02 2.64 
2013 12 43497 40469.03 6.96 42671.56 1.9 
2014 13 46912 44661.25 4.8 46743.83 0.358 

2015 14 49922 49221.54 1.4 50948.84 2.06 
2016 15 53783 54185.63 0.749 55295.9 2.81 
2017 16 59592 59592.02 3.27e-5 59794.63 0.34 
2018 17 65534 65482.38 0.0788 64454.93 1.65 

   
Prediction Value 

Relative 
Error % 

Prediction Value 
Relative 
Error % 

2019 18 70078 71901.92 2.6 69286.97 1.13 
2020 19 71828 78899.7 9.85 74301.26 3.44 
2021 20 80976 86529.12 6.86 79508.66 1.81 
Average Simulation Relative 

Error (2002-2018) 
- 5.64 - 2.13 

Average Prediction Relative 
Error (2019-2021) 

- 6.44 - 2.13 

Average Overall Relative 
Error (2002-2021) 

- 5.77 - 2.13 
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1
1(1) (1) (1 ) ( 1)( 1)

 0.0706( -1) 1.2280

ˆ ( ) [ (1) ]

0.9601279(-20951.6807 22686.8618 )

a k

k

b bx k c x e
a a

e

αα α −− − − = + − 
 

= +

. 

Calculate and get the simulation value and prediction value of original sequence with 

(0) (1) (1)ˆ ˆ ˆ( ) ( ) ( 1)x k x k x k= − − , and the results are shown in Table 3. Table 3 shows the relative errors 

and average relative error in the periods.  
 

Build a model using the improvement method of extended grey GM (1, 1) power model given by Cheng 
and Liu (2021) and then get the following estimate of parameter: 

0 1 2( , , , , )
(-0.6463599987, -0.04886932862, 3525512.917, -233540.6464, 710804.9806)

a b b bα
=

.  

Then, the time response equation is 

{ }
[ ]{ }

1
(1) (1 )( 1) (1) (1 ) (1 ) 1

0.60740.0805( 1)

ˆ ( ) ( (1)) (1 ) ( )

3541738.3101 1.7843 ( )

a t a

t

x t e x e g t

e g t

α α α αα− − − − − − −

−

 = + − 

= +
  

where 
(1 )2 (1 ) (1 ) (1 ) (1 ) (1 )

02 2 1 2 1
2 2 3 3 2 2

(1 ) (1 ) (1 ) (1 ) (1 )
2 2 2 1

3 3 2 2 2 2

2 2( )
(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

2 2
(1 ) (1 ) (1 ) (1 ) (

a ta t a t a t a t a t

a a a a a

b eb t e b te b te b e b eg t
a a a a a a

b e b e b e b e e
a a a a a

αα α α α α

α α α α α

α α α α α α

α α α α

−− − − − −

− − − − −

= − + + − +
− − − − − −

− + − + −
− − − −

(1 )
0

2 -0.0805 -0.0805 0.0805

1 ) (1 )
215251872.839-8834648.6818 -216710334.478 -2737327947.79

a

t t t

b e
a

t e te e

α

α α

−

−
− −

=

. 

Calculate and get the simulation value and prediction value of original sequence with 

(0) (1) (1)ˆ ˆ ˆ( ) ( ) ( 1)x k x k x k= − − , and the results are shown in Table 3. Table 3 shows the relative errors 

and average relative error in the periods.  
Figure 2 shows the modeling precision of the models. From Table 1 to Table 3 and Figure 1 to 

Figure 2 we can see the model built using the grey model GM (1, 1, exp×sin, exp×cos) and modeling 
method proposed has the simulation precision and prediction precision significantly higher than that of 
traditional grey GM (1, 1) model and the grey power model proposed by Ma and Wang (2019), and the 
modeling precision superior to that of the extended grey power model given by Cheng and Liu (2021). 
The GM (1, 1, exp×sin, exp×cos) model has an average simulation relative error of only 1.64% and an 
average prediction relative error of only 1.64% with high precision. It shows the model and method 
proposed have high reliability and effectiveness.  
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Figure 2: Modeling Precision Histogram of Four Models 
 
7. Conclusions 
 
(1) To increase the data’s adaptability to the model, the paper transforms the accumulated generating 

sequence of original time sequence, i.e. { }(0) (0) (0) (0)(1), (2), , ( )x x x x n=  . The new accumulated 

generating sequence is { }( ) ( ) ( ) ( )(1), (2), , ( )r r r rx x x x n=   in which 
(0)

( )

1

( )( )  
k

r
i

i

x ix k
v g r=

=
+ ⋅∑  

(2) To further improve the model’s modeling precision, the paper, considering the variation characteristic 
of residual sequence of grey GM (1, 1) model, extends the grey GM (1, 1) model, i.e. building the GM (1, 
1, exp×sin, exp×cos) model.  
(3) The paper gives the parameter estimation method and time response equation of GM (1, 1, exp×sin, 
exp×cos) model. Because the grey differential equation for parameter estimation and the whitening 
equation for prediction have consistent structures, the model has high precision.  
(4) The paper optimizes the parameters of transformed accumulated generating sequence and the 
parameters of model at the same time and the optimization object is 

1 2, , , , ,
min max( , )

i iv g r b s
MAPE MAPE MAPE

α
= , thus avoiding high simulation or prediction error. With the 

improved PSO, the model has high precision and a fast convergence rate.  
(5) Using the model and method proposed, the paper builds a GM (1, 1, exp×sin, exp×cos) model for 
China’s GDP per capita. Results show that the model has high precision with an average simulation 
relative error of only 1.64% and an average prediction relative error of only 1.64%.  
(6) To compare the method proposed with other grey models in terms of precision, the paper builds the 
GM (1, 1) model, the grey GM (1, 1) power model proposed by Ma and Wang (2019) and the extended 
grey GM (1, 1) power model proposed by Cheng and Liu (2021) for China’s GDP per capita. Results 
show that the model built with the method proposed has the overall precision significantly higher than 
that of the GM (1, 1) model and the grey GM (1, 1) power model proposed by Ma and Wang (2019), and 
is superior to the extended grey GM (1, 1) power model proposed by Cheng and Liu (2021).  
 
 
 

1 2 3 4

Model

0

2

4

6

8

10

12

14

16

18

M
AP

E 
(%

)

GM(1,1) model

Grey power model proposed

by Ma and Wang (2019)

Grey power model proposed

by Cheng and Liu (2021)

The grey model proposed

in this paper

Average simulation relative errors (2002-2018)

Average prediction relative errors (2019-2021)

Average total relative errors (2002-2021)



 16 

Authorship contribution statement 
Maolin Cheng: Conceptualization, Methodology, Supervision, Project administration, Software, Writing–
original draft. Bin Liu: Validation, Formal analysis, Investigation, Resources, Data curation, 
Visualization. 

 
Acknowledgements 
This work was supported by National Natural Science Foundation of China (No.11401418). 

 
Compliance with ethical standards 

 
Conflict of interest  
The authors declare that they have no conflict of interest. 

 
Human participants or animals performed 
This article does not contain any studies with human participants or animals performed by any of the 
authors. 

 
 

References 
 
[1]Cai L L, Wu F ,Lei D G (2021) Pavement condition index prediction using fractional order GM(1,1) 
model. IEEJ Transactions on Electrical and Electronic Engineering 16(8): 1099-1103 
 
[2] Cao Y, Yin K D, Li X M (2020) Prediction of direct economic loss caused by marine disasters based 
on the improved GM(1,1) model. Journal of Grey System 32(1): 133-145 
 
[3]Chen F Y, Zhu Y P (2021) A new GM(1,1) based on piecewise rational linear. Engineering Letters 
29(3): 849-855 
 
[4]Cheng M L, Liu B (2021) An extended grey GM( 1,1 ) power model and its application. Journal of 
Statistics and Information 36(10):3-11 
 
[5]Ding S (2018) A novel self-adapting intelligent grey model for forecasting China's natural-gas demand. 
Energy 162:393-407 
 
[6]Ding S (2019) A novel discrete grey multivariable model and its application in forecasting the output 
value of China's high-tech industries. Computers & Industrial Engineering 127:749-760 
 
[7]Hu Y C (2020) Energy demand forecasting using a novel remnant GM(1,1) model. Soft Computing 
24(18): 13903-13912 
 
[8] Huang C J, Cao Y Z, Zhou L (2021) Application of optimized GM (1,1) model based on EMD in 
landslide deformation prediction. Computational and Applied Mathematics 40(8):261. 
 
[9] Jiang Y X, Zang Q S (2015) Background-value optimization of model GM (1,1). Chinese Journal of 
Management Science 23(9):146-151 
 
[10]Li B, Wei Y (2009) Optimizes grey derivative of GM (1,1). Systems Engineering - Theory & 



 17 

Practice 29(2):100-105 
 
[11] Liu S F (2021) Grey system theory and its application (9th edition), Beijing: Science Press 
 
[12]Liu Z, Xie Y M, Dang Y G (2019) A progress analysis of Chinese poverty alleviation based on 
improved GM(1,1). Systems Engineering - Theory & Practice 39 (1) : 2476-2486 
 

[13] Ma Y M, Wang S C (2019) Construction and application of improved GM (1,1) power model[J]. 

Journal of Quantitative Economics 36(3):84-88 

 
[14]Mi C M, Wang Y J, Xiao L (2021) Prediction on transaction amounts of China’s CBEC with 
improved GM. Electronic Commerce Research 21(1): 125-146 
 
[15] Qi  Q ,Li C (2021) Application of GM( 1，1) model based on background value optimization in 
China civil aviation freight volume forecast. Logistics Engineering and Management 43(10) :56-59 
 
[16] Qian W Y, Wang J (2020) An improved seasonal GM(1,1) model based on the HP filter for 
forecasting wind power generation in China. Energy 209: 118499 
 
[17] Rathnayaka R M Kapila Tharanga, Seneviratna D M K N (2020) Taylor series approximation based 
unbiased GM(1,1) hybrid statistical approach for forecasting stock market. Journal of Grey System 32(3): 
124-133 
 
[18] Tang L W, Lu Y Y (2020) An improved non-equal interval GM(1,1) model based on grey derivative 
and accumulation. Journal of Grey System 32(2): 77-88 
 

[19]Tong Q (2021) Weighted non-equal interval gray GM(1,1) model based on function cot(xα) 

transformation and its application. Mathematics in Practice and Theory 51(13):209-215 
 
[20] Wang C S, Sun Z H (2021) Monthly pork price forecasting method based on Census X12-GM(1,1). 
PLoS ONE 16(5): 1-13 
 
[21] Wang Y H, Lu J (2020) Improvement and application of GM(1,1) model based on multivariable 
dynamic optimization. Journal of Systems Engineering and Electronics 31(3): 593-601 
 
[22]Wang Z X, Li Q (2019) Modelling the nonlinear relationship between CO2 emissions and economic 
growth using a PSO algorithm-based grey Verhulst model. Journal of Cleaner Production 207: 214-224 
 
[23] Wang Z X, Zhao Y F (2020) GM (1,1) model with seasonal dummy variables and its application. 

Systems Engineering - Theory & Practice 40(11) :2981-2990 
 
[24] Xie  M, Wu L F (2021) Short-term traffic flow prediction based on GM (1,N) power model 
optimized by rough set algorithm. Mathematics In Practice and Theory 51(09): 241-249 
 
[25] Xu N, Dang Y G (2015) An optimized grey GM(2,1) model and forecasting of highway subgrade 
settlement. Mathematical Problems in Engineering Vol.2015(1): 1-6 
 



 18 

[26] Xu N, Dang Y G (2018) Characteristic adaptive GM(1,1) model and forecasting of Chinese traffic 
pollution emission. Systems Engineering - Theory & Practice 38(1): 187-196 
 
[27] Xu N, Dang Y G, Ding S (2015) Optimization method of background value in GM(1,1) model based 
on least error. Control and Decision 30(2): 283-288 
 
[28]Xu N, Dang Y G, Gong Y D (2016) Novel grey prediction model with nonlinear optimized time 
response method for forecasting of electricity consumption in China. Energy 118:1-8 
 
[29]Zeng B, Li C (2016) Forecasting the natural gas demand in China using a self-adapting intelligent 
grey model. Energy 112:810-825 
 
  
  
 
 

 
 

 
 

 

 


	Authorship contribution statement
	Compliance with ethical standards
	Conflict of interest
	Human participants or animals performed

