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Abstract

Recently, the latticized linear programming problems subjected to max-min and max-product fuzzy rela-

tional inequalities (FRI) have been studied extensively and have been utilized in many interesting appli-

cations. In this paper, we introduce a new generalization of the latticized optimization problems whose

objective is a non-linear function defined by an arbitrary continuous s-norm (t-conorm), and whose con-

straints are formed as an FRI defined by an arbitrary continuous t-norm. Firstly, the feasible region of the

problem is completely characterized and two necessary and sufficient conditions are proposed to determine

the feasibility of the problem. Also, a general method is proposed for finding the exact optimal solutions

of the non-linear model. Then, in order to accelerate the general method, five simplification techniques are

provided that reduce the work of computing an optimal solution. Additionally, a polynomial-time method

is presented for solving general latticized linear optimization problems subjected to the continuous FRI.

Moreover, an application of the proposed non-linear model is described where the objective function and

the FRI are defined by the well-known Lukasiewicz s-norm and product t-norm, respectively. Finally, a

numerical example is provided to illustrate the proposed algorithm.

Key words: fuzzy relational inequalities, continuous t-norms, continuous s-norms, latticized linear

programming, non-linear optimization.

1. Introduction

Resolution of fuzzy relational equations (FRE) with max-min composition was first studied by Sanchez

[1]. Besides, Sanchez developed the application of FRE in medical diagnosis in biotechnology. Nowadays, it

is well known that many of the issues associated with body knowledge can be treated as FRE problems [2].

The fundamental result for FRE with max-product composition goes back to Pedrycz [3], and was further

studied in [4, 5]. Since then, many researchers studied different FREs defined by various types of t-norm
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operators [6–18]. Moreover, some other researchers have worked on introducing a novel concept, and at

times improving some of the existing theoretical aspects and applications of fuzzy relational inequalities

(FRI) [19–26].

Generally, there are three important difficulties related to the optimization problems subject to FRE

or FRI regions. First, to completely determine FREs and FRIs, we must initially find all the minimal

solutions, and, the finding of all the minimal solutions is an NP-hard problem [8, 27]. Second, a feasible

region formed as FRE or FRI is often a non-convex set determined by one maximum solution and a finite

number of minimal solutions [6, 7, 10–15, 18, 19, 22]. Third, FREs and FRIs as feasible regions lead to

optimization problems with highly non-linear constraints. Due to the above mentioned difficulties, the

optimization problem subject to FRE and FRI is one of the most interesting and on-going research topics

amongst similar problems [6, 19–24, 26, 28–38].

The linear optimization problem subjected to various versions of FRI is widely available in the literature

[19, 21–26, 39–42]. Guo et al. [24] studied the linear programming problem with max-min FRI constraint. Li

and Yang [25] introduced the so-called addition-min FRI to characterize a peer-to-peer file-sharing system.

Based on the concept of the pseudo-minimal index, Yang [40] developed a pseudo-minimal-index algorithm

to minimize a linear objective function with addition-min FRI constraint, defined as ai1 ∧ x1 + ai2 ∧ x2 +

... + ain ∧ xn ≥ bi, for i = 1, ...,m, and a ∧ b = min{a, b} [40]. To improve the results presented in [40],

Yang et al. [41] proposed the min-max programming subject to addition-min fuzzy relational inequalities.

They also studied the multi-level linear programming problem with the addition-min FRI constraint [42].

Drewniak and Matusiewicz were interested in max-* fuzzy relation equations and inequalities with the

increasing operation * continuous on the second argument [39]. Ghodousian and Khorram [22] studied the

linear optimization with constraints formed by X(A,D, b1, b2) = {x ∈ [0, 1]n : Aϕx ≤ b1, Dϕx ≥ b2} where

ϕ represents an operator with convex solutions (e.g., non-decreasing or non-increasing operator). They

showed that the feasible region can be expressed as the union of a finite number of convex sets.

Recently, many interesting forms of generalizations of the linear programming applied to the system of

fuzzy relations have been introduced and developed based on composite operations used in FRE or FRI,

fuzzy relations used in the definition of the constraints, some developments on the objective function of the

problems and other ideas [6, 7, 16, 34, 43–46]. For example, Wu et al. represented an efficient method to

optimize a linear fractional programming problem under FRE with max-Archimedean t-norm composition

[16]. Dempe and Ruziyeva generalized the fuzzy linear optimization problem by considering fuzzy coefficients

[43]. In addition, Dubey et al. studied linear programming problems involving interval uncertainty modeled

using an intuitionistic fuzzy set [44]. The linear optimization of bipolar FRE was also the focus of the

study carried out by some researchers where FRE was defined with max-min composition [45] and max-

Lukasiewicz composition [6, 34, 46]. For example, in [46], the authors introduced a linear optimization

problem subjected to a system of bipolar FRE defined as X(A+, A−, b) = {x ∈ [0, 1]m : x◦A+∨ x̃◦A− = b},
2
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where x̃i = 1−xi, for each component of x̃ = (x̃i)1×m and the notations ”∨” and ”◦” denote max operation

and the max-Lukasiewicz composition, respectively. They translated the original problem into a 0−1 integer

linear problem which is then solved using well-developed techniques. In a separate, the foregoing bipolar

linear optimization problem was solved by an analytical method based on the resolution and some structural

properties of the feasible region (using a necessary condition for characterizing an optimal solution and a

simplification process for reducing the problem) [34].

The optimization problems with general nonlinear objective functions and FRE or FRI constraints were

studied in [6, 7, 20, 47]. In general, some heuristic algorithms were applied to deal with this kind of problem.

However, some fuzzy relation nonlinear optimization problems such as geometric programming problems [48]

could be solved by some specific method. Yang et al. [48] studied the single-variable term semi-latticized

geometric programming subject to max-product fuzzy relation equations. The proposed problem was devised

from the peer-to-peer network system and the target was to minimize the biggest dissatisfaction degrees of

the terminals in such system.

Latticized optimization problem was introduced in [49], where the conservative path method was pro-

posed to find out all the minimal solutions of the max-min FRI. Subsequently, the optimal solutions were

selected from the minimal solutions by pairwise comparison. The latticized linear programming problem

subjected to max-min FRI was also investigated in the works [50, 51]. Li and Fang [50] obtained an optimal

solution to the latticized linear programming problem. Besides they studied some variants of the problem.

In [51], based on the concept of semi-tensor product, a matrix approach was applied to handle the latticized

linear programming problem subjected to max-min FRI. Also, Yang et al. [26] introduced the latticized

programming problem defined by minimizing objective function f(x) = x1 ∨ x2 ∨ ... ∨ xn subject to the

feasible region X(A, b) = {x ∈ [0, 1]n : A◦x ≥ b}, where ”◦” denotes fuzzy max-product composition. They,

also, presented a solution matrix approach for solving the problem.

In this paper, we investigate a non-linear generalization of the latticized linear programming problems

that are formulated in the problem below:

minϕ(...(ϕ(ϕ(x1, x2), x3)..., xn)

Aψx ≥ b

x ∈ [0, 1]n

(1)

where ϕ : [0, 1]2 → [0, 1] is an arbitrary continuous s-norm. I = {1, 2, ...,m} and J = {1, 2, ..., n}. A =

(aij)m×n is a fuzzy matrix such that 0 ≤ aij ≤ 1 (∀i ∈ I and ∀j ∈ J) and b = [b1, b2, ..., bm] ∈ [0, 1]m is

a fuzzy vector. Also, Aψx ≥ b denotes fuzzy max-ψ composition where ψ : [0, 1]2 → [0, 1] is an arbitrary

continuous t-norm. So, if ai (i ∈ I) denotes the ith row of matrix A, then the ith constraint of the problem

(1) can be expressed as aiψx ≥ bi, where aiψx =
n

max
j=1

{ψ(aij , xj)}.

Especially, if ϕ is considered as the maximum s-norm, then the objective function of the problem (1) is

3

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



transformed into max{x1, x2, ..., xn}. In this case, if Aψx ≥ b is defined by the max-product composition,

then the problem (1) is reduced to the model studied in [26]. Also, in Section 4, an application of the

problem (1) is described where ϕ and ψ are defined by the Lukasiewicz s-norm and the product t-norm,

respectively.

The rest of the paper is organized as follows. Section 2 discusses basic results on the feasible solutions set

of problem (1) where ϕ represents an arbitrary continuous t-norm. In Section 3, an algorithm is presented

to find the exact optimal solutions to the problem. The general latticized linear programming problems

are described in Section 4, where a polynomial-time method is presented without finding all the minimal

solutions of the feasible region. Section 5 introduces five techniques to reduce the size of the main problem

during the process of finding an optimal solution. Based on the techniques, a procedure for finding an optimal

solution is summarized as well. Finally, Section 6 presents an illustrative example that demonstrates the

effectiveness of the proposed method. Moreover, we show the application background of a special case of

the non-linear latticized optimization problem in which the objective function is defined by the Lukasiewicz

s-norm and the constraints are formed as an FRI defined by the max-product composition.

2. Feasible solution set of the problem (1)

In [22], the authors discussed some properties of FRIs defined by operators with (closed) convex solutions.

In this section, some relevant results are studied about the solutions to a system of max-ψ-continuous FRIs

introduced in the problem (1). For the sake of simplicity, let S(A, b) denote the feasible region of the

problem (1), that is, S(A, b) = {x ∈ [0, 1]n : Aψx ≥ b}. Also, for each constraint aiψx ≥ bi (i ∈ I), let

Si(A, b) = {x ∈ [0, 1]n : aiψx ≥ bi}. So, Si(A, b) denotes the feasible solution set of the ith constraint, and

therefore, we have S(A, b) =
⋂

i∈I

Si(A, b).

Definition 1. For each i ∈ I and each j ∈ J , let Ψij = {xj ∈ [0, 1] : ψ(aij , xj) ≥ bi}. Moreover, if Ψij 6= ∅,

we define x(aij , bi) = inf Ψij and x(aij , bi) = supΨij .

Remark 1. From the least-upper-bound property of R, it is clear that x(aij , bi), and x(aij , bi) exist, if

Ψij 6= ∅. Moreover, since ψ is a t-norm, its monotonicity property implies that Ψij is indeed a connected

subset of [0, 1]. Additionally, by the continuity of ψ, we must have Ψij = [x(aij , bi), x(aij , bi)].

Lemma 1. For each i ∈ I and j ∈ J , Ψij 6= ∅ iff aij ≥ bi. Moreover, if Ψij 6= ∅, then Ψij = [x(aij , bi), 1].

Proof. Let Ψij 6= ∅ and x′ ∈ Ψij , i.e., ψ(aij , x
′) ≥ bi. From the identity law and monotonicity of ψ, we

have bi ≤ ψ(aij , x
′) ≤ ψ(aij , 1) = aij which means bi ≤ aij and 1 ∈ Ψij . Conversely, if aij ≥ bi, then,

bi ≤ aij = ψ(aij , 1) that implies 1 ∈ Ψij , i.e., Ψij 6= ∅. So, Ψij 6= ∅ iff aij ≥ bi. By the above argument, we

can also conclude that Ψij 6= ∅ iff 1 ∈ Ψij . This fact together with Remark 1 result in Ψij = [x(aij , bi), 1],
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if Ψij 6= ∅.

Lemma 1 results in the following important corollaries that provide two equivalent necessary and sufficient

conditions for the feasibility of set Si(A, b), (i ∈ I).

Corollary 1. Let i ∈ I. Then, Si(A, b) 6= ∅ iff there exists at least one j ∈ J such that Ψij 6= ∅.

Proof. Let x′ ∈ Si(A, b). By contradiction, suppose that Ψij = ∅ for each j ∈ J . So, from Lemma 1, we

have aij < bi, ∀j ∈ J . Hence,

aiψx
′ =

n
max
j=1

{ψ(aij , x
′
j)} ≤

n
max
j=1

{ψ(aij , 1)} =
n

max
j=1

{aij} < bi

that contradicts x′ ∈ Si(A, b). Conversely, suppose that Ψij0 6= ∅ (equivalently, aij0 ≥ bi) for some

j0 ∈ J . Also, let 1 be an n–dimensional vector with each component equal to one. So, we have aiψ1 =
n

max
j=1

{ψ(aij , 1)} ≥ ψ(aij0 , 1) = aij0 ≥ bi, that means, 1 ∈ Si(A, b).

Corollary 2. Let i ∈ I. Then, Si(A, b) 6= ∅ iff 1 ∈ Si(A, b), where 1 is an n–dimensional vector with each

component equal to one.

Proof. If 1 ∈ Si(A, b), then obviously Si(A, b) 6= ∅. Conversely, suppose that Si(A, b) 6= ∅. Corollary 1

implies Ψij0 6= ∅ (equivalently, aij0 ≥ bi) for some j0 ∈ J . So, similar to the proof of Corollary 1, we have

aiψ1 ≥ ψ(aij0 , 1) = aij0 ≥ bi, that means, 1 ∈ Si(A, b).

Remark 2. Since S(A, b) =
⋂

i∈I

Si(A, b), Corollary 2 implies that S(A, b) 6= ∅ iff 1 ∈ S(A, b). Therefore, if

problem (1) is feasible, then vector 1 is the unique maximum solution of the feasible region.

Corollary 3 below provides a necessary and sufficient condition for a vector x ∈ [0, 1]n to be a feasible

solution to the constraint aiψx ≥ bi (i ∈ I).

Corollary 3. Suppose that Si(A, b) 6= ∅ for some i ∈ I and x′ ∈ [0, 1]n. Then, x′ ∈ Si(A, b) iff there exists

at least one j0 ∈ J such that x′j0 ∈ Ψij0 .

Proof. Let x′ ∈ Si(A, b). So, aiψx
′ =

n
max
j=1

{ψ(aij , x
′
j)} ≥ bi. Hence, there exist some j0 ∈ J such

that ψ(aij0 , x
′
j0
) ≥ bi, i.e., x′j0 ∈ Ψij0 . Conversely, suppose that x′j0 ∈ Ψij0 for some j0 ∈ J . Thus,

ψ(aij0 , x
′
j0
) ≥ bi, and therefore, aiψx

′ ≥ ψ(aij0 , x
′
j0
) ≥ bi which implies x′ ∈ Si(A, b).

Remark 3. Let x ∈ S(A, b). So, from the equality S(A, b) =
⋂

i∈I

Si(A, b), we have x ∈ Si(A, b), ∀i ∈ I.

Thus, Corollary 1 implies that for each i ∈ I there exists at least one j ∈ J such that Ψij 6= ∅. Conversely,

suppose that for each i ∈ I there exists at least one j ∈ J such that Ψij 6= ∅. So, Corollary 1 implies that

Si(A, b) 6= ∅, ∀i ∈ I, and then, by Corollary 2 we have 1 ∈ Si(A, b), ∀i ∈ I. Hence, 1 ∈ S(A, b) that means

S(A, b) 6= ∅.
5
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Definition 2. Let i ∈ I and Si(A, b) 6= ∅. So, we define J(i) = {j ∈ J : Ψij 6= ∅}. Also, for each j ∈ J(i),

define x(i, j) ∈ [0, 1]n such that x(i, j)k = x(aij , bi) for k = j, and x(i, j)k = 0 otherwise.

Lemma 2. Suppose that Si(A, b) 6= ∅ and j0 ∈ J(i). Then, x(i, j0) is a minimal solution of Si(A, b).

Proof. From Definition 2 and Corollary 3, x(i, j0) ∈ Si(A, b). Suppose that x′ ∈ Si(A, b), x
′ ≤ x(i, j0)

and x′ 6= x(i, j0). So, x′j = 0, ∀j ∈ J − {j0}, and x′j0 < x(aij0 , bi). However, in this case we will have

aiψx
′ =

n
max
j=1

{ψ(aij , x
′
j)} = ψ(aij0 , x

′
j0
) < bi (see Lemma 1) that contradicts x′ ∈ Si(A, b).

Corollary 4. Let x′ ∈ Si(A, b). There exists some j0 ∈ J(i) such that x(i, j0) ≤ x′.

Proof. From Corollary 3, x′j0 ∈ Ψij0 for some j0 ∈ J(i). Hence, x(aij0 , bi) ≤ x′j0 ≤ 1. Now, the result

follows from the definition of x(i, j0) (Definition 2).

Theorem 1. Suppose that i ∈ I and Si(A, b) 6= ∅. Then, Si(A, b) =
⋃

j∈J(i)

[x(i, j),1].

Proof. Let x′ ∈ Si(A, b). From Corollary 4, x(i, j0) ≤ x′ for some j0 ∈ J(i). Therefore, x′ ∈ [x(i, j0),1].

Conversely, let x′ ∈ [x(i, j0),1] for some j0 ∈ J(i). Thus, x′j0 ∈ Ψij0 that implies x′ ∈ Si(A, b) from Corollary

3.

Definition 3. Suppose that S(A, b) 6= ∅. Let e : I →
⋃

i∈I

J(i) be a function from I to
⋃

i∈I

J(i) such that

e(i) ∈ J(i), ∀i ∈ I, and let E denote the set of all the functions e. Sometimes, for the sake of convenience,

each e ∈ E is presented as an m–dimensional vector e = [j1, j2, ..., jm] in which jk = e(k), k = 1, 2, ...,m.

Definition 4. Suppose that S(A, b) 6= ∅ and e ∈ E. We define x(e) ∈ [0, 1]n whose components are defined

as x(e)j = max
i∈I

{x(i, e(i))j}, ∀j ∈ J .

Remark 4. Let I(j) = {i ∈ I : Ψij 6= ∅}, ∀j ∈ J . Also, for each e ∈ E we define Ij(e) = {i ∈ I(j) : e(i) =

j}. So, according to Definitions 3 and 4, each solution x(e) can be equivalently obtained as follows:

x(e)j =











max
i∈Ij(e)

{x(aij , bi)} Ij(e) 6= ∅

0 Ij(e) = ∅

, ∀j ∈ J (2)

Theorem 2. Suppose that S(A, b) 6= ∅. Then, S(A, b) =
⋃

e∈E

[x(e),1].

Proof. From Theorem 1 and the equality S(A, b) =
⋂

i∈I

Si(A, b), we have S(A, b) =
⋂

i∈I

⋃

j∈J(i)

[x(i, j),1], or

equivalently S(A, b) =
⋃

e∈E

⋂

i∈I

[x(i, e(i)),1]. Therefore, S(A, b) =
⋃

e∈E

[max
i∈I

{x(i, e(i))},1]. Now, the result

follows from the definition of x(e).

Based on Theorem 2, the feasible region of the problem (1) is completely determined by the union of a

finite number of closed convex sets [x(e),1], (e ∈ E).
6
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3. A general method for the resolution of the problem (1)

In contrast to vectors x(i, j) (j ∈ J(i)), that are the minimal solutions of Si(A, b) (Theorem 1), all the

vectors x(e) (e ∈ E) may not be necessarily the minimal solutions of S(A, b) (Theorem 2). In other words,

there may exist e1, e2 ∈ E such that x(e1) ≤ x(e2). However, the following lemma shows that each minimal

solution of S(A, b) can be written in the form of x(e) for some e ∈ E.

Lemma 3. Let S(A, b) denote the set of all the minimal solutions of S(A, b) and SE(A, b) = {x(e) : e ∈ E}.

Then, S(A, b) ⊆ SE(A, b).

Proof. Suppose that x ∈ S(A, b). From Theorem 2, there exists some e ∈ E such that x ∈ [x(e),1]. Since

x(e) ≤ x, and x is a minimal solution, then we must have x = x(e), that is, x ∈ SE(A, b).

Based on Lemma 3, Theorem 2 can be strengthened as follows.

Corollary 5. Suppose that S(A, b) 6= ∅. Then, S(A, b) =
⋃

x∈S(A,b)

[x,1].

It is found in Theorem 2 that solving max−ψ fuzzy relational inequalities is equivalent to finding out all

the minimal solutions of the feasible region. Theorem 3 below shows that the minimal solutions of S(A, b)

also play a significant role in solving the problem (1).

Theorem 3. If S(A, b) 6= ∅, then there exists a solution x∗ ∈ S(A, b) such that x∗ is an optimal solution

of the problem (1).

Proof. Suppose that f(x) = ϕ(...(ϕ(ϕ(x1, x2), x3)..., xn), where ϕ is an arbitrary continuous s-norm.

Also, suppose that minimal solution x∗ minimizes f(x) among all minimal solutions, i.e., f(x∗) ≤ f(x),

∀x ∈ S(A, b). From Corollary 5, for an arbitrary feasible solution x′ ∈ S(A, b), there exists some x′ ∈ S(A, b)

such that x′ ∈ [x′,1] (i.e., x′ ≤ x′). So, the monotonicity law of s-norms implies that ϕ(x′1, x
′
2) ≤ ϕ(x′1, x

′
2).

By applying the same argument, ϕ(ϕ(x′1, x
′
2), x

′
3) ≤ ϕ(ϕ(x′1, x

′
2), x

′
3), and if we continue in this way, then

(in n− 1 steps) we obtain f(x′) ≤ f(x′). But, since f(x∗) ≤ f(x′), we have f(x∗) ≤ f(x′). Since x′ was an

arbitrary feasible solution, the result follows.

Now, we summarize the preceding discussion as an algorithm.

Algorithm 1 (General method)

Given problem (1):

1. Compute Ψij for each i ∈ I and j ∈ J (Lemma 1).

2. If there exists some i ∈ I such that Ψij = ∅, ∀j ∈ J , then stop; S(A, b) is empty (Remark 3).

3. Compute J(i), ∀i ∈ I (Definition 2).
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4. Compute solutions x(e) ∈ SE(A, b), ∀e ∈ E (Definitions 3 and 4).

5. Find minimal solutions by pairwise comparison between vectors x(e) (Lemma 3).

6. Select the optimal solution x∗ from the set S(A, b) (Lemma 3 and Theorem 3).

In the general method, Step 3 is a major disadvantage of the algorithm. As mentioned before, SE(A, b)

often contains many solutions x(e) that are not minimal. Moreover, the cardinality of SE(A, b), denoted by

|SE(A, b)|, grows exponentially with the size of the sets J(i), ∀i ∈ I. More precisely, we have |SE(A, b)| =
∏

i∈I

|J(i)|, where |J(i)| denotes the cardinality of the set J(i). To accelerate the algorithm, we can initially

remove some e ∈ E that generate non-minimal solutions x(e). For this purpose, five simplification techniques

will be described in Section 5. Furthermore, in some special cases, we can find a fast optimal solution to

problem (1) by an efficient algorithm that is of polynomial complexity in the size of the problem. These

special cases will be studied in the next section.

4. Special cases with fast optimal solutions

In this section, an algorithm is presented for solving some special cases of problem (1) without finding

all the solutions x(e) ∈ SE(A, b). It is shown that the computational complexity of the algorithm is O(mn).

Definition 5. Define x(i) = min
j∈J(i)

{x(aij , bi)} and J(i) = {j ∈ J(i) : x(aij , bi) = x(i)}, ∀i ∈ I. Also, similar

to Definition 3, let E = {e ∈ E : e : I →
⋃

i∈I

J(i)}.

By Definition 5, it is clear that J(i) ⊆ J(i) and E ⊆ E. Also, for each e ∈ E we have e(i) ∈ J(i), ∀i ∈ I.

Remark 5. Consider a fixed i ∈ I. For each e ∈ E and e′ ∈ E, we have e(i) ∈ J(i) and e′(i) ∈ J(i).

Therefore, from Definition 5, x(aie′(i), bi) = x(i) ≤ x(aie(i), bi), ∀i ∈ I.

Theorem 4. Let e′ ∈ E and e ∈ E. Then, max
j∈J

{x(e′)j} ≤ max
j∈J

{x(e)j}

Proof. From Remark 4, max
j∈J

{x(e)j} = max
j∈J

max
i∈I

{x(aij , bi)} that is equal to max
i∈I

{x(aie(i), bi)}. Also, from

Remark 5, we have max
i∈I

{x(aie(i), bi)} ≥ max
i∈I

{x(aie′(i), bi)}. Consequently, max
j∈J

{x(e)j} ≥ max
i∈I

{x(aie′(i), bi)}

(*). But, max
i∈I

{x(aie′(i), bi)} = max
j∈J

max
i∈Ij(e′)

{x(aij , bi)} = max
j∈J

{x(e′)j} (**). Now, the result follows from (*)

and (**).

Corollary 6. For each e1, e2 ∈ E, max
j∈J

{x(e1)j} = max
j∈J

{x(e2)j}.
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Proof. Since, E ⊆ E, then we also have e1, e2 ∈ E. So, by considering e1 ∈ E and e2 ∈ E, Theorem

4 implies that max
j∈J

{x(e1)j} ≤ max
j∈J

{x(e2)j}. By the same argument, max
j∈J

{x(e2)j} ≤ max
j∈J

{x(e1)j}. Hence

max
j∈J

{x(e1)j} = max
j∈J

{x(e2)j}.

Theorem 5. Consider problem (1) where ψ is an arbitrary continuous t-norm and ϕ is the maximum s-

norm. If S(A, b) 6= ∅, then all the solutions x(e) generated by e ∈ E are the optimal solutions to the

problem with the same objective function value.

Proof. By assuming that ϕ is the maximum s-norm, the objective function f(x) = ϕ(...(ϕ(ϕ(x1, x2), x3)..., xn)

is reduced to f(x) = max
j∈J

{xj}. From Theorem 3, for each optimal solution x∗ we must have x∗ ∈ S(A, b).

On the other hand, Lemma 3 implies that x∗ ∈ SE(A, b). Now, the result follows from Theorem 4 and

Corollary 6.

Theorem 5 proposes an efficient polynomial-time algorithm for solving the special cases of problem (1)

where ϕ is the maximum s-norm. Algorithm 2 below shows the steps of this algorithm followed by the

complete description of its complexity.

Algorithm 2 (Polynomial-time algorithm for ϕ = maximum)

Given problem (1), where ϕ is the maximum s-norm:

1. Compute Ψij for each i ∈ I and j ∈ J (Lemma 1).

2. If there exists some i ∈ I such that Ψij = ∅, ∀j ∈ J , then stop; S(A, b) is empty (Remark 3).

3. Compute J(i), ∀i ∈ I (Definition 5).

4. Select an arbitrary e ∈ E.

5. Obtain the optimal solution x∗ by computing x(e) (Theorem 5).

In Step 1, computing Ψij costs mn operations. In Step 2, checking the feasibility of the problem costs

mn pairwise comparisons. In Step 3, computing the index sets costs 2mn operations, and finally each of

Steps 4 and 5 costs mn operations. Therefore, it costs 6mn operations to carry out all the steps of the

algorithm, that is, the computational complexity is obtained as O(mn).

5. Simplification techniques

In this section, five simplification techniques are presented to accelerate the resolution of the problem.

Throughout this section, x∗ denotes an optimal solution for problem (1) and f(x) denotes the objective

function of problem (1); that is, f(x) = ϕ(...(ϕ(ϕ(x1, x2), x3)..., xn).
9
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Lemma 4. Suppose that J(i0) = {j0} for some i0 ∈ I and j0 ∈ J . Also, Suppose that x(ai0j0 , bi0) ≥

x(aij0 , bi), ∀i ∈ I(j0). Then, x(e)j0 = x(ai0j0 , bi0), ∀e ∈ E.

Proof. Since for any e ∈ E, we have e(i0) ∈ J(i0) and by the assumption, J(i0) is a singleton set, then

e(i0) = j0, ∀e ∈ E. Therefore, i0 ∈ Ij0(e), ∀e ∈ E. Now, since Ij0(e) 6= ∅, from relation (2) we obtain

x(e)j0 = max
i∈Ij0 (e)

{x(aij0 , bi)}. The latter equality together with Ij0(e) ⊆ I(j0) (see Remark 4) and the as-

sumption x(ai0j0 , bi0) ≥ x(aij0 , bi), ∀i ∈ I(j0), result in x(e)j0 = x(ai0j0 , bi0).

By Theorem 3 and Lemma 3, we know that x∗ ∈ SE(A, b). Hence, under the assumptions of Lemma 4, we

can set x∗j0 = x(ai0j0 , bi0). Therefore, since the j0
th variable of the optimal solution is known, we can remove

this variable from the problem by deleting its corresponding coefficients, i.e., the j0
th column of A. On the

other hand, x∗j0 = x(ai0j0 , bi0) means x∗j0 ∈ Ψi0j0 = [x(ai0j0 , bi0), 1] that together with Corollary 4 imply

x∗ ∈ Si0(A, b). Therefore, by assignment x∗j0 = x(ai0j0 , bi0), the i0
th constraint of the problem is always

satisfied. Hence, we can remove this constraint from the problem by deleting the i0
th row of A and bi0 .

Moreover, let i′ ∈ I(j0) and i
′ 6= i0. Since x(ai0j0 , bi0) ≥ x(aij0 , bi), ∀i ∈ I(j0), then x(ai0j0 , bi0) ≥ x(ai′j0 , bi′)

that means x∗j0 ∈ Ψi′j0 = [x(ai′j0 , bi′), 1]. Therefore, Corollary 4 implies x∗ ∈ Si′(A, b), i.e., x
∗ also satisfies

the i′
th

constraint of the problem. Hence, we can remove this constraint from the problem by deleting the

i′
th

row of A and bi′ . The above discussions are summarized in the following corollary.

Corollary 7. (First simplification technique). If there exist i0 ∈ I and j0 ∈ J such that J(i0) = {j0} and

x(ai0j0 , bi0) ≥ x(aij0 , bi), ∀i ∈ I(j0), then set x∗j0 = x(ai0j0 , bi0) and delete the j0
th column of A. Moreover,

for each i ∈ I(j0), delete the ith row of A and component bi.

Definition 6. Let A′ψx ≥ b′ be a system resulted from Aψx ≥ b by deleting the ith constraint aiψx =
n

max
j=1

{ψ(aij , xj)} ≥ bi. So, this constraint is called redundant if S(A′, b′) = S(A, b), that is, each feasible

solution to the system A′ψx ≥ b′ also satisfies the constraint aiψx ≥ bi.

It is to be noted that from Theorem 2 we can find a simpler condition for the identification of a redundant

constraint. Indeed, a constraint of Aψx ≥ b is redundant if each feasible solution x(e) ∈ SE(A
′, b′) also

satisfies that constraint.

Lemma 5. Suppose that i1, i2 ∈ I such that J(i1) ⊆ J(i2) and x(ai2j , bi2) ≤ x(ai1j , bi1), ∀j ∈ J(i1). Then,

i2
th constraint is redundant.

Proof. Let A′ψx ≥ b′ be a system resulted from Aψx ≥ b by deleting the i2
th constraint

n
max
j=1

{ψ(ai2j , xj)} ≥

bi2 . In the new system A′ψx ≥ b′, consider an arbitrary e ∈ E and suppose that e(i1) = j. Therefore,

i1 ∈ Ij(e) that means Ij(e) 6= ∅. Moreover, by Theorem 2, x(e) is a feasible solution to A′ψx ≥ b′. On the

other side, since j ∈ J(i1) and J(i1) ⊆ J(i2), then j ∈ J(i2) for the system Aψx ≥ b. Now, due to the fact
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that Ij(e) 6= ∅, by relation (2) we obtain x(e)j = max
i∈Ij(e)

{x(aij , bi)} ≥ x(ai1j , bi1) ≥ x(ai2j , bi2), where the

last inequality is resulted from the assumption of the lemma. Therefore, x(e)j ≥ x(ai2j , bi2), which means,

x(e)j ∈ Ψi2j = [x(ai0j0 , bi0), 1]. Now, Corollary 4 implies x(e) ∈ Si2(A, b), that is, x(e) also satisfies the i2
th

constraint of the primal system.

Corollary 8. (Second simplification technique). If there exist i1, i2 ∈ I such that J(i1) ⊆ J(i2) and

x(ai2j , bi2) ≤ x(ai1j , bi1), ∀j ∈ J(i1), then delete the i2
th row of A and bi2 .

Let xj1 and xj2 be two arbitrary variables of vector x. Since each s-norm ϕ is both commutative and

associative, then the objective function of problem (1) can be equivalently rewritten as follows:

f(x) = ϕ(...(ϕ(ϕ(xj1 , xj2), xk)..., xn) (3)

Lemma 6. Suppose that j1, j2 ∈ J such that I(j2) ⊆ I(j1) and x(aij1 , bi) ≤ x(aij2 , bi), ∀i ∈ I(j2). Then,

x∗j2 = 0.

Proof. To prove the lemma, it is sufficient to show that a solution x(e) with x(e)j2 > 0 cannot be an

optimal solution. It is to be noted that x(e)j2 > 0 implies Ij2(e) 6= ∅, that is, there exists at least one i ∈ I

such that e(i) = j2. Based on this vector e, define e′ ∈ E as follows:

e′(i) =











j1 e(i) = j2

e(i) e(i) 6= j2

, ∀i ∈ I (4)

According to (3), we have x(e′)k = x(e)k, ∀k ∈ J−{j1, j2}, and x(e
′)j2 = 0 < x(e)j2 . From the assumption of

the lemma and the fact that Ij2(e) ⊆ I(j2) (see Remark 4), we have max
i∈Ij2 (e)

{x(aij1 , bi)} ≤ max
i∈Ij2 (e)

{x(aij2 , bi)}.

Now, from the latter inequality and relation (2), we obtain:

x(e′)j1 = max
i∈Ij1 (e

′)
{x(aij1 , bi)} = max{ max

i∈Ij1 (e)
{x(aij1 , bi)}, max

i∈Ij2 (e)
{x(aij1 , bi)}}

≤ max{x(e)j1 ,max
i∈Ij2

(e){x(aij2 , bi)}}

= max{x(e)j1 , x(e)j2}

≤ ϕ(x(e)j1 , x(e)j2)

(5)

where the last inequality is resulted from the fact that max{x, y} ≤ ϕ(x, y) for any s-norm ϕ. Consequently,

from (5) we have:

x(e′)j1 ≤ ϕ(x(e)j1 , x(e)j2) (6)

Thus, by the equalities x(e′)j2 = 0 and ϕ(0, x(e′)j1) = x(e′)j1 (resulted from the identity law of s-norms), it

follows that ϕ(x(e′)j1 , x(e
′)j2) = ϕ(x(e′)j1 , 0) = x(e′)j1 which together with (6) imply:

ϕ(x(e′)j1 , x(e
′)j2) ≤ ϕ(x(e)j1 , x(e)j2) (7)
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Now, since x(e′)k = x(e)k (∀k ∈ J − {j1, j2}), from (3) and (7) and the monotonicity property of s-norms,

we obtain f(x(e′)) ≤ f(x(e)); that is, x(e) is not an optimal solution.

Corollary 9. (Third simplification technique). If there exist j1, j2 ∈ J such that I(j2) ⊆ I(j1) and

x(aij1 , bi) ≤ x(aij2 , bi), ∀i ∈ I(j2), then set x∗j2 = 0 and delete the j2
th column of A.

Lemma 7. Suppose that x0 is an arbitrary feasible solution to problem (1) with the objective value f(x0).

Also, suppose x(ai0j0 , bi0) ≥ f(x0) for some i0 ∈ I and j0 ∈ J(i0). Then, for each e ∈ E such that e(i0) = j0,

the corresponding solution x(e) is not an optimal solution.

Proof. Let e ∈ E such that e(i0) = j0 and suppose that x(e) is generated by relation (2). Define x′ ∈ [0, 1]n

such that x′j0 = x(ai0j0 , bi0) and x
′
j = 0, ∀j ∈ J − {j0}. So, according to relation (2), we have x′j ≤ x(e)j ,

∀j ∈ J . Hence, based on the monotonicity law of s-norms, f(x′) ≤ f(x(e)). On the other hand, from the

identity law of s-norms, we obtain:

f(x′) = ϕ(...ϕ(...(ϕ(ϕ(0, 0), 0)..., x(ai0j0 , bi0), ..., 0) = x(ai0j0 , bi0) ≥ f(x0)

that is, f(x′) ≥ f(x0). Consequently, the inequalities f(x′) ≥ f(x0) and f(x′) ≤ f(x(e)) imply f(x(e)) ≥

f(x0), where x0 is a feasible solution to the problem. This completes the proof.

Corollary 10. (Fourth simplification technique). Let x0 be an arbitrary initial feasible solution of the

problem. If x(ai0j0 , bi0) ≥ f(x0) for some i0 ∈ I and j0 ∈ J(i0), then delete j0 from J(i0).

Remark 6. In Corollary 10, by deleting j0 from J(i0), the cardinality of SE(A, b) is reduced from
∏

i∈I

|J(i)|

to |J(i0)−1|.
∏

i∈I−{i0}

|J(i)|. Moreover, according to Lemma 1 and Definition 2, the deletion of j0 from J(i0)

can be equivalently accomplished by assigning an arbitrary value from [0, bi0) to ai0j0 , e.g., ai0j0 = 0, or by

setting Ψi0j0 = ∅.

Remark 7. As a general method in Corollary 10, we can consider x0 = x(e0) as an initial feasible solution

where x(e0) is obtained by relation (2) for any arbitrary e0 ∈ E as defined in Definition 5.

Lemma 8. Suppose that I(j0) = ∅ for some j0 ∈ J . Then, x(e)j = 0, ∀x(e) ∈ SE(A, b).

Proof. Since Ij0(e) ⊆ I(j0) (see Remark 4), ∀e ∈ E, then we have Ij0(e) = ∅, ∀e ∈ E. Now, the result

directly follows from relation (2).

Corollary 11. (Fifth simplification technique). If there exist j0 ∈ J such that I(j0) = ∅, then set x∗j0 = 0

and delete the j0
th column of A.
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Now, We summarize the preceding discussion as an algorithm.

Algorithm 3 (Accelerated method)

Given problem (1):

1. Compute Ψij for each i ∈ I and j ∈ J (Lemma 1).

2. If there exists some i ∈ I such that Ψij = ∅, ∀j ∈ J , then stop; S(A, b) is empty (Remark 3).

3. Compute J(i), ∀i ∈ I (Definition 2).

4. Apply the simplification techniques (Corollaries 7-11) to determine the values of decision variables as

many as possible. Denote the remaining problem by A′ψx ≥ b′.

5. Compute solutions x(e) ∈ SE(A
′, b′), ∀e ∈ E (Definitions 3 and 4).

6. Find minimal solutions by pairwise comparison between vectors x(e) (Lemma 3).

7. Select the optimal solution x∗ from the set S(A′, b′) (Lemma 3 and Theorem 4).

6. Numerical examples and application

Consider a type of wireless communication management models in which the information is transmitted

by the electromagnetic wave. The electromagnetic wave is emitted from some fixed emission base sta-

tions (EBSs),A1, A2, ..., An. The jth EBS will emit electromagnetic waves with radiation intensity xj > 0,

j = 1, 2, ..., n. The sum of the intensities is restricted by the maximum allowable emissions limits for EBSs,

so that,
n
∑

j=1

xj cannot exceed L units. On the other hand, the communication quality level is determined by

the intensity of electromagnetic radiation. In order to satisfy the requirement of communication quality level,

m testing points, B1, B2..., Bm are selected to test the intensity of electromagnetic radiation. For example,

when the wireless communication is applied in the cell phone network, the testing point is usually the place

with a higher population density. At the ith testing point Bi, the intensity of electromagnetic radiation

emitted from Aj , denoted by rij , will belong to [0, xj ] where i ∈ I = {1, ...,m}, and j ∈ J = {1, ..., n}. Since

rij is related to the distance between Bi and Aj , there exists a positive real number kij such that rij = kijxj .

Therefore, the intensity of electromagnetic radiation at Bi is attained by
n

max
j=1

{rij} =
n

max
j=1

{kijxj}. Suppose

the least requirement of communication quality level at Bi is Li, ∀i ∈ I. So, we have
n

max
j=1

{kijxj} ≥ Li,

∀i ∈ I. By normalizing the variables and parameters into the unit interval [0, 1], we get
n

max
j=1

{aijxj} ≥ bi,

where aij ∈ [0, 1] (∀i ∈ I and ∀j ∈ J), bi ∈ [0, 1] (∀i ∈ I) and
n
∑

j=1

xj ≤ 1. Furthermore, although high

radiation intensity will ensure good communication quality, meanwhile, it will damage the health of humans.

For this reason, the objective function is f(x) = min{
n
∑

j=1

xj , 1}. Hence, the wireless communication EBS

model is reduced into the problem (1) in which ϕ and ψ are defined by the Lukasiewicz s-norm and the
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product t-norm, respectively.

Example 1. Consider the optimization problem (1) in which the feasible region has been randomly generated

by the following A and b.

A =























0.8147 0.0975 0.1598 0.4899 0.0557 0.1598 0.1789

0.0084 0.1723 0.0456 0.0217 0.0456 0.0456 0.0318

0.2473 0.3468 0.0473 0.9157 0.2491 0.3022 0.3473

0.1134 0.0575 0.2094 0.7922 0.9339 0.8554 0.0094

0.9323 0.9998 0.2847 0.1594 0.1787 0.0711 0.0847























bT = [0.1598, 0.0456, 0.3473, 0.0094, 0.2601]

Also, ϕ is the Lukasiewicz s-norm and ψ is the product t-norm, i.e., ϕ(x, y) = min{x+y, 1} and ψ(x, y) = xy.

The steps of Algorithm 3 are as follows:

Step 1. Based on Lemma 1, it is easily verified that closed intervals Ψij are obtained as follows:

Ψij =























∅ aij < bi

[bi/aij , 1] aij ≥ bi > 0

[0, 1] aij ≥ bi = 0

These intervals are summarized in matrix Ψ = (Ψij)5×7, where Ψij = [x(aij , bi),1]:

Ψ =























[0.1961, 1] ∅ {1} [0.3262, 1] ∅ {1} [0.8932, 1]

∅ [0.2646, 1] {1} ∅ {1} {1} ∅

∅ ∅ ∅ [0.3793, 1] ∅ ∅ {1}

[0.0829, 1] [0.1635, 1] [0.0449, 1] [0.0119, 1] [0.0101, 1] [0.0110, 1] {1}

[0.2790, 1] [0.2601, 1] [0.9136, 1] ∅ ∅ ∅ ∅























Step 2. From Remark 3, the necessary and sufficient condition holds for the feasibility of the problem.

More precisely, we have

Aψ1 = [0.8147, 0.9058, 0.9157, 0.9339, 0.9323]T ≥ bT

that means 1 ∈ S(A, b) (see Remark 2).
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Step 3. By Definition 2, J(1) = {1, 3, 4, 6, 7}, J(2) = {2, 3, 5, 6}, J(3) = {4, 7}, J(4) = {1, ..., 7}, and

J(5) = {1, 2, 3}.

Also, for example, the minimal solutions of S3(A, b) are attained as x(1, 4) = [0, 0, 0, 0.3793, 0, 0, 0] and

x(1, 7) = [0, 0, 0, 0, 0, 0, 1] (Definition 2). Thus, by Theorem 1, S3(A, b) = [x(1, 4),1] ∪ [x(1, 7),1].

In this example, we have |E| =
5
∏

i=1

|J(i)| = 840. Therefore, according to Definitions 3 and 4, the number

of all vectors x(e) (e ∈ E) is equal to 840. However, each feasible solution x(e) (e ∈ E) is not a minimal

solution for the problem. For example, by selecting e′ = [1, 2, 7, 6, 3], the corresponding solution is obtained

as x(e′) = [0.1961, 0.2646, 0.9136, 0, 0, 0.011, 1]. Although x(e′) is feasible, but it is not a minimal solution.

To see this, let e′′ = [7, 2, 7, 2, 2]. Then, x(e′′) = [0, 0.2646, 0, 0, 0, 0, 1]. Obviously, x(e′′) ≤ x(e′) which shows

that x(e′) is not a minimal solution.

By Definition 5, x(1) = 0.1961, x(2) = 0.2646, x(3) = 0.3793, x(4) = 0.0101, and x(5) = 0.2601. Also, J(1) =

{1}, J(2) = {2}, J(3) = {4}, J(4) = {5}, and J(5) = {2}. So, E includes only one element e0 = [1, 2, 4, 5, 2]

whose corresponding solution is obtained by relation (2) as x(e0) = [0.1961, 0.2646, 0, 0.3793, 0.0101, 0, 0]. If

the objective function is defined by the maximum s-norm, then from Theorem 5, x(e0) is the unique optimal

solution (the uniqueness is resulted from |E| = 1). However, in this example where ϕ is the Lukasiewicz

s-norm, we may consider x(e0) as an initial feasible solution with the objective value f(x(e0)) = 0.8501 (see

Remark 7).

Step 4. By considering columns 4 and 7 of matrix A (and the corresponding columns in matrix Ψ), it

follows that {1, 3, 4} = I(7) ⊆ I(4) = {1, 3, 4}, 0.3262 = x(a14, b1) ≤ x(a17, b1) = 0.8932, and 0.3793 =

x(a34, b3) ≤ x(a37, b3) = 1, that is, x(ai4, bi) ≤ x(ai7, bi), ∀i ∈ I(7). So, by applying the third simplification

technique (Corollary 9), we set x∗7 = 0 and delete column 7 in matrices A and Ψ. After deletion, the reduced

matrices A′ = (a′ij)5×6 and Ψ′ = (Ψ′
ij)5×6 are obtained as follows:

A′ =























0.8147 0.0975 0.1598 0.4899 0.0557 0.1598

0.0084 0.1723 0.0456 0.0217 0.0456 0.0456

0.2473 0.3468 0.0473 0.9157 0.2491 0.3022

0.1134 0.0575 0.2094 0.7922 0.9339 0.8554

0.9323 0.9998 0.2847 0.1594 0.1787 0.0711























Ψ′ =























[0.1961, 1] ∅ {1} [0.3262, 1] ∅ {1}

∅ [0.2646, 1] {1} ∅ {1} {1}

∅ ∅ ∅ [0.3793, 1] ∅ ∅

[0.0829, 1] [0.1635, 1] [0.0449, 1] [0.0119, 1] [0.0101, 1] [0.0110, 1]

[0.2790, 1] [0.2601, 1] [0.9136, 1] ∅ ∅ ∅























The reduced matrices A′ and Ψ are equivalent to five inequalities (constraints) with six variables. As is

clear from the matrix Ψ′, by deleting column 7, the set J(3) = {4, 7} is reduced to J(3) = {4}, that
15

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



is, a singleton set. Also, I(4) = {1, 3, 4} and we have 0.3793 = x(a34, b3) ≥ x(a14, b1) = 0.3262, and

0.3793 = x(a34, b3) ≥ x(a44, b4) = 0.0119, i.e., x(a34, b3) ≥ x(ai4, bi), ∀i ∈ I(4). Therefore, by applying the

first simplification technique (Corollary 7), we set x∗4 = x(a34, b3) = 0.3793, and delete column 4 and rows

1, 3, and 4 of matrices A′ and Ψ′, and b1, b3, and b4. Hence, the new reduced matrices A′ and Ψ′ become

A′ =





0.0084 0.1723 0.0456 0.0456 0.0456

0.9323 0.9998 0.2847 0.1787 0.0711





Ψ′ =





∅ [0.2646, 1] {1} {1} {1}

[0.2790, 1] [0.2601, 1] [0.9136, 1] ∅ ∅





It is to be noted that the first and second rows of the matrices A′ and Ψ′ correspond to the second and

fifth rows of the primal matrices A and Ψ, respectively. Also, the columns 4 and 5 in the reduced matrices

correspond to the columns 5 and 6 in the primal matrices, respectively. In the current matrix Ψ′ = (Ψ′
ij)2×5,

we have x(a′13, b
′
1) = x(a′14, b

′
1) = x(a′15, b

′
1) = 1 ≥ 0.8501 = f(x(e0)) and x(a′23, b

′
2) = 0.9136 ≥ 0.8501 =

f(x(e0)), where x(e0) is the initial feasible solution obtained at Step 6. Hence, by applying the fourth

simplification technique (Corollary 10), we set a′13 = a′14 = a′15 = a′23 = 0 and Ψ′
13 = Ψ′

14 = Ψ′
15 = Ψ′

23 = ∅

(see Remark 6). The new matrices A′ and Ψ′ are attained as follows:

A′ =





0.0084 0.1723 0 0 0

0.9323 0.9998 0 0.1787 0.0711





Ψ′ =





∅ [0.2646, 1] ∅ ∅ ∅

[0.2790, 1] [0.2601, 1] ∅ ∅ ∅





Since {2} = J(1) ⊆ J(2) = {1, 2} and 0.2601 = x(a′22, b
′
2) ≤ x(a′12, b

′
1) = 0.2646, i.e., x(a′2j , b

′
2) ≤ x(a′1j , b

′
1),

∀j ∈ J(1), then the second row of the matrices A′ and Ψ′ (i.e., the fifth row in A and Ψ) and b′2 (i.e., b5

in the main problem) are deleted by the second simplification technique (Corollary 8). So, we have the

following reduced matrices:

A′ = [0.0084, 0.1723, 0, 0, 0]

Ψ′ = [∅, [0.2646, 1],∅,∅,∅]

Finally, since in the matrices A′ = (a′ij)1×5 and Ψ′ = (Ψ′
ij)1×5 we have I(1) = I(3) = I(4) = I(5) = ∅,

then we can delete columns 1, 3, 4, and 5 by the fifth simplification technique (Corollary 11) to obtain the

following new reduced matrices:

A′ = [0.1723]1×1

Ψ′ = [[0.2646, 1]]1×1
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As mentioned before, the columns 4 and 5 of the matrix A′ correspond to the columns 5 and 6 of the main

matrix A, respectively. So, by the fifth simplification technique, we set x∗1 = x∗3 = x∗5 = x∗6 = 0.

Step 5. 6. 7. After applying the simplification techniques, the problem is reduced to A′ψx ≥ b′ where A′

is a 1× 1 matrix with one entry corresponding to the entry (2, 2) in A. In the matrix A′, the set E includes

only one element e = [1] with corresponding solution x(e) = [0.2646] that is the unique element of SE(A
′, b′).

Therefore, x(e) = 0.2646 is clearly the unique optimal solution to the problem A′ψx ≥ b′. Hence, x∗2 =

0.2646, and finally the optimal solution of the primal problem is obtained as x∗ = [x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6, x

∗
7] =

[0, 0.2646, 0, 0.3793, 0, 0, 0] with the objective value of f(x∗) = 0.64393.

7. Conclusion

In this paper, we introduced a generalization of the latticized optimization problem. The proposed model

consists of a non-linear objective function defined by any continuous s-norm and a set of constraints in the

form of a system of fuzzy relational inequalities defined by an arbitrary continuous t-norm. Feasible solution

sets for such continuous FRIs were completely resolved. Moreover, two necessary and sufficient conditions

were presented to determine the feasibility of the problem. Based on the theoretical results, an algorithm

was presented for finding the exact optimal solutions of the proposed non-linear optimization model. In

contrast to FRI optimization problems with the linear objective functions, analytical results revealed that

the maximum solution does not contain useful information for obtaining an optimal solution. Theorem 3

indicated that an optimal solution is one of the minimal solutions of the continuous FRI. However, finding

all the minimal solutions is usually NP-hard work. In order to avoid this NP-hard problem, an alternative

strategy was adopted in this paper; five simplification techniques were developed to pre-assign values to as

many decision variables as possible. Consequently, problem size was quickly reduced. In addition, we dis-

cussed a special case of the non-linear model in which the objective function was defined by the Lukasiewicz

s-norm, and the feasible region was formed as a continuous FRI with max-product composition. This

model was used in a type of wireless communication management problem. Furthermore, a polynomial-time

method was presented for solving the latticized linear programming problems subjected to FRI defined by

an arbitrary continuous t-norm. These problems unified several interesting properties of the latticized linear

programming problems with max-min and max-product type (used by Yang et. al.) through the framework

of the max− ϕ composition with ϕ as a continuous t-norm.
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