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Abstract
Graphs are widely used to model real-life information, where graph similarity computation is one of the most significant
applications, such as inferring the properties of a compound based on similarity to a known group. Definition methods (e.g.,
graph edit distance and maximum common subgraph) have extremely high computational cost, and the existing efficient
deep learning methods suffer from the problem of inadequate feature extraction which would have a bad effect on similarity
computation. In this paper, a double-branch model called DeepSIM was raised to deeply mine graph-level and node-level
features to address the above problems. On the graph-level branch, a novel embedding relational reasoning network was
presented to obtain interaction between pairwise inputs. Meanwhile, a new local-to-global attention mechanism is designed
to improve the capability of CNN-based node-level feature extraction module on another path. In DeepSIM, double-branch
outputs will be concatenated as the final feature. The experimental results demonstrate that our methods perform well on
several datasets compared to the state-of-the-art deep learning models in related fields.
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1 Introduction

Graphs are called non-Euclidean data (Bronstein et al. 2017),
which is different from the grid structured types such as pic-
tures, text, audio, video and so on. In real life, many data
(e.g., trafficflow, social network, compounds, brain structure,
web pages and many more) are graphically structured or can
be easily transformed into graphical representations. Graph-
based analysis method has been applied to a wide range of
industries and achieved ideal results. Among them, calculat-
ing the similarity of graph pairs is an important application.
For instance, in multi-subject brain network analysis, graph
similarity calculation is helpful to clinical investigation and
disease diagnosis (Ma et al. 2019); in web pages monitor-
ing, graph similarity is necessary to get reliable PageRank
values in the evolving process (Papadimitriou et al. 2010);
in the field of protein related bioinformatics, the similarity is
significant for pairwise interaction (Zaslavskiy et al. 2009);
recently, similarity calculation combined with approximate
pruning algorithm has been used for fast similarity search of
graph databases (Qin et al. 2020).

Graph Edit Distance (GED) (Bunke and Allermann 1983)
and Maximum Common Subgraph (MCS) (Bunke and
Shearer 1998) are the most commonly used in the defini-
tion of graph similarity. The former (GED) is inspired by
string edit distance which takes the minimum value of oper-
ation cost function as distance metric, and the latter (MCS)
focuses on the number ofmaximumcommon subgraph nodes
of the input graph pair. However, these two algorithms have
been proved to be NP-hard, which bring unacceptable com-
putational burden in use (Zeng et al. 2009; Gao et al. 2010).

Many improvedmethods of graph similaritymeasurement
based on the above two ideas are presented to add feature
details or reduce the computational cost, such as applying
kernel function to structural pattern (Neuhaus and Bunke
2006), approximate calculation method (Riesen and Bunke
2009). Furthermore, EMD and PM algorithms (Nikolentzos
et al. 2017) describe the similarity of graph pairs from the per-
spective of vertex embedding comparison, the former (EMD)
using SVM to solve the non-semi-positive definite matrix
problem and the latter (PM) introducing the pyramid match-
ing function to compare the vertex set differences of graph
pairs, but both have high computational complexity.With the
development of graph signal processing, different from the
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traditional approach, Graph Fourier Distance (GFD) based
on spectral decomposition of Laplacian matrix provides a
new way to describe the differences between graph pairs in
frequency domain (Lagunas et al. 2018).

Due to the need ofmassive and large-scale graph data anal-
ysis, data-driven approach, especially deep learning method
has become the mainstream of current research in this field.
Deep learning method can cover the potential features (or
hidden patterns) from a large number of data and only care
about the gap between prediction and target value in the train-
ing process. Under the influence of such thoughts, 2D CNN
(Tixier et al. 2019) obtains node embedding for a graph and
then uses PCA to process feature results which are regarded
as images, finally, the high-order features are captured by
CNNs for classification. It is different from traditional CNN
which can’t dealwith graph structure data directly, graphneu-
ral network (GNN) captureswhole graph features to obtain its
vectorized representation, which is helpful for this research
(Ktena et al. 2017; Bai et al. 2018). After training, the sim-
ilarity score between the input graph pairs can be predicted
quickly with acceptable error rate. GNN can get reliable net-
work representation (Wu et al. 2020), however, the difference
of graphs usually exists in the small subgraphs and the graph-
level embedding may ignore this part of information (Bai
et al. 2019; Ma et al. 2021; Ling et al. 2022). In addition,
HS-GCN (Ma et al. 2019) adds higher-order information by
random walking on the graph to improve the model com-
putational performance. MGMN (Ling et al. 2020) proposes
a node-graph matching layer to add cross-level interactions
between graph pairs and then combines siamese graph neu-
ral networks for similarity computation and graph matching.
GraphSIM (Bai et al. 2020), which achieves good perfor-
mance in similarity computation task, proposes a multi-scale
GCN to mitigate the feature loss from multiple information
aggregation and uses the BFS algorithm to order the nodes
to construct a similarity matrix.

Inspired by SimGNN (Bai et al. 2019), we developed
a novel deep learning model for graph similarity calcula-
tion called DeepSIM. The proposed approach was designed
in three stages: (1) embedding; (2) double-branch feature
extraction module; (3) score prediction (i.e., output module).
GCN was used to get the node-level graph representation
and feed it to Stage 2 just like SimGNN. We have assumed
that in some practical applications, when the node-level fea-
tures have a great impact, the non-learnable method (strategy
2 of SimGNN) or the method only considering graph-level
branch will have a bad influence on the performance of the
model, so CNN-based node feature extraction module with
a new attention layer to replace the histogram method in
SimGNNand the conjecturementioned above is proved in the
experiment. At the same time, a feature-feature interaction
approach called Feature Interactive Neural Tensor Network
(FINTN), inspired byNeural TensorNetwork (NTN) (Socher
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et al. 2013), was raised which achieved good results in
the ablation experiment. Node-level method and graph-level
module constitute two branches and the features of two dif-
ferent concerns are fused before the Stage 3. Similar to the
traditional deep learning prediction task, fully connected net-
work is used to predict the score of Stage 2 results and
calculate the difference with the ground-truth which is gen-
erated by an optimizedmethod called DF-GED (Abu-Aisheh
et al. 2015) implemented in NetworkX with normalization.
DF-GED algorithm accelerates the calculation by building a
search tree, and records the editing operation cost as a node
operation matrix to obtain the variance metric of the graph
pair.

The main contributions of our work are as follows:

• A new graph similarity calculation model with two
branches was proposed. The two paths complement each
other, which ensures the robustness of our approach.
The model has stable and good performance on multi-
ple datasets.

• On the graph-level branch, the distance and direction
attributes of features in high-dimensional space are
considered, which improves the feature interaction in
traditional NTN intuitively. Our method (FINTN) has
proven effective in experiments which gives a new guid-
ance for the construction of relational inference models.

• Global average pooling was used to unify the node
embedding dimensions instead of inserting fake nodes.
CNN-based node-level feature extraction module with a
new attention mechanism was raised to emphasize the
local interaction and global impact of nodes.

The rest of this paper is organized as follows. In Sect. 2,
the previous related methods are summarized and problem
definitions will be given. In Sect. 3, the proposed approach
(DeepSIM) will be described in detail. In Sect. 4, results of
comparative experiments with correlation analysis will be
shown. In Sect. 5, we will summarize this work and present
some ideas for the future research.

2 Definitions and related work

Graph data Gi is composed of node set Vi and edge set Ei ,
that isGi = (Vi , Ei , Ai ), where va ⊆ Vi represents a node of
Gi .If there is a connection between va and vb,then there is an
edge eab ⊆ Ei , Ai is the adjacency matrix ofGi , the number
of nodes in Vi denoted as N = |Vi |. For a graph dataset with
n samples G = {G1,G2, . . . ,Gn}, some related definitions
can be used (as shown in below section) to get the similarity
between graph pairs as ground-truth for the learning task.
In this study, a model based on undirected and unweighted
graph was build and it could be easily applied to any graph
structure data by changing the graph embedding method.

2.1 Graph similarity definition

Just as mentioned above, GED and MCS are the two most
commonly used definitions. Suppose there are two graphs,
G1 and G2, exact GED (as shown in Fig. 1) is the mini-
mum number of operations to transformG1 toG2 (including
node and edge addition, insertion and deletion), approximate
GED reduces the acceptable accuracy to improve the com-
putational efficiency significantly (Xu et al. 2018).

MCS (as shown in Fig. 2) aims to find the maximum com-
mon subgraph of two graphs, the formula is as follows:

d(G1,G2) = 1 − |mcs(G1,G2)|
max(|G1|, |G2|) (1)

in the formula, |mcs(G1,G2)| is the number of maximum
common subgraph nodes between G1 and G2, |G1| and |G2|
represent the number of nodes in G1 and G2 respectively.

The definition method to calculate similarity is gener-
ally applicable to paired input graph data, but usually has
a high computational complexity which is difficult to cope
with large-scale and massive computing requirements.

Fig. 1 An example of GED. a
delete node C and
corresponding edge, b delete
node B and corresponding edge,
c add node D and corresponding
edge. The GED is 3
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Fig. 2 An example of MCS. a a
graph G1, b another graph G2, c
the maximum common
subgraph (Gs ) of G1 and G2.
The number of nodes in G1 and
G2 are 5 and 4, respectively.
And the node number of Gs is 3.
Here, we have
MCS (G1,G2) = 0.4

2.2 Graph embedding and GCN

Similarity calculation method based on graph embedding
(network embedding) needs reliable algorithm to map graph
data to vector space, and then use measurement (such
as Euclidean Distance, Cosine Similarity and Minkowski
Distance) to calculate feature distance. Therefore, graph rep-
resentation learning has received increasing attention in this
field due to its practical significance (Chen et al. 2020).Deep-
Walk (Perozzi et al. 2014) and node2vec (Grover et al. 2016)
are based on random walk algorithm, which randomly select
initial vertex as an entrance to traverse, the paths and relation-
ships between the connected nodes are obtained to describe
the graph from the node-level perspective. Where the latter
(node2vec) algorithm introduces two parameters p (return
parameter) and q (in-out parameter) to balance the impact of
both BFS and DFS policies, and when p equals q, node2vec
is equivalent to DeepWalk. Inspired by Doc2Vec (Le and
Mikolov 2014), Graph2Vec (Narayanan et al. 2017) is differ-
ent from the previous two node-level embedding algorithms,
which directly generates the embedding of the entire graph,
that is, an output of this method represents a certain graph.
The execution efficiency of the above graph embedding algo-
rithm is very sensitive to the input data size and scale. In
recent years, data-driven deep learning method has also been
developed in the field of graph embedding/graph represen-
tation, for example, GCN (Kipf et al. 2016), GraphSAGE
(Hamilton et al. 2017) and GAT (Veličković et al. 2017).
Transformation to frequency spacewith the help of theLapla-
cian matrix of the graph to define the graph convolution layer
to build GCN, and GraphSAGE, on the other hand, achieves
information fusion within node neighborhoods by design-
ing reliable aggregation functions. GAT uses a multi-headed
attention mechanism to assign power to each node to empha-
size the different influences in the information aggregation
process. Each embedding characterizes one piece of input
graph data and describes the differences by a distance metric
to reflect the similarity between the original graph pairs.

GCN is used as a case study to look into how to obtain
reliable embeddings, we assumed that there is a graph G1 =

(V1, E1, A1) with its degree matrix D1 which is a diago-
nal matrix,and the elements on the diagonal are the degrees
of each vertex. The Laplacian matrix L1 of G1 can be eas-
ily obtained, i.e., L1 = D1 − A1 and its normalized form

L1 = IN − D
− 1

2
1 A1D

− 1
2

1 , where IN is identity matrix. The
eigenvalue decomposition of normalized L1 is expressed as
L1 = U1 ∧1 UT

1 where the lth column of U1 is eigenvector
and ∧1(l, l) is the corresponding eigenvalue (Ortega et al.
2018; Zhang et al. 2019). Graph Fourier transform (GFT) is
an extension of Fourier transform in non-Euclidean domain
which is defined as: x̃1 = U1

T x1 where x1 represents a set
of signals defined on V1 and inverse graph Fourier transform
(IGFT) can be written as: x1 = U1 x̃1. Motivated by CNN,
graph convolution in frequency domain can be defined as:

x11 ∗ x12 = IGFT
(

GFT
(

x11
)
⊙

GFT
(

x12
)

)

= Hx̃11
x12

(2)

where Hx̃11
= U1diag(x̃11)U

T
1 .

According to previous work (Narayanan et al. 2017), con-
sidering frequency domain representation youtput = σ(g

θ
∗

x1) = σ(U1gθUT
1 x1) where x1 denotes a scalar for every

node and σ represents sigmoid function, Chebyshev polyno-
mials are used to reduce the computational cost of gθ :

y′
output = σ

(

g′
θ ∗ x1

) ≈ σ

(

K
∑

k=0

θ ′
kTk(˜L1)x1

)

(3)

where ˜L1 = 2
λmax

L1 − IN , λmax denotes the largest eigen-
value of L1 and K is the max steps away from the central
node. With the above definition of K -hop convolution GCN
can be built.

After the graph embedding phase, a suitable distance met-
ric is used to describe the differences between the paired
graph representations and is transformed into a similarity
score by a normalization function. The data-driven GNN
approach, represented by GCN, transforms the graph repre-
sentation into an end-to-end graph deep learning task, which
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helps to explore the potential associations of the original
graph pairs and is beneficial for fine-grained similarity com-
putation tasks.

2.3 Kernel for graph representation

Different from the graph embedding, the graph kernel func-
tion pays more attention to map the original structured
information into Hilbert space (H) and avoids the loss of
spatial information in the process of vectorization (Kriege
et al. 2020). Gärtner et al. proposed a random walk graph
kernel by recording common steps (Gärtner et al. 2003)
for high-dimensional representation of the graph. In addi-
tion, Shervashidze et al. constructed graph kernel functions
by subgraph segmentation combined with the Weisfeiler-
Lehman isomorphism detection algorithm to improve the
capability of topological and label information capture (Sher-
vashidze et al. 2011; Weisfeiler and Leman 1968). Inspired
by the Weisfeiler–Lehman kernel, Weisfeiler–Lehman simi-
larity (WLS) was raised to describe the distance between two
graphs by adding the similarity between neighbors’ attributes
into node feature update process and further build the WLS
neural network (Ok 2020). Although graph kernel functions
have gained widespread attention in the field of graph rep-
resentation, they are difficult to define and may weaken the
generalization ability of the model when the amount of train-
ing data is small due to their focus on raw data information.
Therefore, in this paper, we focus more on graph embedding
methods.

2.4 Siamese neural network

Siamese structure was first proposed for signature verifica-
tion (Bromley et al. 1993), and later combined with a variety
of shared-weight neural networkmodules formetric learning,
gaining widespread attention in the fields of face recognition
(Chopra et al. 2005), image patches comparison (Zagoruyko
et al. 2015) and one-shot image recognition (Koch et al.
2015). The structure of siamese neural network is shown in
Fig. 3.

In Fig. 3, x1 and x2 denote a pair of input data, network
1 and network 2 are called two sub-networks and are usu-
ally used for feature extraction. The siamese structure is
implemented by sharing weights while ensuring that two
sub-networks process pairs of input in the same way. The
output of the two branches is aggregated with information
via a distance metric (also known as similarity estimation).
The aggregated feature vector is used as the output of this
network.

The choice of sub-modules for siamese neural networks is
very flexible, thus SiameseGCN (S-GCN) (Ktena et al. 2018)
uses spectral GCN as a sub-network proposed for graph sim-
ilarity calculation. Just as mentioned above, HS-GCN (Ma

Fig. 3 An overview of siamese neural network

et al. 2019) is an extension of S-GCN that adds higher order
information by applying the random walk algorithm before
the graph pair is fed into the siamese graph convolution layer
and achieves good performance in similarity learning task.
Not just popular in this particular field, a variant of S-GCN,
Context Attended-SGCN (Chaudhuri et al. 2022), is used for
remote sensing image retrieval by region-adjacency graph
(RAGs) generation and adding node attention.

Siamese neural network is good at the task of pattern
recognition with paired inputs, and is a good fit for the task
of graph similarity computation because of its high tolerance
for error samples (Chen et al. 2020), which becomes the basic
framework of this study.

2.5 Neural tensor network

InNeural TensorNetwork, for the sake of finding the relation-
ship score of entity vector pairs across multiple dimensions,
bi-linear tensor product is used to replace the linear form in
traditional neural network. The definition is as follows:

g (e1, R, e2) = UT
R f (eT1 W

[1:k]
R e2 + VR

[

e1
e2

]

+ bR) (4)

where g (e1, R, e2) is the score, f (x) = tanh (x), e1 and e2
are vector representations of input entities, W [1:k]

R is the i th
slice of tensor W (i = 1, 2, 3, . . . , k), UT

R is used to obtain a

certain relation score. VR

[

e1
e2

]

is called standard layer which

is a traditional deep learning embedding relational inference
method based on splicing.

In previous work (SimGNN), NTN without UT
R is used

to infer the relationship feature vector between two graph-
level embeddings. For each graph embedding, it is obtained
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by aggregating the node-level embedding of the GCN output
through the node attentive layer, which is defined as follows:

h =
N

∑

n=1

f2
(

uTn c
)

un

=
N

∑

n=1

f2

(

uTn tanh

((

1

N

N
∑

m=1

um

)

W2

))

un (5)

where h denotes a graph-level embedding, f2(•) means sig-
moid function, un represents the embedding of the n-th node
and W2 is the weight matrix. It is not difficult to find that h
is the weighted sum of node-level embeddings for a certain
input graph.

Although in the field of embeddings relation score calcula-
tion, NTN significantly outperforms the traditional methods,
its performance relies only on parameters update within the
module during the training process, to a certain degree, ignor-
ing the inherent association between the input vector pairs
which may be harmful for the fine-grained similarity calcu-
lation task.

3 The proposedmethod

Inspired by related work, we raised a graph similarity
calculation model based on deep learning to address the
shortcomings in somepreviousmethods,which can be abbre-
viated as DeepSIM.

DeepSIM (as shown in Algorithm 1) consists of three
stages: (1) embedding with GCN; (2) double-branch feature
extraction; (3) prediction module. In Stage 1, GCN-based
method transforms the original input data into vector repre-
sentation in feature space. In Stage 2, there are two paths,
one to capture graph-level features, the other to extract node-
level association. In Stage 3, combined output of Stage 2
is fed into the last module (fully connected network) to get
the prediction of paired input. The overview of DeepSIM is
shown in Fig. 4 and we will present the proposed improve-
ment strategies in detail in the subsections of Stage 2.

3.1 Stage 1: Siamese GCN for node embedding

In Stage 1, we use traditional graph classification method
based on deep learning, andGCNwas chosen to get the node-
level embedding of graph data. For pairwise comparison task,
siamese structure constructed by sharing weights can bet-
ter evaluate the similarity of two inputs by generating their
respective high-dimensional vector representation. However,
having only two embeddings are not enough to cover the
information of the graph pair more completely because, like
CNN, GCN lose some of the low-dimensional information

Algorithm 1 DeepSIM

Input: {(xn, zn)}Ndata
n=1 , a dataset of graph pairs.

Output: Similarity between input graph pairs.
Hyperparameters: Nepochs = 5
1: for i=1,2, ..., Nepochs do
2: Get the respective embedding xe and ze of data xn and zn by

Siamese GCN(Stage 1).
3: Feed xe and ze into theDouble-branch Feature ExtractionModule

that focuses on graph-level features and node-level features.
4: To obtain node-level features Fn , xe and ze construct the feature

map F bymultiplying the vectors and input F in Node-level Feature
Extraction Module.

5: FINTN is used to get graph-level interaction features(Fg).
6: Connect Fn and Fg to form fusion feature and put it into a fully

connected neural network to calculate the similarity score.
7: end for
8: return similarity score

when capturing features. Therefore, further analysis of the
output of this stage is urgently needed.

3.2 Stage 2: Double-branch feature extraction
module

The difference of graph structure data is not only reflected
in the distance of the whole graph embedding, but also in
the local substructure. In DeepSIM, double-branch feature
extraction module was proposed to get a reliable pairwise
associated features. Node-level embeddings of input graphs
can be obtained by siamese GCN just as mentioned above.
Node attentivemechanism,whichwas proposed in SimGNN,
combined with a novel reasoning module was applied to
extract graph-level interaction. Node-level embedding after
pooling operation constructs interaction matrix by vector
product to reflect substructure information. In order to better
capture local feature, similar to traditional computer vision
methods, we designed a feature extraction module based on
CNNcombinedwith residual connection and proposed a new
patch attention mechanism (PatchAtt) to emphasize the local
correlation on the interaction matrix. The output features of
two approachesmentioned abovewill be concatenated before
predictionmodule. The introduction of our newmethods will
be presented in detail in the following subsections.

3.2.1 Approach 1: feature interactive neural tensor network

After the node attention mechanism, in order to obtain the
graph-level interactions between two embeddings, NTN is
introduced in SimGNN to reason about deeper relations.
However, NTN feature interactionmechanism is not intuitive
enough, i.e., it can increase the interaction between vectors in
feature space rather than only relying on updating of trainable
parameters. For this motivation, Feature Interactive Neural
Tensor Network (FINTN) was developed, as shown in Fig. 5,
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Fig. 4 An overview of DeepSIM

Fig. 5 Overview of FINTN
which improved interactive
method of NTN to get the
relationships of input graph
samples

to get graph-graph relation preferably. The input of this mod-
ule, which is expressed as e1 and e2 in the following formula,
is a pair of high-dimensional features generated by siamese
GCN.Due to the characteristics of this architecture, e1 and e2
are in the same vector space which means the distance and
direction (commonly used similarity indexes for a pair of
feature vectors) of e1 and e2 can be easily derived. Bi-linear
tensor product and standard layer of NTNwere redesigned to
represent the interaction intuitively, and the proposedmethod
is defined as follows:

F (e1, R, e2) = f ((e2 − e1)
T W [1:k]

R (e2 − e1)

+VR

[

e2
e1

]

∗ DIST(e1, e2) + bR) (6)

where F (e1, R, e2) means the relation between e1 and e2,
f (•) denotes tanh, W [1:k]

R is the slice of tensor and bR rep-

resents bias just like NTN, VR

[

e2
e1

]

is standard layer,

[

e2
e1

]

denotes the concatenation operation of pairwise input e1 and
e2, DIST is the cosine similarity of two vectors:

DIST(e1, e2) = cosine(e1, e2) = e1 • e2
e1 × e2

(7)

In FINTN, by simply computing the distance and direc-
tion between two same-dimensional embeddings in vector
space, there is no significant increase in computational cost
compared to NTN, i.e., both have the same time complexity.
However, FINTN is superior in the graph embedding relation
inference task, which proves the above conjecture that NTN
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Fig. 6 Overview of PatchAtt mechanism which calculates the attention score to guide the model to select more important blocks in training to
emphasize fine-grained node-level interaction

inference method ignores the inherent association between
embeddings, and the statementwill be covered in next section
through comparison experiments.

3.2.2 Approach 2: Node-level feature extraction module
based on CNNs

CNN-basedmethod for computer vision task has been proved
to be effective and widely used in various related work. After
stage 1, the embeddings of graph pairs are obtained and after
pooling operation (to unify the feature vector dimension) the
node-level interaction matrix M ∈ R

D can be generated by
vector product. In this work, the matrix can be regarded as
gray scale image so that CNNs can be used to analyze it. For
the sake of mining the more concerned interaction between
nodes, inspired by SEnet (Hu et al. 2018), patch attention
mechanism (PatchAtt just as shown in Fig. 6) was proposed
to improve acuity of this branch which divided interaction
matrix into h patches with equal size and fully-connected
network was used to set different weights for each block after
pooling. Each patchwasmultiplied by the attention score and
spliced into a new interaction matrix Matt ∈ R

D according
to the original position. The influence score of each block
on the overall matrix is directly calculated by global pooling
and the output of PatchAtt can be defined as follows:

Moutput = G (Matt) ∗ Matt (8)

where Matt = concat(patchatti ), i = 1, 2, 3, . . . , h, G
means global average pooling and concat in this definition
denotes block splicing method related to original position,

patchatti can be calculated as follows:

patchatti = σ
(

FCs
(G (

patchi
))) ∗ patchi , i = 1, 2, 3, . . . , h(9)

where FCs means fully connected layers, σ represents sig-
moid function and patchi denotes i-th partitioned patch of
original matrix M .

ResNet (He et al. 2016) has been widely used in com-
puter vision related tasks, such as image classification,
object recognition and so on. The skip-connection in ResNet
improves the convergence speed of the model during the
training process and alleviates the possible degradation of the
deep network architecture. Driven by this helpful approach,
in the branch of our proposed model, a residual block after
PatchAtt was raised to obtain node-level interaction vector
by directly connecting the low-dimensional signal to the rep-
resentation after 3 convolution layers. Unlike the histogram
of SimGNN and the explicit node ordering in MGMN and
GraphSIM, DeepSIM designs a trainable feature extraction
module based onCNNs combinedwith PatchAtt to implicitly
capture the spatial relationships between node embeddings.
Finally, the mixed representation will be fed into the pooling
layer to get the final output of this branch.

3.3 Stage 3: Prediction based on fully-connected
network

Before prediction, the outputs of the above two branches
which was described in Sect. 3.2 will be concatenated
together. At this stage, fully-connected network with ReLU
as activation function was chosen to be a predictive module
just like traditional learning-based prediction and classifica-
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Fig. 7 Visualization of four datasets. a IMDB, b AIDS, c LINUX, d PTC_MR

Table 1 Descriptions of datasets

Dataset Description Graphs

AIDS Compounds 700

PTC_MR Carcinogenic compounds 344

LINUX Program dependency 1000

IMDB Actors/Actress ego-network 1500

tion tasks and its output is the final result of our model. This
result will be compared with ground-truth value.

4 Experiments and results

4.1 Datasets

In order to test the effectiveness of the proposed method,
we evaluated it on four real world datasets and compared
with other state-of-the-art methods. The descriptions of the
experimental datasets are shown in Fig. 7 and Table 1.

AIDS. AIDS is an antiviral screening dataset for NCI/NIH
development and treatment, containing 42,390 chemical
compounds. It is a large graphic dataset,which is usually used
in the field of graphic similarity search. As with SimGNN,
700 compounds with a number of nodes less than or equal to
10 were selected for the experiment.

PTC_MR. The purpose of PTC (Predictive Toxicology
Challenge) dataset (Toivonen et al. 2003) is to model
the rodent carcinogenicity of chemical compounds. The

PTC_MR dataset is the male rat dataset of PTC, with a total
of 344 graphs and PTC_MR dataset was fully used for this
experiment.

LINUX. LINUX dataset (Wang et al. 2012) is generated
from Program Dependence Graph (PDG) of Linux kernel,
which contains 48,747 graphs in total with an average of
45 vertices. Each graph in this dataset represents a function
and a node represents a statement and an edge denotes a
dependency between two statements. Like SimGNN, 1000
graphs with a number of nodes less than or equal to 10 were
randomly selected as experimental data.

IMDB. IMDB dataset (Yanardag et al. 2015) is composed
of 1500 ego-networks of actors or actresses. An ego-network
is one in which the central node must be connected to other
nodes, except for the central node, there is an edge connecting
the two vertices if there is a correlation among them. For this
dataset, if two people star in the same film, there is an edge
connecting two nodes.

4.2 Data preprocessing

The initial datasets only contained graph structure and the
corresponding information without pairwise ground-truth
valueswhichmeans the similarity labels should be calculated
in this stage.An efficient and reliablemethod calledDF-GED
(Abu-Aisheh et al. 2015) is directly used for ground-truth
calculation of four datasets.

After generating the labels, there are four generated
datasets, each one contains the original information of two
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graphs with the corresponding metric value. Then, for the
sake of testing the generalization ability of the model, 30,000
samples were randomly selected from AIDS and Linux as
experimental data respectively. We divided 30,000 samples
of each generated dataset into train and test set according to
the proportion of 70% and 30%. At the same time, in order
to test the performance of the model on the entire dataset,
the full small-scale PTC_MR dataset without any selection
was applied. On the large-scale IMDB dataset, 100,000 sam-
ples were randomly selected from the generated 2.25 million
items with labels. In the same way as the previous division,
70% of PTC_MR and IMDB are used as the training set and
30% for model testing. Box-plot for each training set will be
shown in appendix.

Before feeding the data into proposed models, the result
of DF-GED need to be transformed into similarity scores.
According to SimGNN, normalized-GED (nGED) combined
with exponential functionλ (x) = e−x was applied to convert
GED values into scores in the range of (0,1]. The calculation
formula of similarity score of graph pair is as follows:

score(G1,G2) = λ (nGED (G1,G2)) (10)

where nGED(G1,G2) = (DF−GED(G1,G2))
(|G1|+|G2|)/2 , |G1| and |G2|

represent the number of nodes of G1 and G2 respectively.

4.3 Baselines andmetrics

Baselines involved in the comparison are all based on GNN,
including S-GCN, HS-GCN, SingleLayer, SimGNN, Graph-
SIM and MGMN. SingleLayer (mentioned in Socher et al.
(2013)) is a special case of NTN, which does not consider
bi-linear tensor and only uses standard layer to reason about
vector relations.

SimGNN pointed out that when the number of nodes is
large, Strategy 1 can be used independently to speed up
the model training process with good performance, so an
ablation experiment is very necessary. In order to compare
our proposed Approach 1 (DeepSIM_A1) with Strategy 1
(SimGNN_S1) in SimGNN, the double-branch structure of
twomodelswere decomposed to construct the ablation exper-
iment. In other words, compare the reasoning capabilities of
NTN and FINTN for graph-level interactive features.

For preventing the possible contingency of a single exper-
iment, we conducted several comparative experiments for
these methods on four real world datasets mentioned above
to demonstrate the superiority of our proposed approach.

MSE (mean squared error), R-square (R2), and Spear-
man’s correlation coefficient (τ ) are used to describe the
overall level of each model, with precision at k (p@k) is
used to measure the local performance. At the same time, to
describe the stability of the prediction results, the standard
deviation (σt ) is applied in this process, where t denotes the

number of experiments. For each model in t experiments on
a specific dataset, the minimum and average values of MSE
and the mean values of R2 and p will be recorded, where
MSEmin is used to compare the best results of the models,
MSEavg, R2

avg and pavg are used to describe the average
performance of several methods. In multiple experiments,
models with high stability perform better when the MSEavg

values are close and the p@k values shown are all mean val-
ues.

4.4 Experimental setup

Obviously, the node embedding block and the prediction
module are the same for the above models, so the param-
eter settings of these two modules will be shared among all
methods. In the experiment, three GCN layers were stacked
to build the node embedding module and ReLU was chosen
to be the activation function. The output dimensions of each
GCN layer are 64, 32, and 16, respectively. For prediction
module, we adopted four fully connected layers to get the
final output (i.e., predicted similarity score). The first three
layers have 32, 16 and 4 neurons, respectively, and the num-
ber of nodes in the last layer is 1. For NTN and FINTN, the
input and output dimensions were set to 16 invariably to cor-
rectly connect the front and rear modules. For the pairwise
node comparison strategy in SimGNN, the default settings
of previous work were used. For the parameter h in PatchAtt,
we set it to 4, whichmeans the node-level matrix was divided
into 4 patches. And for each patch, global average pooling
combined with two full-connected layers was used for cal-
culating its attention score.

DeepSIM is built by TensorFlow + Keras and all meth-
ods were tested on a single machine with an Intel Xeon
Silver 4110CPU,NVIDIAGeForceGTX1080 andNVIDIA
Quadro RTX 5000 GPU. We set the batch size to 128 and
used Adam (Kingma et al. 2014) as the optimizer with the
initial learning rate to 0.001 and weight decay to 0.0005 dur-
ing the training process. For each training, epoch is set by
default to 5 and test set was used to get the corresponding
evaluation metrics.

4.5 Results

The experimental results are shown in Tables 2, 3, 4 and
5. Our proposed two methods (DeepSIM and DeepSIM_A1)
have achieved good performance in comparison experiments
with good stability andwewill show the experimental results
and give a brief analysis in this subsection.

Among all the methods involved in the experiment, Deep-
SIM_A1 based on FINTN achieves a surprising performance
compared to previous deep learning methods, which proves
that our proposed interaction mechanism is of great ben-
efit for vectors relationship mining in this domain. Note
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Table 2 Results of five
experiments on AIDS

Method MSEmin(10−3) MSEavg(10−3) R2
avg τavg p@10 p@20 σ5

S-GCN 6.578 6.663 0.360 0.679 0.334 0.484 0.062

HS-GCN 6.326 6.452 0.377 0.681 0.337 0.491 0.114

SingleLayer 6.476 6.763 0.350 0.670 0.333 0.482 0.347

SimGNN_S1 6.446 6.581 0.368 0.604 0.312 0.466 0.124

DeepSIM_A1 6.323 6.433 0.382 0.683 0.340 0.492 0.068

MGMN 6.341 6.469 0.372 0.680 0.332 0.486 0.075

SimGNN 7.163 7.413 0.288 0.604 0.308 0.457 0.220

GraphSIM 6.217 6.340 0.390 0.681 0.341 0.494 0.078

DeepSIM 6.370 6.411 0.384 0.674 0.342 0.492 0.040

Bold values indicate the optimal results in the experiment

Table 3 Results of five
experiments on LINUX

Method MSEmin(10−3) MSEavg(10−3) R2
avg τavg p@10 p@20 σ5

S-GCN 14.621 16.726 0.660 0.796 0.682 0.721 1.590

HS-GCN 15.911 16.566 0.663 0.809 0.679 0.691 0.560

SingleLayer 13.941 15.433 0.681 0.818 0.677 0.713 1.434

SimGNN_S1 14.861 15.332 0.682 0.854 0.681 0.723 0.567

DeepSIM_A1 13.812 14.132 0.704 0.846 0.706 0.728 0.299

MGMN 14.088 14.221 0.693 0.824 0.697 0.724 0.155

SimGNN 14.324 14.901 0.699 0.831 0.691 0.723 0.416

GraphSIM 13.551 14.897 0.693 0.822 0.708 0.732 0.960

DeepSIM 11.990 12.580 0.738 0.861 0.713 0.747 0.946

Bold values indicate the optimal results in the experiment

Table 4 Results of five
experiments on IMDB

Method MSEmin(10−3) MSEavg(10−3) R2
avg τavg p@10 p@20 σ5

S-GCN 2.751 3.581 0.939 0.932 0.869 0.849 0.773

HS-GCN 2.912 3.074 0.951 0.919 0.874 0.866 0.166

SingleLayer 3.291 3.469 0.942 0.913 0.887 0.856 0.253

SimGNN_S1 2.936 3.249 0.945 0.872 0.857 0.827 0.198

DeepSIM_A1 2.118 2.325 0.965 0.914 0.889 0.879 0.267

MGMN 2.216 2.341 0.962 0.908 0.876 0.863 0.087

SimGNN 2.218 2.637 0.958 0.911 0.868 0.856 0.241

GraphSIM 1.967 2.165 0.965 0.915 0.882 0.874 0.161

DeepSIM 2.042 2.163 0.966 0.921 0.882 0.859 0.114

Bold values indicate the optimal results in the experiment

that while FINTN and NTN have the same time complex-
ity, our Approach 1 outperforms other single-branch feature
inference methods (SimGNN_S1 and SingleLayer) in all
comparisons.

In addition to effectiveness,we also focus on the efficiency
of the proposed methods. Considering that all the methods
involved in the comparison use the same graph convolution
module in the process of embedding graph structured data
with the number of nodes N, the time complexity of the
embedding relation inference module for all methods will
be discussed in Table 6.

SimGNN and SimGNN_S1 perform poorly on small
dataset (AIDS), probably because the features of small
datasets are not obvious enough, which means the num-
ber of training sets is also insufficient to make the models
adequately trained. Also, on the AIDS dataset, SimGNN’s
histogram feature supplementation approach did not achieve
good results, but instead greatly reduced the performance of
its strategy 1 (SimGNN_S1). This phenomenon proves that
the untrained supplementation method in node-level branch
is not reliable enough. However, GraphSIM achieves bet-
ter performance compared to other methods, including our
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Table 5 Results of five
experiments on PTC_MR

Method MSEmin(10−3) MSEavg(10−3) R2
avg τavg p@10 p@20 σ5

S-GCN 2.966 3.147 0.542 0.939 0.657 0.764 0.147

HS-GCN 2.913 2.943 0.569 0.951 0.653 0.758 0.023

SingleLayer 2.641 2.774 0.596 0.940 0.652 0.753 0.133

SimGNN_S1 2.764 2.987 0.564 0.948 0.658 0.761 0.204

DeepSIM_A1 2.642 2.723 0.603 0.911 0.636 0.746 0.068

MGMN 2.712 2.780 0.597 0.932 0.652 0.751 0.051

SimGNN 2.876 2.952 0.568 0.903 0.651 0.754 0.080

GraphSIM 2.622 2.746 0.602 0.914 0.653 0.754 0.077

DeepSIM 2.534 2.672 0.603 0.937 0.633 0.744 0.107

Bold values indicate the optimal results in the experiment

two proposed models. This result demonstrates the effective-
ness of its node ordering andmulti-scale structure design and
inspires our future work. On the LINUX dataset, DeepSIM
significantly achieves optimal and stable performance.

On the IMDBdataset, the p@10values are greater than the
p@20 values for each model. This indicates that the uneven
label distribution on this dataset leads to large fluctuations in
the local best-fit results for each method. GraphSIM wins in
terms of optimal performance, while DeepSIM is better in
average performance comparison.

Generally, methods with excellent overall metrics are
also better in local metrics comparisons. However, on the
PTC_MRdataset, DeepSIM andDeepSIM_A1 achieve good
performance in the overall metric comparison, but the local
indicator (precision at k) is slightlyworse. This result demon-
strates that the DeepSIM and DeepSIM_A1 methods prefer
to find a balance between easier-to-fit data and hard-to-fit out-
lier points during the training process to improve the overall
model performance while other methods may focus more on
the prediction result for a single time.

In terms of efficiency (as in Table 6), the time com-
plexity of all single-branch methods is O(N ), i.e., there is
no complex interaction between graph pair embeddings in
such methods, which are mostly simple vector stitching. In
this case, SimGNN only uses the histogram to obtain the
direct embedding interaction of graph pairs as an informa-
tion supplement and its extra time overhead is mainly in
the histogram feature generation algorithm (hist). MGMN,
GraphSIM and DeepSIM all transform graph pair embed-
dings into two-dimensional matrices and perform feature
extraction by convolution in order to mine potential associa-
tions. Suchmethods achieve better results in experiments, but
require high time overhead. Our proposed FINTN (applied
in DeepSIM_A1) achieves better predictions in comparison
experiments with O(N ) time complexity, which proves its
effectiveness and good performance.

Table 6 Time complexity comparison of relational reasoning modules

Method Time complexity

S-GCN O(N )

HS-GCN O(N )

SingleLayer O(N )

SimGNN_S1 O(N )

DeepSIM_A1 O(N )

MGMN O(N 2)

SimGNN O(N )

GraphSIM O(N 2)

DeepSIM O(N 2)

5 Conclusion and discussion

In this paper, a novel two-branch deep learning model for
computing graph similarity is proposed and performs well
in comparative experiments. The improved neural tensor
network (FINTN) significantly outperforms other reasoning
methods in this area.

In several comparisons, DeepSIM_A1 achieves good
results with low time complexity, which proves that NTN
is inadequate for inference of graph-level embedding rela-
tions and also shows that considering distance and direction
metrics of vectors on the feature space is beneficial for graph
similarity calculation. Thus, we believe thatwhen the scale of
dataset or the average number of nodes in the data is large, the
node-level method of DeepSIM can be discarded to improve
the training speed with a tolerable performance
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loss.
PatchAtt emphasizes the weight between local blocks

and considers the relationship with the whole interaction
matrix. The node-level CNN module based on this atten-
tion mechanism performs well in the experiments and
achieves the best results on some datasets, which proves that
considering node-level features is beneficial for similarity
computation.However, focusing on fine-grained information
introduces additional computational cost and may cause
overfitting.

Despite the good results of DeepSIM, there are still many
aspects that deserve further study in the future:

• DeepSIMperformswell in the similarity comparison task
on multiple datasets, but still suffers from slow training
due to the high time complexity of node branching. Just
like SimGNN, designing a fast and reliable node-level
feature extraction module will be an important direction
for our future work.

• FINTNexcels in the field of similarity calculation, but the
order of nodes on the two graphs is not considered, i.e.,
whether the vector difference and cosine similarity on
the feature space are reasonable or not depends entirely
on the performance of siamese GCNmodule. Some deep
learning methods have been proposed for graph struc-
ture space alignment, which we believe is very useful for
graph comparison tasks.

• The node interaction matrix in this study consists of the
output of three siameseGCN layers, but a large amount of
detail information may be lost in the process (i.e., only
the high-dimensional information describing the graph
structure is retained), which is detrimental to fine-grained
node-level interaction feature extraction. A new interac-
tion matrix generation method to retain more details will
be one of the future research directions.
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See Figs. 8, 9, 10.
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Fig. 8 Box plots of GED values for the four datasets

Fig. 9 Result of experiments
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Fig. 10 Result of experiments
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