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Abstract

This study simulates the start of coronavirus infection using a mathematical model based on ordinary

differential equations (Covid-19). Additionally, provide the numerical treatment and simulation of this

model using the finite element approach (FEM). The goal of this research is to stop and slow the spread

of a sickness that is ravaging the globe. A susceptible person may also transfer immediately to the

quarantined class after the exposed person has been quarantined or moved to one of the contaminated

classes. This model was employed by the researchers to account for both asymptomatic and symptomatic

infected people. The proposed model is reduced to a set of algebraic equations using the FEM. The

resulting system is then created as an optimization problem with constraints, which is subsequently

optimized to obtain the solution and the unknown coefficients. The obtained findings are compared to

those produced using the fourth-order Runge-Kutta method (RK4). Finally, we calculate the residual

error function of the approximation in order to validate the FEM, and it is presented in symmetric forms.

Keywords: Covid-19; FEM; Optimization technique; Residual error function; RK4 method.

MSC 2010: 34A12; 41A30; 47H10; 65N20.

1 Introduction

There are many models were used to describe many phenomena in biology and Covid-19 like([1]-

[4]), In order to gain insight into the pandemic’s mode of spread, transmission, effect, prevention,
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and control, as well as the effects of preventive measures like hand washing with a disinfectant

like hand sanitizer, increasing distance between people, and face masks for everyone, researchers

have been using and creating mathematical models ([5]-[7]).

In ([5], [8]), the early stages of the outbreak scenario of Covid-19’s dissemination in Nigeria were

examined and assessed by the authors. Good research on preventive and therapeutic strategies

to curb the epidemic has been provided by researchers from a range of fields, with encouraging

outcomes. The most current models need to be examined more thoroughly, nevertheless, in order

to make a valid and satisfied judgment.

All of the models described in the preceding investigations used classical derivatives, with some

restrictions on the order of differential equations involved ([9], [10]). These differential operators

have memory qualities, allowing them to be utilized to demonstrate a wide range of scientific

phenomena and facts involving dynamics ([11]-[17]). The concept of differential equations in

general, and ODEs in particular, has gained a lot of interest due to its wide-ranging improvements

and numerous applications in several disciplines ([18]-[22]).

Many academics have successfully used a variety of numerical and approximation approaches

to solve ODEs. When dealing with this kind of issue, the finite element approach (FEM) [14] has

a number of benefits because the coefficients for the solution can be quickly acquired using any of

the available numerical programs. In the paragraphs that follow, we’ll go through this method’s

primary benefits:

1. FEM may be used to model and solve irregular and complicated geometrical shapes.

2. FEM may be used to solve a problem with great precision and efficiency.

3. For some time-dependent simulations, such crash simulations, where deformations in one

area depend on deformations in another, FEM is more advantageous.

The primary goal of this study is to numerically solve the Covid-19 suggested system. The

FEM breaks down the issue into a series of algebraic equations. The system is then modeled as

a restricted optimization problem, which is subsequently optimized to find the solution and the

unknown coefficients. By examining the locally asymptotically stable disease-free equilibrium, the

locally asymptotically stable endemic equilibrium point, and the globally asymptotically stable

endemic equilibrium, the recommended model’s qualitative analysis is provided.

The following is how the paper is set up:

• The model is formulated and the parameters defined in the model are described in Section

2.

• We provide a qualitative analysis of the suggested model in Section 3.
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Figure 1. Flowchart describing the dynamics of spread the model of Covid-19.

• The FEM solution approach is shown in Section 4.

• The model’s sensitivity analysis and numerical simulation are highlighted in Section 5.

• The paper’s conclusion is presented in Section 6.

2 Formulation of the Model

Let N(t) be the total number of people. Individuals who are susceptible S(t), exposed E(t),

asymptotically infected IA(t), symptomatically infected IS(t), quarantined Q(t), and removed

R(t) from Covid-19 The seven classifications in this population are R(t).

Taking this into account, the total population is [23]

N(t) = S(t) + E(t) +Q(t) + IA(t) + IS(t) +R(t).

A system of ODEs is generated using the schematic diagram in Figure 1 and described in [23]:

The nonlinear ordinary differential equations system can be written as follows:
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Ṡ(t) = Λ− (τ + µ)S(t)− βS(t)E(t),

Ė(t) = βS(t)E(t)− (γ + µ+ η + σ)E(t),

Q̇(t) = τS(t) + γE(t)− (µ+ v + θ)Q(t),

İA(t) = σE(t) + θQ(t)− (µ+ r1) IA(t),

İS(t) = ηE(t) + vQ(t)− (δ + µ+ r2) IS(t),

Ṙ(t) = r1IA(t) + r2IS(t)− µR(t),

(1)

with the following initial conditions:

S(0) = S0, E(0) = E0, Q(0) = Q0, IA(0) = IA0, IS(0) = IS0, R(0) = R0, (2)

all the quantities S0, E0, Q0, IA0, IS0, R0 ≥ 0. Where included parameters are defined in details

in [23].

3 The proposed model’s qualitative analysis

Because the reproduction number is required for the investigation of infection illness models, we

give the computation and presentation of the basic reproduction number [24] in this section. We

also present the invariant region for the suggested model (1) and investigate the following points:

1. Its disease-free equilibrium is locally asymptotically stable.

2. One-of-a-kind endemic equilibrium point.

3. Its one-of-a-kind endemic equilibrium point is locally asymptotically stable.

4. Its endemic equilibrium is globally asymptotically stable.

3.1 Region of invariance

It is crucial to note that S(t), E(t), Q(t), IA(t), IS(t), R(t) are nonnegative for all t ≥ 0 which is

important for characterizing the human population in the model (1). This guarantees that the

system’s solution (1) with positive initial data remains positive for all t ≥ 0 and is bounded. It is

easy to see that:
dN(t)

dt
= Λ− µN(t)− δIS(t), and sup

t→+∞

N(t) 6
Λ

µ
.

Taking these assumptions into account, we can investigate this model in the region:

Ω =

{

(S(t), E(t), Q(t), IA(t), IS(t), R(t)) ∈ R
6
+ : 0 6 N(t) 6

Λ

µ

}

. (3)

Now, we can see that the system under study (1) is epidemiologically well-posed, and that all of

its componds (S(t), E(t), Q(t), IA(t), IS(t), R(t)) ∈ R
6
+ remain in Ω are well-posed as well (ref3).
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3.2 Diseases free equilibrium point

We set E = Q = IA = IS = R = 0 to achieve the disease free equilibrium (DFE), i.e. the DFE

point Ē0 of the system (1) can be defined as follows:

Ē0 = (S0, 0, 0, 0, 0, 0) =

(

Λ

τ + µ
, 0, 0, 0, 0, 0

)

.

Definition 1. The expected value of infection rate per time unit is given by R0, the fundamental

reproduction number.

The major goal of this section is to deduce the condition that makes the Ē0 asymptotically

stable locally. There are some facts [24] will help us reach this goal.

The article develops an equation that involves the classes of the exposed population without

symptom, and infected population with symptom as follows, without losing generality, as shown

by the model (1) [23]:

Ė(t) = βS(t)E(t)− (γ + µ+ η + σ)E(t),

Q̇(t) = τS(t) + γE(t)− (µ+ v + θ)Q(t),

İA(t) = σE(t) + θQ(t)− (µ+ r1) IA(t),

İS(t) = ηE(t) + vQ(t)− (δ + µ+ r2) IS(t).

(4)

We may create the following matrices F and V using equations (ref4) and the same technique used

in [23]:

F =













βS(t)E(t)

0

0

0













, V =













(γ + µ+ η + σ)E(t)

−τS(t)− γE(t) + (µ+ v + θ)Q(t)

−σE(t)− θQ(t) + (µ+ r1) IA(t)

−ηE(t)− vQ(t) + (δ + µ+ r2) IS(t)













.

As did in [23], the Jacobian matrix of F and V at Ē0, denoted by F and V , respectively are:

F =













βΛ
τ+µ

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0













, V =













γ + µ+ η + σ 0 0 0

−γ µ+ v + θ 0 0

−σ −θ µ+ r1 0

−η −v 0 δ + µ+ r2













.

Also, as did in [24], R0 is defined by:

R0 = ρ
(

FV −1
)

=
βΛ

(γ + µ+ η + σ)(τ + µ)
> 0,
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where ρ refers for spectral radius of

FV −1 =













βΛ
A(τ+µ)

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0













.

Theorem 1. (A study of the Ē0’s local stability [23])

If R0 < 1, the disease-free equilibrium Ē0 is locally asymptotically stable.

3.3 Analysis of the existence and stability of an endemic equilibrium

point

The existence of an endemic equilibrium point, indicated by Ē1 = (S∗, E∗, Q∗, I∗A, I
∗

S, R
∗), will be

discussed in this part. The following notions will be used: S(t) = S, E(t) = E, Q(t) = Q, IA(t) =

IA, IS(t) = IS, and R(t) = R.

This endemic equilibrium is known to satisfy [23]:

0 = Λ− (τ + µ)S∗ − βS∗E∗,

0 = βS∗E∗ − (γ + µ+ η + σ)E∗,

0 = τS∗ + γE∗ − (µ+ v + θ)Q∗,

0 = σE∗ + θQ∗ − (µ+ r1) I
∗

A,

0 = ηE∗ + vQ∗ − (δ + µ+ r2) I
∗

S,

0 = r1I
∗

A + r2I
∗

S − µR∗.

(5)

We can find the solution of this system (5) in the following way using basic computation and

simplification [23]:

S⋆ =
γ + µ+ η + σ

β
, E⋆ =

(τ + µ)

β
(R0 − 1) ,

Q∗ =
τβ(γ + µ+ η + σ) + γ(τ + µ)

β(µ+ v + θ)
(R0 − 1) ,

I⋆A =
(τ + µ)[σ(µ+ v + θ) + γθ]

β(µ+ v + θ) (µ+ r1)
(R0 − 1) ,

I⋆S =
(τ + µ)[η(µ+ v + θ) + τβv(γ + v + η + σ) + γ]

β(µ+ v + θ) (δ + µ+ r2)
(R0 − 1) ,

R∗ =
1

µ

[

[(τ + µ)[σ(µ+ v + θ) + γθ]]r1
β(µ+ v + θ) (µ+ r1)

+
[(τ + µ)[η(µ+ v + θ) + τβv(γ + v + η + σ) + γ]]r2

β(µ+ v + θ) (δ + µ+ r2)

]

(R0 − 1) .

6



We can express and prove the following theorem in view of these components of the system solution

(5).

Theorem 2. [23]

The system (1) has a single endemic equilibrium point, which is defined as:

Ē1 =

(

γ + µ+ η + σ

β
, a (R0 − 1) , b (R0 − 1) , c (R0 − 1) , d (R0 − 1) ,

(cr1 + dr2)

µ
(R0 − 1)

)

,

whenever R0 > 1 and

a =
(τ + µ)

β
, b =

τβ(γ + µ+ η + σ) + γ(τ + µ)

β(µ+ v + θ)
,

c =
(τ + µ)[σ(µ+ v + θ) + γθ]

β(µ+ v + θ) (µ+ r1)
, d =

(τ + µ)[η(µ+ v + θ) + τβv(γ + v + η + σ) + γ]

β(µ+ v + θ) (δ + µ+ r2)
.

Theorem 3. (A study of the Ē1’s local stability [23])

The endemic equilibrium Ē1 is locally asymptotically stable if R0 > 1.

Theorem 4.

There are no periodic orbits in the system (1).

Because Ω is positively invariant, all solutions of the system (1) originate and remain in Ω for all

t, according to the Poincare-Bendixson theorem. As a result, we’ll wrap up this impoetant note

with the following theorem.

Theorem 5. (A study of the Ē1’s global stability [23])

When R0 > 1, the system (1)’s endemic equilibrium Ē1 is globally asymptotically stable. The

endemic equilibrium for the system (1) is globally asymptotically stable whenever.

4 FEM solution procedure

The FEM is a strong approach for solving ODEs and PDEs as well as integral equations. The

primary concept behind this approach is that the entire domain is broken into smaller, finite-

dimensional elements known as Finite Elements. It is a numerical technique used in current

engineering analysis to investigate many problems in domains such as chemical processing [15],

solid mechanics [25], fluid mechanics [26], heat transfer [27], electrical systems, and many others.

The following steps will be followed in order to apply the FEM [16]:

1. The suggested system’s variational formulation.
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2. Discrete-element discretization, which is a method of discretizing using finite elements.

3. The creation of element equations.

4. Putting together the element equations.

5. Boundary conditions are imposed.

6. Solve an algebraic system of equations.

In the subsections that follow, we’ll put these steps into practice.

4.1 Variational formulation of the system (1)

Over a typical linear element (te, te+1), the related variational form of the system of Eqs.(1) is as

follows:
∫ te+1

te

φ1 [S
′(t)− Λ + (τ + µ)S(t) + βS(t)E(t)] dt = 0, (6)

∫ te+1

te

φ2 [E
′(t)− βS(t)E(t) + (γ + µ+ η + σ)E(t)] dt = 0, (7)

∫ te+1

te

φ3 [Q
′(t)− τS(t)− γE(t) + (µ+ v + θ)Q(t)] dt = 0 (8)

∫ te+1

te

φ4 [I
′

A(t)− σE(t)− θQ(t) + (µ+ r1) IA(t)] dt = 0, (9)

∫ te+1

te

φ5 [I
′

S(t)− ηE(t)− vQ(t) + (δ − µ− r2) IS(t)] dt = 0, (10)

∫ te+1

te

φ6 [R
′(t)− r1IA(t)− r2IS(t) + µR(t)] dt = 0, (11)

where φ1, φ2, φ3, φ4, φ5, and φ6 are arbitrary test functions that can be thought of as variations

in S(t), E(t), Q(t), IA(t), IS(t) and R(t), respectively.

4.2 Model’s finite element formulation

The domain is discretized when it is split up into a finite number of smaller domains. The term

”element” is used to describe each sub-domain. A group of elements make up the finite-element

mesh. The variational formulation of the given problem is built over the typical element after a

typical element is isolated from the mesh.
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We’ll get the finite element model from the preceding equations (1) in this part by substituting

finite element approximations of the following form:

S(t) =
2

∑

ℓ=1

āℓΥℓ, E(t) =
2

∑

ℓ=1

b̄ℓΥℓ, Q(t) =
2

∑

ℓ=1

c̄ℓΥℓ,

IA(t) =
2

∑

ℓ=1

d̄ℓΥℓ, IS(t) =
2

∑

ℓ=1

ēℓΥℓ, R(t) =
2

∑

ℓ=1

f̄ℓΥℓ,

(12)

together with

φ1 = φ2 = φ3 = φ4 = φ5 = φ6 = Υℓ, (ℓ = 1, 2).

In our calculations, we’ll use two types of functions from a typical element (te, te+1), which are

specified as follows:

Linear element:

Υe
1 =

te+1 − t

te+1 − te
, Υe

2 =
t− te

te+1 − te
, te ≦ t ≦ te+1. (13)

Quadratic element (te ≦ t ≦ te+1):

Υe
1 =

(te+1 − te − 2t)(te+1 − t)

(te+1 − te)2
, Υe

2 =
4(t− te)(te+1 − t)

(te+1 − te)2
, Υe

3 = −
(te+1 − te − 2t)(t− te)

(te+1 − te)2
.

(14)

By substituting the solution or element interpolation functions (12) into the aforementioned system

(6)-(11), an approximate solution of the variational problem (6)-(11) is formed, and the element

equations are formulated. The following matrix form (stiffness matrix) can be used to create the

equations of the finite element model:

























[K11] [K12] [K13] [K14] [K15] [K16]

[K21] [K22] [K23] [K24] [K25] [K26]

[K31] [K32] [K33] [K34] [K35] [K36]

[K41] [K42] [K43] [K44] [K45] [K46]

[K51] [K52] [K53] [K54] [K55] [K56]

[K61] [K62] [K63] [K64] [K65] [K66]

















































{S}

{E}

{Q}

{IA}

{IS}

{R}

























=

























{b1}

{b2}

{b3}

{b4}

{b5}

{b6}

























, (15)
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such that element matrices [Krs] and [br] (r, s = 1, 2, 3, 4, 5, 6,) are given by:

[

K11
ij

]

=

∫ te+1

te

(

Υi
dΥj

dt
+ (τ + µ)ΥiΥj

)

dt,
[

K12
ij

]

= β

∫ te+1

te

(

Υi S̄Υj

)

dt,

[

K13
ij

]

= 0,
[

K14
ij

]

= 0,
[

K15
ij

]

= 0,
[

K16
ij

]

= 0,

[

K21
ij

]

= −β

∫ te+1

te

(

Υi ĒΥj

)

dt,
[

K22
ij

]

=

∫ te+1

te

(

Υi
dΥj

dt
+ (γ + µ+ η + σ)ΥiΥj

)

dt,

[

K23
ij

]

= 0,
[

K24
ij

]

= 0,
[

K25
ij

]

= 0,
[

K26
ij

]

= 0,

[

K31
ij

]

= −τ

∫ te+1

te

(ΥiΥj) dt,
[

K32
ij

]

= −γ

∫ te+1

te

(ΥiΥj) dt,

[

K33
ij

]

=

∫ te+1

te

(

Υi
dΥj

dt
+ (µ+ υ + θ)ΥiΥj

)

dt,
[

K34
ij

]

= 0,
[

K35
ij

]

= 0,
[

K36
ij

]

= 0,

[

K41
ij

]

= 0,
[

K42
ij

]

= −σ

∫ te+1

te

(ΥiΥj) dt,
[

K43
ij

]

= −θ

∫ te+1

te

(ΥiΥj) dt,

[

K44
ij

]

=

∫ te+1

te

(

Υi
dΥj

dt
+ (µ+ r1)ΥiΥj

)

dt,
[

K45
ij

]

= 0,
[

K46
ij

]

= 0,

[

K51
ij

]

= 0,
[

K52
ij

]

= −η

∫ te+1

te

(ΥiΥj) dt,
[

K53
ij

]

= −υ

∫ te+1

te

(ΥiΥj) dt,

[

K54
ij

]

= 0,
[

K55
ij

]

=

∫ te+1

te

(

Υi
dΥj

dt
+ (δ − µ− r2)ΥiΥj

)

dt,
[

K56
ij

]

= 0,

[

K61
ij

]

= 0,
[

K62
ij

]

= 0,
[

K63
ij

]

= 0,
[

K64
ij

]

= −r1

∫ te+1

te

(ΥiΥj) dt,

[

K65
ij

]

= −r2

∫ te+1

te

(ΥiΥj) dt,
[

K66
ij

]

=

∫ te+1

te

(

Υi
dΥj

dt
+ µΥiΥj

)

dt,

b1i = Λ

∫ te+1

te

Υi dt, b2i = 0, b3i = 0, b4i = 0, b5i = 0, b6i = 0,

(16)

in which

S̄ =
2

∑

ℓ=1

S̄ℓΥℓ, Ē =
2

∑

ℓ=1

Ēℓ Υℓ.

We compute all the integrals in (15) using Gaussian quadrature, so we can see that the applicability

of the form functions varies from problem to problem. We use linear and quadratic shape functions

to create a simple and efficient implementation in computations in the current problem. However,

the results do not differ significantly, implying that both elements yield nearly the same accuracy.

4.3 Imposition of the boundary conditions and the solution of the

algebraic equations system

1. We divide the entire domain into 700 line elements, and since each element matrix is of the

order 12×12, we may construct a matrix of the order 8406×8406 by following the assembly

of all of the element equations. We’ll use an iterative technique to solve the resulting system
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of equations because it’s significantly nonlinear. By including the functions S̄, and Ē, which

are assumed to be known, the system is linearized. After applying the supplied initial

conditions, the resultant system will reduce to 8395 equations.

2. In order to solve this problem, we use the Gauss elimination method with a precision of

0.0001. The relative difference between the current and prior iterations is used as a con-

vergence criterion. When the precision of these differences reaches the desired level, the

solution is said to have converged, and the iterative process is over.

5 Numerical simulation

We look at the proposed system (1) with the following parameter values [23]:

τ = 0.0002, β = 0.0805, δ = 0.000016728, γ = 0.00020138, η = 0.4478, θ = 0.0101,

µ = 0.0106, υ = 0.0003208, σ = 0.0668, Λ = 0.02537, r1 = 0.00005734, r2 = 0.00001673,

and different values of S0, E0, Q0, IA0, IS0, R0. Figures 2-4 show a numerical simulation of the

investigated model using the proposed method.

Figure 2 depicts the behavior of the approximate solution for various natality rate values

Λ = 0.01, 0.03, 0.05, in the interval (0, 120), with initial conditions S0 = 0.5, E0 = 0.2, Q0 =

0.1, IA0 = 0.2, IS0 = 0.1, R0 = 0.0. Where in this case, the fundamental reproduction number

R0 < 1 in all cases, and in the view of Theorem 1, we can note that the disease free equilibrium

point Ē0 is locally asymptotically stable.

In Figure 3, we show the behavior of the approximate solution in the domain (0, 120) where

the components of solution S(t), E(t), Q(t), IA(t), IS(t), R(t) are represented by different val-

ues of the initial conditions in Figures 3a-3f, respectively. In this situation, we’ll look at three

scenarios:

i. S0 = 0.5, E0 = 0.1, Q0 = 0.1, IA0 = 0.3, IS0 = 0.3, R0 = 0.0;

ii. S0 = 0.3, E0 = 0.2, Q0 = 0.2, IA0 = 0.1, IS0 = 0.2, R0 = 0.0;

iii. S0 = 0.5, E0 = 0.3, Q0 = 0.3, IA0 = 0.2, IS0 = 0.1, R0 = 0.0.

In all of these circumstances, the fundamental reproduction number R0 < 1 is used.

The residual error function (REF) is introduced in Figure 4 using the same parameters and
domain as in Figure 2, as well as the following initial conditions:

S0 = 0.5, E0 = 0.2, Q0 = 0.1, IA0 = 0.2, IS0 = 0.1, R0 = 0.0.

11



Figure 2. Behavior of the approximate solution via different values of Λ.
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Figure 3. Behavior of the approximate solution via different values of initial values.
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Figure 4. The REF of the approximate solution.

We can see from this figure that the theoretical results on stability acquired in the preceding

section are correct.

We compared the solution generated by the FEM with the fourth-order Runge-Kutta method

in Figure 5 (RK4) with the same parameters and domain (0, 150) as in Figure 4, and the following

initial conditions S0 = 0.2, E0 = 0.1, Q0 = 0.1, IA0 = 0.2, IS0 = 0.2, R0 = 0.0.

The behavior of the numerical solution is dependent on the values of Λ, the initial circumstances,

and the included parameters τ, β, δ, γ, η, θ, µ, υ, σ, Λ, r1, r2, as shown in Figures 2-5, indicating

that the proposed approach is well implemented for solving the given problem. We may also

validate that the disease’s expected behavior has occurred, resulting in a clear simulation of the

14



model.

6 Conclusions and remarks

We used the FEM to simulate the proposed model (Covid-19) in this work. A specific emphasis

is placed on presenting the qualitative analysis of the model. The model contains two equilibrium

points: disease-free equilibrium point Ē0 and endemic equilibrium point Ē1, according to the find-

ings. In addition, the equilibrium points reveal that Ē0 is locally asymptotically stable whenever

the fundamental reproduction number, R0 < 1, and Ē1 are globally asymptotically stable when-

ever R0 > 1. The parameters in the R0 were subjected to a sensitivity analysis, and the profile

of each state variable was also presented using the fitted values of the parameters to demonstrate

the disease’s spread. The contact rate between susceptible individuals and the rate of transfer of

persons from exposed to symptomatically infected classes are the most sensitive criteria in the R0.

The solutions obtained with various values for the parameters, as well as the initial conditions for

the studied problem, demonstrate that the offered method is well suited to successfully explore

this model. In addition, the REF is calculated to ensure that the suggested technique is genuine.

The results approve that the given approach is an effective tool for investigating the numerical

solution for such models. Finally, we can see that our numerical solution of the suggested model

and the numerical solution obtained using the RK4 method are in perfect agreement. Our study,

on the other hand, may provide stronger physical interpretations for future theoretical and com-

putational investigation on this topic by capturing this numerical analysis. Mathematica is used

to calculate all numerical results.
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Figure 5. Comparison the solution obtained by FEM and RK4.
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