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Abstract

This article introduces the space of A-linearly correlated fuzzy com-
plex numbers. Using this space, we study the stationary Schrödinger
equation with boundary conditions are given by fuzzy complex numbers.
This equation plays an special role in Quantum Mechanics describing
the state of the system. We apply the formalism to the step potential,
generating quantum results consistent with traditional quantum results.

Keywords: Fuzzy complex number A-linearly correlated fuzzy complex
number fuzzy complex process fuzzy stationary Schrödinger equation.

1 Introduction

In Quantum Mechanics, the state of the system is described by the Schrödinger
equation
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2 Fuzzy Stationary Schrödinger Equation with Correlated Fuzzy Boundaries

d2

dx2
Ψ(x) +

2m

ℏ2
(E − V (x))Ψ(x) = 0, (1)

where Ψ : R −→ C is the wave function at the position coordinates x, x ∈ R.
Furthermore, the function V : R −→ R is the potential in position coordi-
nate space to which the particle of mass m is subject and ℏ is the reduced
Planck’s constant. The quantity E, represents the energy of the particle. The
first term of (1) is related to the square of the moment operator, which in the
representation of positions is given by p = −iℏ d

dx
[1].

The Schrödinger equation can be solved for particular cases of potentials
as analyzed in [1]. Among these potentials, we can highlight the barrier that
is widely used in Engineering and Physics problems [2], especially in the study
of periodic systems. In this case, the solution of the Schrödinger equation
can become very laborious for an arbitrary number of barriers. In [3], the
authors presented a systematic way of studying systems with an arbitrary
number of barriers. In the classical formulation of quantum mechanics, the
complete specification of the initial conditions of the particle are incorporated
in the initial conditions for the function Ψ(x), that is, Ψ(xi,0) and Ψ′(xi,0) =
d
dxi

Ψ(xi,0) where xi,0 is related to the positions on which the initial conditions
were imposed. A step potential may represent, to a first approximation, a p-
n junction in semiconductor devices [4, 5]. This fact justifies that the initial
conditions Ψ(xi,0) and Ψ′(xi,0) are not precisely known, since the step is a first
approximation to the real potential.

A natural way to deal with quantities that are not precisely known is
through the fuzzy set theory [6]. In particular, fuzzy differential equations
emerged as a way of modeling uncertainty present in certain phenomena in a
dynamical environment [7]. Furthermore, when studying evolutionary systems
from initial conditions, it may be necessary to consider the possibility of inter-
activity among all uncertain quantities (see [8–13]). The interactivity between
uncertain values given by fuzzy numbers is provided by joint possibility distri-
butions [14]. Intuitively, interactivity models how the possible values of two or
more uncertain quantities can be jointly assumed. Fuzzy processes that con-
sider interactivity are called autocorrelated processes [15]. They are similar to
the autocorrelated processes that occur in statistical analysis of time series.

Physics is a Science in which uncertainties are naturally present either due
to experimental or fundamental characteristics, such as in Quantum Mechan-
ics. Several problems in Physics can be described through initial value and
boundary problems. In this sense, recent techniques have been observed that
increasingly allow us to study fuzzy differential equations associated with phys-
ical problems. Recently, in [16] the authors studied the linear drag problem
in the small Reynolds number regime with initial conditions given by fuzzy
sets. In [17], authors studied the Schrödinger equation considering the initial
conditions modeled by fuzzy numbers and using the derivative in the Kandel-
Fridman Ming sense. Physically, as the wave function assumes complex values,
the initial conditions could be interpreted as fuzzy complex numbers. Further-
more, considering that the initial conditions are fuzzy complex numbers, we
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may have the presence of interactivity in the phenomenon studied and, in this
case, the solution of (1) can be viewed as an autocorrelated fuzzy process [15].
Note that such an assumption was not taken into account by the authors in
[17]. In [18] the authors presented a solution of the fuzzy Schrödinger equation
using colony programming (ACP). In [19] the authors studied fuzzy initial
value problems that describe mechanical vibrations. In [20] the authors stud-
ied a type of harmonic oscillator with initial conditions given by fuzzy sets.
In [21], authors investigated the existence and singularity of solutions for the
fractional fuzzy Schrodinger equation.

This work presents the space of A-Linearly correlated complex fuzzy num-
bers that is composed by the set of fuzzy complex numbers that satisfy a
special type of interactivity relationship called linear correlation with a fixed
fuzzy number A. Under certain conditions on A, we show that this space can be
equipped with the structure of a Banach space. This space corresponds to an
appropriate environment to study the stationary Schrödinger equation whose
initial conditions are given by fuzzy complex numbers. In addition, apply the
formalism to a potential step and analyze the physical results obtained.

2 Preliminaries

In this section, we review some fundamentals concepts about fuzzy sets.
Let U be a topological space. A fuzzy set A of U is a mapping A : U → [0, 1],

where A(x) denotes the degree that the element x belongs to the fuzzy set A
[22]. With a fuzzy subset A of U , we can associate with a family of subsets of
U called α-levels of A. For every α ∈ [0, 1], the α-level of the fuzzy set A is
defined by

[A]α =

{

{x ∈ U ; A(x) ≥ α} if 0 < α ≤ 1

{x ∈ U ; A(x) > 0} if α = 0,
(2)

where the set {x ∈ U ; A(x) > 0} is the support of the A, denoted by supp(A)
and X denotes the closure of the subset X of U [22].

A fuzzy subset A of R is a fuzzy number if every α-level of A is a bounded,
closed, and nonempty interval of R [22]. We denote the α-level of a fuzzy
number A by

[A]α = [a−(α), a+(α)] =
[

a−α , a
+
α

]

,

for all α ∈ [0, 1].
We use the symbol RF to denote the set of all fuzzy numbers. A fuzzy

number A is said to be positive (negative) if a−1 ≥ 0 (a+1 ≤ 0). The set
of fuzzy numbers whose support does not contain 0 ∈ R is denoted by
R

∗

F
= {A ∈ RF ; 0 /∈ supp(A)} (cf. [23]). An example of fuzzy number is the

triangular fuzzy number, whose α-levels are given by [A]α = [(m − a−0 )α +
a−0 , (m− a+0 )α+ a+0 ], for all α ∈ [0, 1], where [A]0 = [a−0 , a

+
0 ] and {m} = [A]1.

A triangular fuzzy number is also denoted by the triple (a−0 ; m; a+0 ) [22].
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A fuzzy number A ∈ RF is said to be symmetric with respect to x ∈ R

if A(x − y) = A(x + y), for all y ∈ R. We say that A is non-symmetric or
asymmetric if there exists no x such that A is symmetric [24].

Proposition 1 [24] A fuzzy number A is symmetric with respect to x ∈ R, if and
only if, a+α = 2x− a−α , for all α ∈ [0, 1].

The standard addition and the scalar product on fuzzy number can be
defined as follows. Let A,B ∈ RF and λ ∈ R. The standard sum of A and
B and the product of the scalar λ and A are respectively the fuzzy numbers
A+B and λA that are defined levelwise by

[A+B]α =
[

a−α + b−α , a
+
α + b+α

]

and

[λA]α =

{

[λa−α , λa
+
α ] if λ ≥ 0

[λa+α , λa
−
α ] if λ < 0,

for all α ∈ [0, 1].
A fuzzy complex number Z can be expressed in the form C + Di, where

C and D are fuzzy numbers and i is the imaginary unit (which satisfies the
equation i2 = −1) [25]. We denote the set of all fuzzy complex number by CF .
Similar to the classical case, standard arithmetic operations on the the class
of fuzzy complex numbers can be defined in terms of arithmetic operations on
RF . More precisely, let Z = C +Di, W = A+Bi, and ω = λ+ iθ, we define

Z +W = (C +A) + i(D +B) (3)

and
ωZ = (λC + (−θ)D) + i (θC + λD) . (4)

One can easily verify that these operations satisfies the following interesting
distributive law:

ω(Z +W ) = ωZ + ωW. (5)

3 The Space of A-Linearly Correlated Fuzzy
Complex Numbers - CF(A)

This section we introduce the space A-linearly correlated fuzzy complex num-
bers and study differentiability of functions of the form F (t) = q(t)A + r(t),
where A ∈ RF and q, r : R −→ C.

In [24], authors introduced the operator ψ1 : R2 −→ RF associating each
vector (q, r) ∈ R2 with the the fuzzy number

[ψ1(q, r)]α = q[A]α + r, (6)
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for all α ∈ [0, 1] and q, r ∈ R. The range of the operator ψ1, denoted by
RF(A), is the space of A-linearly correlated fuzzy numbers, that is, RF(A) =
{

ψ1(q, r) = qA+ r; (q, r) ∈ R
2
}

.
In this article, we propose an extension of the space RF(A) for the complex

case as follows. For each A ∈ RF , we can define the operator ψA : C2 −→ CF

associating each vector (q, r) ∈ C
2 with the complex the fuzzy number

[ψA(q, r)]α = q[A]α + r, (7)

for all α ∈ [0, 1] and q, r ∈ C.
Note that ψ is well defined. In fact, we can easily show that the α-levels of

ψA(q, r) given by [ψA(q, r)]α = {qx+ r ∈ C; x ∈ [A]α} according to definition
of fuzzy complex number. We denote the operator ψA by ψA(q, r) = qA + r.
The range of the operator ψA, denoted by CF(A), is the space of A-linearly
correlated fuzzy complex numbers, that is,

CF(A) =
{

ψA(q, r); (q, r) ∈ C
2
}

.

Remark 1 The set of complex number C can be embedded in CF(A) since every
complex number r can be identified with the complex fuzzy number ψA(0, r) ∈
CF(A), that is, C ⊂ CF(A).

Theorem 2 [24] Given A ∈ RF , the operator ψ1 : R2 −→ RF given by ψ1(p, q) =
pA+ q is injective if and only if A is non-symmetric.

The next theorem is the extension of the Theorem 2 for the case ψA :
C

2 −→ CF .

Theorem 3 Let A ∈ RF . The operator ψA : C2 −→ CF given by

ψA(p+ ir, q + is) = (p+ ir)A+ (q + is) = (pA+ q) + i(rA+ s)

is injective if and only if A is non-symmetric.

Proof Note that, by definition of the arithmetic operations on CF and the definition
of ψ1, we obtain the function ψA can be rewritten in terms of the function ψ1 as
follows:

ψA(p+ ir, q + is) = (p+ ir)A+ (q + is)

= (pA+ q) + i(rA+ s)

= ψ1(p, q) + iψ1(r, s). (8)

Suppose that ψA is injective. Let p, q, p̃, q̃ ∈ R. If (p, q) 6= (p̃, q̃), then ψA(p +
i0, q+ i0) = ψ1(p, q) 6= ψA(p̃+ i0, q̃+ i0) = ψ1(p̃, q̃). This implies that ψ1 is injective.
Applying Theorem 2, we conclude that A is non-symmetric.

Now, suppose that A is non-symmetric. Let p+ ir, q + ir ∈ C such that ψA(p+
ir, q + ir) = ψ1(p, q) + iψ1(r, s) = ψ1(p̃, q̃) + iψ1(r̃, s̃) = ψA(p̃ + ir̃, q̃ + is̃). Thus,
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we have ψ1(p, q) = ψ1(p̃, q̃) and ψ1(r, s) = ψ(r̃, s̃). From Theorem 2, we have ψ1 is
injective which implies that p = p̃, q = q̃, r = r̃ and s = s̃. Therefore, ψA is injective.

�

Remark 2 Equation 8 reveal an existence of a bijection between the spaces R
2
F(A)

and CF(A). More precisely, with every Z ∈ CF(A), we can associate a unique pair

(C,D) ∈ R
2
F(A) such that Z = C + iD. In this case, we say that C is real part of Z

and D is the imaginary part of Z.

From Theorem 3, if the fuzzy number A is non-symmetric, then the oper-
ator ψA : C2 −→ CF(A) is a bijection. This bijection can be used to induce an
algebraic structure of vector space over CF(A) as follows.

Let A ∈ RF be non-symmetric. For all B,C ∈ CF(A) and ω ∈ C, the set
CF(A) is a vector space associated to the scalar field C with the vector addition
and the scalar product defined respectively by

i) B ⊕ C = ψA
(

ψ−1
A (B) + ψ−1

A (C)
)

,

ii) ω ·ψ B = ψA
(

β ψ−1
A (B)

)

.
Additionally, CF(A) is isomorphic to C

2 via the linear isomorphism ψA.

Proof This result follows immediately from Theorem 3 (which ensures that ψA :
C
2 → CF(A) is bijective) and from definitions of the operations ⊕ and ·ψ. �

The following proposition ensures that the operation ·ψ in Corollary 3
coincides to the standard scalar product on fuzzy complex numbers given in
Equation (4).

Proposition 4 Let A ∈ RF be non-symmetric. For every Z ∈ CF(A) and ω ∈ C,
we have that ωB = ω ·ψ B.

Proof Since Z ∈ CF(A), there exist p, q ∈ C such that Z = pA+ q = ψA(p, q). From
Equation 5, we have that

ωZ = ω(pA+ q) = ωpA+ ωq

= ψA(ωp, ωq) = ω ·ψ Z.

�

In view of Proposition 4 and for the sake of simplicity, we simply denote
the scalar product in Corollary 3 by ωB instead of ω ·ψ B. Moreover, let
Z,W ∈ CF(A), the additive inverse of Z is given by −Z = (−1)Z, and the
difference of Z and W is defined by

Z ⊖W = Z ⊕−W.

The next corollary states that, for every non-symmetric fuzzy number, we
can define a Banach space that is isomorphic to the complex Banach space
(

C2, ‖·‖
)

.
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Let ‖·‖ be a norm of C2 and A ∈ RF be a non-symmetric. The vector
space

(

CF(A),⊕, ·ψ
)

forms a Banach space with norm ‖·‖ψA
give by ‖B‖ψA

=
∥

∥ψ−1
A (B)

∥

∥ for all B ∈ CF(A).

Proof This result follows from Theorem 3 (which ensures that ψA : C2 → CF(A) is
bijective) and the definition of ‖·‖ψA

. �

Remark 3 Similar to the classical case, one can note that the real Banach space RF(A)

can be embedded into complex Banach space CF(A) by considering the mappings
B 7→ B + i0 and λ 7→ λ + i0 for all B ∈ RF(A) and for all λ ∈ R. Thus, the vector
addition and scalar product on RF(A) can be obtained from the operations ⊕ and
·ψ on CF(A) in terms of the above mappings, that is,

B ⊕ C = (B + i0)⊕ (C + i0) and λB = (λ+ i0)(B + i0). (9)

Thus, using the connection between the addition on real numbers and the addition
on complex numbers, we can easily verify that the operations given in Equation 9
coincide with the ones induced by the bijection ψ1.

Given B,C ∈ CF(A), an important question in this article is how to define
the product of B and C. In [23], Ban and Bede introduces the concept of cross-
product on the class R∧

F
composed by fuzzy numbers such that their 1-levels

are unit sets of R, that is,

R
∧

F = {A ∈ RF ; ∃! x0 ∈ R such that A(x0) = 1} .

Note that R∧

F
contains the subset of triangular fuzzy numbers and, therefore,

the set of real numbers. In fact, this binary operation can be viewed as mul-
tiplication operation on R∧

F
, since it extends the the multiplication on real

numbers [23].
For a given asymmetric fuzzy number A, Longo et al. defined the cross-

product on RF(A) by replacing the standard operations by those from the real
Banach space RF(A) with addition and scalar product induced by the bijection
ψ1 [26]. As we mentioned in Remark 3, these operations can be rewritten in
terms of the operations on CF(A) as in Equation 9.

Definition 1 [26] Let A ∈ R
∧

F be non-symmetric and B,C ∈ RF(A). The A-cross
product between B and C is defined as the fuzzy number W given by

W = B ⊙ C = cB ⊕ bC ⊖ bc. (10)

where [B]1 = {b} and [C]1 = {c}.

According to [26], B ⊙ C is a fuzzy number of the space RF(A) and is
defined for all B,C ∈ RF(A). In addition, the A-cross product B ⊙ C can be
written in terms of the coefficients (p, r), (q, s) ∈ R

2 such that B = pA+ r and
C = qA+ s as follows:

B ⊙ C = ψ1(bq + cp, bs+ cr − cb)
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= (bq + cp)A+ (bs+ cr − cb) ∈ RF(A).

Let [A]1 = {a}, we have b = pa+ r and c = qa+ s. These imply that bq+ cp =
(pa+r)q+(qa+s)p = 2pqa+rq+sp and bs+ cr− cb = (pa+r)s+(qa+s)r−
(pa+ r)(qa+ s) = −a2pq + rs. Therefore, we obtain the following alternative
expression:

B ⊙ C = ψ1

(

2pqa+ rq + sp,−a2pq + rs
)

= (2pqa+ rq + sp)A+
(

−a2pq + rs
)

.
(11)

Based on Remark 3, Definition 1 can be easily extended to CF(A) as follows.

Definition 2 Let A ∈ R
∧

F be non-symmetric. For Z,W ∈ CF(A), we define the
A-cross product of Z and W by

Z ⊙W = wZ ⊕ zW ⊖ zw (12)

where [Z]1 = {z} and [W ]1 = {w}.

The following theorem states that the A-cross product on CF(A) can be
terms of the real and imaginary parts of the operands such as in the crisp case.

Theorem 5 Let A ∈ R
∧

F be non-symmetric. For Z,W ∈ CF(A) such that Z = B+iC
and W = D + iE, with B,C,D,E ∈ RF(A), we have

Z ⊙W = [(B ⊙D) ⊖ (C ⊙ E)] ⊕ i [(B ⊙ E) ⊕ (C ⊙D)] . (13)

Proof Let A be a non-symmetric fuzzy number such that [A]1 = {a}. For every
Z,W ∈ CF(A), there exist unique complex numbers u = p + ir, v = q + is, ũ =
p̃+ ir̃, ṽ = q̃+ is̃, with p, p̃, q, q̃, r, r̃, s, s̃ ∈ R, such that Z = uA+ v and W = ũA+ ṽ.

On the one hand, since [Z]1 = {z = ua + v} and [W ]1 = {w = ũa + ṽ}. From
Definition 2, we have

Z ⊙W = wZ ⊕ zW ⊖ zw (14)

= ψA (wu+ zũ, wv + zṽ − zw) . (15)

Moreover, we have

wu+ zũ = (ũa+ ṽ)u+ (ua+ v)ũ

= 2auũ+ uṽ + vũ (16)

= (2a(pp̃− rr̃) + pq̃ − sr̃ + qp̃− rs̃)

i(2a(pr̃ + rp̃) + ps̃+ sp̃+ qr̃ + rq̃),

and

wv + zṽ − zw = (ũa+ ṽ)v + (ua+ v)ṽ − (ua+ v)(ũa+ ṽ)

= −a2uũ+ vv (17)

= (−a2(pp̃− rr̃) + qq̃ − ss̃)
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i(−a2(pr̃ + p̃r) + qs̃+ q̃s).

On the other hand, from Equation 8, we have that Z = ψ1(p, q) + iψ1(r, s) and
W = ψ1(p̃, q̃) + iψ1(r̃, s̃), where B = ψ1(p, q), C = ψ1(r, s), D = ψ1(p̃, q̃), and
E = ψ1(r̃, s̃). Using Equation 11, we obtain

B ⊙D = ψ1(p, q)⊙ ψ1(p̃, q̃) = ψ1(2app̃+ qp̃+ q̃p,−a2pp̃+ qq̃),

C ⊙ E = ψ1(r, s)⊙ ψ1(r̃, s̃) = ψ1(2arr̃ + sr̃ + s̃r,−a2rr̃ + ss̃),

B ⊙ E = ψ1(p, q)⊙ ψ1(r̃, s̃) = ψ1(2apr̃ + qr̃ + s̃p,−a2pr̃ + qs̃),

C ⊙D = ψ1(r, s)⊙ ψ1(p̃, q̃) = ψ1(2ap̃r + q̃r + sp̃,−a2p̃r + q̃s).

Thus, we have

(B ⊙D)⊖ (C ⊙ E) = ψ1(2a(pp̃− rr̃) + q̃p− sr̃ + qp̃− s̃r,

−a2(pp̃− rr̃) + qq̃ − ss̃)

and

(B ⊙ E)⊕ (C ⊙D) = ψ1(2a(pr̃ + rp̃) + s̃p+ sp̃+ qr̃ + q̃r,

−a2(pr̃ + rp̃) + qs̃+ sq̃).

Therefore, we have

[(B ⊙D) ⊖ (C ⊙ E)] ⊕ i [(B ⊙ E) ⊕ (C ⊙D)] =

= ψA(2a(pp̃− rr̃) + pq̃ − sr̃ + qp̃− rs̃) +

i(2a(pr̃ + rp̃) + ps̃+ sp̃+ qr̃ + rq̃),

(−a2(pp̃− rr̃) + qq̃ − ss̃) +

i(−a2(pr̃ + p̃r) + qs̃+ q̃s))

= ψA(wu+ zũ, wv + zṽ − zw)

= Z ⊙W.

�

The notion of an A-linearly interactive complex fuzzy process is fundamen-
tal in this work and is stated as follows.

Definition 3 Given A ∈ RF an A-linearly interactive fuzzy complex process is a
function F : [a, b] −→ CF(A) defined by F (t) = q(t)A+ r(t), where q, r : [a, b] −→ C.

If q(t) = q1(t) + iq2(t) and r(t) = r1(t) + ir2(t), the conjugate of an A-
linearly interactive fuzzy complex process F is the function

F ∗(t) = q(t)∗A+ q(t)∗

= (q1(t)− iq2(t))A+ (r1(t)− ir2(t)).

In what follows, unless otherwise stated, we assume that A is a non-
symmetric fuzzy number. Thus, in this case, from Corollary 3, we have that
the space (CF(A),⊕, ·ψ, ‖ · ‖ψA

) is a Banach space over the field of complex
numbers. This fact allows us to use the concept of the Fréchet derivative for
functions F : [a, b] −→ CF(A).
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Definition 4 An A-linearly interactive complex fuzzy process F : [a, b] −→ CF(A)

is said to be Fréchet differentiable at t ∈ (a, b) if there exists a continuous linear
operator F ′[t] : R −→ CF(A) such that

F (t+ h) = F (t)⊕ F
′[t](h)⊕ ω(h),

with lim
h→0

‖ω(h)‖ψA

| h |
= 0.

The next theorem provides a practical way to compute the Fréchet
derivative of an A-linearly interactive complex fuzzy process.

Theorem 6 Let A ∈ RF(A) be non-symmetric and F : [a, b] −→ CF(A) such that
F (t) = q(t)A + r(t) for all t ∈ [a, b]. The function F is Fréchet differentiable at
t ∈ (a, b) if, and only if, q and r are differentiable at t. Additionally, F ′[t](h) =
q′(t)hA+ r′(t)h for all h ∈ R.

Proof The proof follows from the isomorphism between CF(A) and C
2 (see Corollary

3). More precisely, if q′(t) and r′(t) exist, then F ′[t](h) = q′(t)hA+ r′(t)h, h ∈ R, is
a continuous linear operator that satisfies the hypotheses of Definition 4.

On the other hand, let F ′[t] : R −→ CF(A) be the Fréchet derivative of F at t.

Since F ′[t] is a continuous linear operator, F ′[t] is of the form F ′[t](h) = hF ′[t](1) =
hq0A+ hr0, for some fixed q0, r0 ∈ C. From Definition 4, we have that

0 = lim
h→0

‖ω(h)‖ψA

| h |

= lim
h→0

∥

∥F (t+ h)⊖ F (t)⊖ F ′[t](h)
∥

∥

ψA

| h |

= lim
h→0

‖ψA (q(t+ h)− q(t)− hq0, r(t+ h)− r(t)− hr0)‖ψA

| h |

= lim
h→0

∥

∥

∥

∥

(

q(t+ h)− q(t)

h
− q0,

r(t+ h)− r(t)

h
− r0

)
∥

∥

∥

∥

.

The last equality implies that q′(t) = q0 and r′(t) = r0. �

A well-known result is that the Fréchet derivative is a linear operator in the
space of the functions from a Banach space to another Banach space over the
same field [27]. This result can be stated to the class of A-linearly interactive
fuzzy complex process as follows.

Proposition 7 Let A ∈ RF(A) be non-symmetric. If F,G : [a, b] −→ CF(A) are

Fréchet differentiable on [a, b] then (F ⊕G)′[t] = F ′[t]⊕G′[t] and (λF )′ [t] = λF ′[t]
for all t ∈ [a, b] and λ ∈ C.
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Since
(

CF(A),⊕, ·ψ, ‖.‖ψA

)

is a Banach space isomorphic to C
2, one can

also define a notion of derivative of F : [a, b] −→ CF(A) at some point t ∈ [a, b]
by means of a limit of quotients such as in calculus for real-valued functions.

Definition 5 Let A ∈ RF(A) be non-symmetric and F : [a, b] −→ CF(A) such that
F (t) = q(t)A + r(t). We say that F is differentiable at t ∈ (a, b) if there exists
F ′(t) ∈ CF(A) such that

lim
h→0

1

h
(F (t+ h)⊖ F (t)) = F

′(t). (18)

Theorem 8 The function F : [a, b] −→ CF(A) is Fréchet differentiable at t ∈ (a, b)
if, and only if, F is differentiable (in the sense of the (18)) at t. Moreover,

F
′[t](1) = F

′(t) = ψA
(

q
′(t), r′(t)

)

= q
′(t)A+ r

′(t), (19)

where F ′[t] is the Fréchet derivative of F at t.

Proof On the one hand, if F ′[t] exists, then, from its linearity, we have F ′[t](h) =
hF ′[t](1) for all h. Using this observation, we have that

0 = lim
h→0

∥

∥F (t+ h)⊖ F (t)⊖ hF ′[t](1)
∥

∥

ψA

h

= lim
h→0

∥

∥

∥

∥

1

h
(F (t+ h)⊖ F (t))⊖ F

′[t](1)

∥

∥

∥

∥

.

Thus, by Definition 5, F ′[t](1) is the derivative of F at t.
On the other hand, if F is differentiable at t ∈ (a, b), then

0 = lim
h→0

∥

∥

∥

∥

1

h
(F (t+ h)⊖ F (t))⊖ F

′(t)

∥

∥

∥

∥

= lim
h→0

∥

∥

∥

∥

1

h
(F (t+ h)⊖ F (t)⊖ hF

′(t))

∥

∥

∥

∥

= lim
h→0

∥

∥F (t+ h)⊖ F (t)⊖ hF ′(t)
∥

∥

h
.

From Definition 4, the continuous linear operator g(h) = hF ′(t) is the Fréchet
derivative of F at t.

Therefore, we have that F ′[t](1) = F ′(t) and, from Theorem 6, we conclude that

F
′(t) = ψA

(

q
′(t), r′(t)

)

= q
′(t)A+ r

′(t).

�

The connection revealed by Theorem 8 implies that the notion of differ-
entiability in Definition 5 inherits all interesting properties regarding Fréchet
differentiability, such as the linearity of the derivative operator and the impli-
cation of the continuity of a function at the points where it is differentiable.
On the other hand, in contrast to Fréchet derivative, Definition 5 provides
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a natural way to define and deal with derivative of higher order of A-
linearly interactive fuzzy complex processes. From Theorem 8, the function
F : [a, b] −→ CF(A) has derivative of order n ≥ 1 at t ∈ (a, b) if, and only if,
the functions q, r : [a, b] −→ C have derivatives of order n at t and is given by

F (n)(t) = ψA

(

q(n)(t), r(n)(t)
)

= q(n)(t)A+ r(n)(t). (20)

4 Fuzzy stationary Schrödinger equation

The physics of a traditional quantum system is mainly obtained from the
Hamiltonian operator, denoted by H, and the wave function Ψ(x). Usually,
the Hamiltonian is given by

H =
p2

2m
+V(x), (21)

where p is the momentum operator, which in the representation of positions is
given by p = −iℏ d

dx
andV(x) is the potential energy that in the representation

of positions is given by the function V (x). Thus, in the steady state, we have

HΨ(x) =

(

−
ℏ2

2m

d2

dx2
+ V (x)

)

Ψ(x) = EΨ(x). (22)

Equation (22), with contorn conditions Ψ(x1,0) and Ψ′(x1,0) ∈ CF(A), is
given by



























d2

dx2
Ψ(x)⊕

2m

ℏ2
(E − V (x))Ψ(x) = 0

Ψ(x1,0) = q1A+ r1 ∈ CF(A)

Ψ
′

(x1,0) = q2A+ r2 ∈ CF(A),

(23)

is known as stationary Schrödinger equation with boundary conditions given
by linearly correlated complex fuzzy numbers. If A is a non-symmetric fuzzy
number, the function Ψ : R −→ CF(A) represents the wave function for each
x ∈ R. Moreover, the function V : R −→ R is a potential where the particle of
the mass m is subject and ℏ is the reduced Planck constant. The quantity E,
means the energy of the particle. A very important and fundamental physical
situation is related to the situation in which the potential V (x) can be con-
sidered constant. It is important to emphasize that this is a fundamental step
for the study of quantum systems with varying potentials, as we can always
approximate an arbitrary potential curve by a set of step potentials [2–5]. So
let us consider the case that the potential is a step function:

V (x) =

{

0 if x ≤ 0
V0 if x > 0.

(24)
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Figure 1, graphically illustrates the potential given by (24) in which we
can verify two sectors, one with null potential defined in (−∞, 0], called sector
I and another sector with potential V0 defined in (0,∞) called sector II.
Furthermore, in sector II we have two possible situations, one where E > V0
and the other where E < V0 which leads us to the need to obtain the solution
of the Shcrödinger equation in only two situations, one for E > V0 and another
E < V0.
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Fig. 1 Graphical representation of the potential, in which we can highlight two regions, one
with domain (−∞, 0], called sector I, and another with domain (0,∞), identified as sector
II.

Considering the potential given by (24), we have that:



























d2

dx2
Ψ(x)⊕

2m

ℏ2
(E − V0)Ψ(x) = 0

Ψ(0) = q1A+ r1 ∈ CF(A)

Ψ
′

(0) = q2A+ r2 ∈ CF(A).

(25)

Thus, the Problem (25) implies a fuzzy wave function given by

Ψ(x) =

{

ΨI(x) = qI(x)A+ rI(x) if x ≤ 0
ΨII(x) = qII(x)A+ rII(x) if x > 0,

(26)

and consequently, it is necessary to obtain the set {qI(x), rI(x), qII(x), rII(x)}
to physically study the system. In this sense, it is important to distinguish two
fundamental physical situations, one in which the energy of the particle E is
greater than the energy of the barrier V0, and the other in which the energy
of the particle is less than the barrier.

4.1 The case where E > V0

For the case E > V0, let us introduce the positive constants {kI , kII} defined
by

E =
ℏ
2k2I
2m

and E − V0 =
ℏ
2k2II
2m

. (27)

Now, consider that in Equation (25), Ψ(x) ∈ CF(A) and q, r : R −→ C are
continuous and Riemann integrable functions. By Theorem 8, to obtain the
fuzzy wave function, it is only necessary to find the elements {q, r} from the
following classic initial value problems:
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





q
′′

τ (x) + k2τqτ (x) = 0
qτ (0) = qτ,1
q
′

τ (0) = qτ,2

(28)

and






r
′′

τ (x) + k2τrτ (x) = 0
rτ (0) = rτ,1
r
′

τ (0) = rτ,2,

(29)

where τ can take values I and II, thus identifying the different sectors. Let’s
start by analyzing the sector τ = I, but only for the part qI(x), because
the solution of the part in rI(x) is obtained similarly. The function qI(x) is
associated with two plane waves, one evolving from left to right, characterized
by eIkIx, and the other evolving from right to left, characterized by e−IkIx. It
is important to emphasize that the wave function traveling from right to left
is associated with the reflection generated by the barrier (step).

For sector II the function qII(x) is also associated with two plane waves
functions, one traveling from left to right, characterized by eIkIIx, and another
traveling from right to left, characterized by e−IkIIx. However, the wave trav-
eling from right to left is discarded from the physical point of view, as there is
no physical agent capable of generating this term, normally related to the pro-
cess of reflection. Therefore, all multiplicative constants of e−IkIIx of sector II,
can be considered null. Therefore, we have that qI(x) = A1e

ikIx + A2e
−ikIx,

qII(x) = A5e
ikIIx , rI(x) = A3e

ikIx + A4e
−ikIx and rII(x) = A6e

ikIIx, where
A1, A2, A3, A4, A5 and A6 are constants. Using the fact that ΨI(0) = ΨII(0)
we have that q1,I(0) = q1,II(0) and r1,I(0) = r1,II(0). On the other hand, as

Ψ
′

I(0) = Ψ
′

II(0) it follows that q2,I(0) = q2,II(0) and r2,I(0) = r2,II(0). Thus,

A1 =
1

2

(kI + kII)

kI
A5, A2 =

1

2

(kI − kII)

kI
A5, (30)

and

A3 =
1

2

(kI + kII)

kI
A6, A4 =

1

2

(kI − kII)

kI
A6. (31)

Moreover,

qI(x) = A5

2kI

[

(kI + kII)e
ikIx + (kI − kII)e

−ikIx
]

= A5

kI
[i sin(kIx)kII + kI cos(kIx)]

(32)

and

qII(x) = A5e
ikIIx = A5 [cos(kIIx) + i sin(kIIx)] . (33)

To get rI(x) and rII(x) just replace A5 by A6, or A5 = βA6:

rI(x) = A6

2kI

[

(kI + kII)e
ikIx + (kI − kII)e

−ikIx
]

= A6

kI
[i sin(kIx)kII + kI cos(kIx)]

(34)

and
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rII(x) = A6e
ikIIx = A6 [cos(kIIx) + i sin(kIIx)] . (35)

Furthermore, if A is an non-symmetrical fuzzy number, we have all quan-
tities to obtain ΨI(x) and ΨII(x) and, consequently, the fuzzy wave function
given by (26) which can be written as follow:

Ψ(x)E>V0
=

{

[i sin(kIx)kII + kI cos(kIx)]
A6

kI
(1 + βA) if x ≤ 0

[cos(kIIx) + i sin(kIIx)]A6(1 + βA) if x > 0,
(36)

where A5 = βA6. Given β = 1, the fuzzy wave function (36) can be written in
the form

Ψ(x)E>V0
=

{

A6

kI
[ikII sin(kIx) + kI cos(kIx)] (A+ 1) if x ≤ 0

(

A6e
ikIIx

)

A+A6e
ikIIx if x > 0.

(37)

Given the different possible approaches to the physical interpretation of
(37), one that deserves special analysis is related to considering the traditional
quantum part associated with the function r(x). Although not necessary, in
this case, if we consider the fuzzy number A with a sufficiently small diameter,
we can associate the fuzzy part as a correction to the traditional quantum
result, which can open many perspectives of applications for this formalism.
Another important point to be highlighted is that the set of functions {q, r}
can even be a set of orthogonal functions, which opens up the possibility of
applications and interpretations beyond the traditional ones.

Remark 4 Note that

ΨI(0) = ΨII(0) = A6(1 + βA) = r1 + q1A,

Ψ
′

I(0) = Ψ
′

II(0) = ikIIA6(1 + βA) = ikIIΨII(0).
(38)

With that, we can impose boundary condition for ΨI(0) = ΨII(0) with A6 imaginary

and consequently Ψ
′

I(0) = Ψ
′

II(0) will be real, assuming β real.

Figure 2 show the graphical representation of the real part of the fuzzy wave
function given by (37) for two differents energy values, one fuzzy number A and
A6 = 1 and β = 1. In the first graph, we have E = 1.5 and A = (−0.3; 0; 0.1).
In the second graph, we consider the energy E = 1.05 and the same uncertainty
to observe what happens in the energy region close to V0 = 1. In both cases,
the wave functions have the same diameter. Another important point that we
can highlight is that using the points where the real part of the wavefunction
is zero, we obtain the classical results for the wavelength. Furthermore, we
can observe in the case where E = 1.05, as the energy is very close to the
potential of the barrier V0, the wavelength of the sector II increases, showing
a tendency of the oscillation to transform into an exponential decay . With
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this, we see that the fuzzification process for this quantic case provides us with
physics consistent with classical physics.
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Fig. 2 Graphical representation of the real part of the fuzzy wave functions for the case
where E > V0 with A = (−0.3; 0; 0.1), A6 = 1, V0 = 1 for energy values: E = 1.5 and
E = 1.05.

Figure 3 show the graphical representation of the real part of the fuzzy
wave function given by (37) for one energy value, two differents fuzzy numbers
A, A6 = 1 and β = 1. We chose the fuzzy number A = (−0.05; 0; 0.005),
very close to zero, with fixed energy E = 1.5 to illustrate the physical effect
of reducing uncertainty in the system. In both cases, the fuzzy wave functions
have the same wavelength. As the uncertainty decreased, we recovered the
traditional classical result.
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Fig. 3 Graphical representation of the real part of the fuzzy wave functions for for fixed
energy E = 1.5, A6 = 1, V0 = 1 for the fuzzy numbers: A = (−0.5; 0; 0.3) and A =
(−0.05; 0; 0.005)

Remark 5 The real function ‖Ψ‖2 has a probabilistic interpretation. For A non-
symmetric, the norm ‖Ψ(x)‖ is given by ‖q(x), r(x)‖

C2 . We define the probability
density P (x), as the norm-squared of the wave function

P (x) = ‖Ψ(x)‖2 . (39)
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This probability density so defined as positive. The physical interpretation of the
wave function arises because we assume that P (x)dx is the probability to find the
particle in the interval [x, x+ dx].

4.2 The case where E < V0

To find the fuzzy wave function in the case E < V0, we will proceed in an
analogous way to the case E ≥ V0. For the sector I, the physical properties of
the wave function are the same as the case E > V0. For sector II, we have

q′′II(x)− ρ2qII(x) = 0, where ρ2 =
2m (V0 − E)

ℏ2
, (40)

whose solution is given by

qII(x) = A5e
−ρx +A7e

ρx. (41)

For since, ρ > 0 e therefore eρx is unrealistica. We will consider the A7 = 0,
and consequently we have

qII(x) = A5e
−ρx. (42)

Applying the boundary conditions at x = 0, we have

A1 +A2 = A5, ikI(A1 −A2) = −ρA5

A1 = 1
2
(kI+iρ)
kI

A5, A2 = − I
2
(ikI+ρ)
kI

A5.
(43)

So we have

qI(x) =
A5

kI

(

kI cos(kIx)− sin(kIx)ρ
)

(44)

and

rI(x) =
A6

kI

(

kI cos(kIx)− sin(kIx)ρ
)

. (45)

For sector II, implies that

rII(x) = A6e
−ρx. (46)

Let’s consider A5 = βA6, with constant β. Thus

ΨI(x) = [kI cos(kIx)− sin(kIx)ρ]
A6

kI
(1 + βA),

ΨII(x) = e−ρxA6(1 + βA).
(47)

Furthemore,

ΨI(0) = ΨII(0) = A6(1 + βA) = r1 + q1A (48)

Ψ
′

I(0) = Ψ
′

II(0) = −ρA6(1 + βA) = −ρΨI(0) (49)
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and hence r1 = A6, q1 = A6β, r2 = −ρr1 and q2 = −ρq1. Therefore, an
boundary condition given by a real number implies a real boundary condition
for Ψ

′

II(0) = Ψ
′

II(0), with a proportionality factor equal to −ρ.
Therefore, the fuzzy wave function (26) with ΨI(x) and ΨII(x) given by

(47) can be written in the form

Ψ(x)E<V0
=

{

A6

kI
[kI cos(kIx)− ρ sin(kIx)] (A+ β) if x ≤ 0

(A6e
−ρx)A+A6e

−ρx if x > 0.
(50)

Figure 4 illustrates the graphical representation of the fuzzy wave function
given by (50) for A = (−0.3; 0; 0.1), β = 1, A6 = 1, E = 0.1 and E = 0.95.
By choosing E = 0.95 we observe classical quantum physics for E ∼= V0. It
is observed that the diameter of the fuzzy wave function does not depend on
energy, as expected. For the case where E = 0.1 we can use the points that the
fuzzy wave function vanishes to obtain the classic result for the wavelength.
Furthermore, the graph of the fuzzy wave function for E = 0.1 decays faster
than the case E = 0.95, as physically expected. With this, we observed that
the fuzzification process is well structured, as it shows results consistent with
those expected classically.
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Fig. 4 Graphical representation of the fuzzy wave functions for the case where E > V0

with A = (−0.3; 0; 0.1), β = 1, A6 = 1, V0 = 1 for energy values: E = 0.1 and E = 0.95.

Figure 5 shows the graphical representation of the fuzzy wave function
given by (50) for energy E = 0.5, β = 1, A6 = 1 and two differents fuzzy
numbers: A = (−0.5; 0; 0.3) and A = (−0.05; 0; 0.005). The choice of this
last fuzzy number shows us the physical effects of the reduction of uncertainty
in the studied phenomenon. We can verify that the fuzzy wavelength in the I
sector is the same for both chosen fuzzy numbers.

The current density is an important quantity in quantum mechanics

J(x) =
iℏ

2m
[Ψ(x)Ψ∗′(x)−Ψ∗(x)Ψ′(x)] , (51)

where Ψ∗(x) denotes the conjugate of the function Ψ(x).
The fuzzy current density is defined by

Jfuzzy(x) =
iℏ

2m
[(Ψ(x)⊙Ψ∗′(x)) ⊖ (Ψ∗(x)⊙Ψ′(x))] . (52)
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Fig. 5 Graphical representation of the fuzzy wave functions for fixed energy E = 0.5, β =
1, A6 = 1, V0 = 1 for the fuzzy numbers: A = (−0.5; 0; 0.3) and A = (−0.05; 0; 0.005).

In the classic case, the current density for the case E < V0 is zero. Considering
x > 0 and the initial conditions:

Ψ(0)E<V0
= q1A = A5A and Ψ′(0)E<V0

= −ρq1A = −ρA5A, (53)

where A is the non-symmetric fuzzy number, then, the fuzzy wave function is
given by

Ψ(x) =
(

A5e
−ρx

)

A, x > 0. (54)

Using (12), since the imaginary parts of the corresponding fuzzy complex
numbers are zero, we have

Ψ(x)⊙Ψ∗′(x) = Ψ∗(x)⊙Ψ′(x). (55)

Therefore,

Jfuzzy(x) =
iℏ

2m
((Ψ(x)⊙Ψ∗′(x)) ⊖ (Ψ∗(x)⊙Ψ′(x)))

= 0.

(56)

Thus, we verify that for E < V0, the fuzzy current density is null, which
allow us to make an interpretation in analogy to the classic one, in which the
reflection coefficient is null. Therefore, we can conclude that for x < 0, we
have the superposition of fuzzy waves of the same amplitude propagating in
opposite directions, generating a stationary fuzzy wave function.
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