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Efficient numerical simulation of the human

voice

simVoice — a three-dimensional simulation model
based on a hybrid aeroacoustic approach

P. Maurerlehner®, S. Schoder, C. Freidhager, A. Wurzinger, A. Hauser, F. Kraxberger, S. Falk, S. Kniesburges,

M. Echternach, M. Déllinger, M. Kaltenbacher

The process of voice production is a complex process and depends on the correct interaction of the vocal folds and the glottal airstream inducing
the primary voice source, which is subsequently modulated by the vocal tract. Due to the restricted access to the glottis, not all aspects of the three-
dimensional process can be captured by measurements without influencing the measurement object. Hence, the application of a numerical tool capturing
the physical process of phonation can provide an extended database for voice treatment and, therefore, can contribute to an increased effectiveness of
voice treatment. However, such numerical models involve complex and demanding procedures to model the material behavior and the mechanical contact
of the vocal folds and to realize moving boundaries of the involved physical domains. The present paper proposes a numerical model called simVoice,
which circumvents these computational expenses by prescribing the experimentally obtained vocal fold motion within the simulation. Additionally, a hybrid
approach for sound computation further enhances the computational efficiency and yields good agreement with acoustic measurements. An analysis of
the computational workloads suggests that the key factor for a further increase in efficiency is an optimized flow simulation and source term computation.

Keywords: human voice production; voice disorders; computational biomechanics; computational aeroacoustics (CAA); computational fluid dynamics
(CFD)

Effiziente numerische Simulation der menschlichen Stimme basierend auf einem dreidimensionalen Modell mit hybridem
aerodynamischen Ansatz.

Der komplexe Vorgang der menschlichen Stimmerzeugung beruht auf dem richtigen Zusammenspiel der Stimmlippen und des glottalen Luftstroms,
welcher ein erstes akustisches Signal erzeugt, das dann vom Vokaltrakt moduliert wird. Durch die eingeschrénkte Zugéanglichkeit zur Glottis kénnen nicht
alle Aspekte dieses dreidimensionalen Vorganges mittels Messungen erfasst werden, ohne das Messobjekt zu beeinflussen. Daher kann durch den Einsatz
eines Simulationsmodells, welches die Physik der Stimmerzeugung wiedergibt, die Datenlage erweitert werden und somit die Treffsicherheit und Effektivitat
von Stimmbehandlungen verbessert werden. Solche numerischen Modelle erfordern jedoch komplexe und rechenintensive Verfahren, um einerseits das
Materialverhalten des Gewebes zu modellieren und andererseits die rdumlich verdndernden physikalischen Gebiete bis zum mechanischen Kontakt der
Stimmlippen zu realisieren. In diesem Paper wird das Modell sim\Voice présentiert, das diesen numerischen Aufwand umgeht, indem die Bewegung der
Stimmlippen in der Simulation aufgepragt wird. AuBBerdem bewirkt ein hybrider Ansatz in der Aeroakustiksimulation zusétzliche numerische Effizienz und
liefert eine gute Ubereinstimmung mit Akustikmessungen. Eine Analyse des Rechenaufwandes der einzelnen Arbeitsschritte zeigt, dass fir eine weitere

Effizienzsteigerung an der Strémungssimulation bzw. der Quelltermberechnung angesetzt werden muss.

Schlusselwérter: Phonation; Dysphonie; numerische Biomechanik; numerische Aeroakustik; numerische Strémungsmechanik
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1. Introduction
The ability of humans to communicate is an essential characteristic
that distinguishes us from other living beings and has played a cru-
cial role in the evolution of the dominant species. People suffering
from voice disorders have a reduced quality of life and today also
poorer chances of professional success [4, 26, 42]. However, voice
problems do not only affect the individual person, but are also of
high social and economic relevance. A study in 2000 revealed that
the annual losses within the Gross National Product of the USA are
up to 186 billions dollars since approximately 10 percent of the en-
tire US population are affected by communication disturbances [29].

The principal mechanism of voice generation is the self-sustained
oscillation of the vocal folds (VFs) caused by the airstream coming
from the lungs (see Fig. 1). Due to the vibrating vocal folds, the
airstream is interrupted periodically generating acoustic waves dom-
inated by the oscillation (fundamental) frequency fy. The arising pri-
mary voice source is subsequently modulated by the shape of the
downstream oral and nasal airways referred as vocal tract.

In general, the purpose of numerical models of the human voice
is either to gain a deeper insight into voice generation or a clini-
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Fig. 1. Physiology of human voice production (Color figure online)

cal application. Thereby, simVoice become a valuable clinical tool in
phoniatrics by

e contributing to a better understanding of pathological and physi-
ological voice production,

¢ helping to identify new treatment approaches,

predicting the outcome of conservative and surgical voice treat-

ment, and

e supporting training of medical stuff in phoniatrics.

For a patient specific application in a clinical environment, special
focus in the development of the model simVoice must be put on
computational efficiency, which is achieved by (1) applying the hy-
brid aeroacoustic approach based on the perturbed convective wave
equation (PCWE) and (2) by circumventing fluid-structure interac-
tion (FSI) modeling by prescribing the vocal fold motion (forward
coupling).

Figure 2 illustrates the application of simVoice in a clinical envi-
ronment as a tool supporting decision making, as well as for finding
new treatment approaches. In the first step, the vocal fold motion
is measured by high-speed imaging, and the voice of the patient
is recorded. Furthermore, the geometry of the larynx and the vo-
cal tract are obtained by magnetic resonance imaging (MRT) and
the geometry and VF motion of the phonation model simVoice is
adapted to the patient specific physiology. Subsequently, the geom-
etry of the numerical model is modified according to the chosen
treatment approach (e.g. surgical treatment), which is thought to
yield an improvement of voice quality. In the next step, the voice of
the modified geometry is computed by the numerical model. If the
resulting voice quality is satisfying, the selected treatment can be
performed. Otherwise, the geometry is modified again until a satis-
fying result is obtained. Thus, an efficient numerical model capturing
the crucial physical aspects of phonation will contribute to a more
effective treatment of voice disorders.

The rest of the paper is organized as follows. In Sect. 2, the state
of art and a classification of numerical phonation models is provided
and in Sect. 3, the methodology of simVoice is presented according
to the simulation workflow. The model of the larynx and the vo-
cal fold motion is illustrated in Sect. 3.1 and the hybrid workflow
is explained in Sect. 3.2 including the derivation of the governing
equation for flow-induced sound generation and propagation. Sub-
sequently, the steps of the hybrid workflow, namely the computa-
tional fluid dynamics simulation, aeroacoustic source term compu-
tation and interpolation, and computation of the acoustic field are
presented within Sect. 3.2, before analyzing the computational ef-
ficiency of the phonation model (Sect. 4.1) and showing validation
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Fig. 2. Workflow of a prospective clinical application

results (Sect. 4). Finally, a conclusion including an outlook are pro-
vided (Sect. 5).

2. Background

The interaction of fluid dynamics (airflow), structural mechanics of
the VFs (tissue), and acoustics (air), which is the principal mechanism
of voice production, can be described in different levels of complex-
ity. On a fundamental level, models of human phonation can be
distinguished between lumped mass models and models based on
continuum mechanics with the respective governing partial differ-
ential equation (PDE) according to Fig. 3. For the latter approach,
the governing PDEs are typically solved by a finite volume method
(FVM), finite element method (FEM), or finite difference method
(FDM). PDE-based models can be further classified by the motion of
the vocal folds, which can be static, externally driven (prescribed mo-
tion) or self-excited due to fluid-structure-acoustic interaction (FSAI).
Another crucial model property is dimensionality which has a sub-
stantial impact on the degrees of freedom (DOFs) and hence compu-
tation time. Thereby, it has to be noted that only three dimensional
(3D) models are capable of reflecting the real physics since flow tur-
bulence, which is a dominating phenomenon of phonation, requires
three dimensions for a correct physical representation(vorticity distri-
bution) [25].

Lumped mass models  While lumped mass models were used in
the past for principal investigations of the self-excited oscillation of
the vocal folds [8, 12], they are still applied nowadays but in a three-
dimensional (3D) arrangement (multi-mass models) to investigate
material properties of the vocal folds [44, 45]. Due to the strong
simplifications of this modeling approach, not all physical aspects
can be captured. Therefore, PDE-based tools, which aim to resolve
all physical details, are more promising for principal research as well
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Numerical Models of Human Voice
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Fig. 3. Classification of numerical models of human voice production

as for clinical applications, which can be classified by the modeling
approach of the vocal fold motion.

Self excited (FSI) PDE-based models The most general ap-
proach is to model the interaction of the airflow and the structural
mechanics of the vocal folds, which yields the self-excited oscilla-
tion of the vocal folds for certain flow and mechanic parameters.
A first model considering fluid-structure interaction was introduced
by Alipour et al. [1]. Thereby, the domain alteration was realized
by mesh deformation, which induces distorted flow cells within the
glottis. Thus, the immersed boundary method (IBM) was later ap-
plied [5, 13, 46-48], which does not have this drawback. Besides
ensuring the boundary conditions of the moving domain bound-
aries, a material model of the anisotropic tissue of the vocal folds
has to be established. These two tasks require complex numeric pro-
cedures and high computational effort, which makes them not yet
applicable in a clinical environment.

PDE-based models with static vocal folds This modeling ap-
proach assumes a quasi-steady condition at specific instances in the
oscillation cycle and aims to investigate the glottal aerodynamics but
does not allow a thorough acoustic analysis [11, 24, 32].

Externally driven PDE-based models Kaltenbacher et al. estab-
lished a 2D FSAI-model which takes fluid-acoustic coupling into ac-
count by deploying acoustic perturbation equations within a hybrid
aeroacoustic approach [17]. This model was simplified by Zorner et
al., who replaced the fully-coupled interface condition by a one-way
coupling [49]. Therewith, the costly coupled simulation was reduced
to a pure computational fluid dynamic (CFD) simulation with a pre-
scribed movement of the vocal folds and appropriate boundary con-
ditions. In general, the presented results showed that a pure CFD-
simulation with a prescribed structural movement can substitute the
fully-coupled approach [49]. In simVoice, this modeling approach is
applied in combination with a hybrid aeroacoustic approach based
on the perturbed convective wave equation. The detailed descrip-
tion of the model with focus on the numerical efficiency is provided
in [37], whereas a thorough description of the CFD incompressible
flow simulation can be found in [31] and [30]. Furthermore, an ex-
tensive source term analysis for a validated synthetic setup is pro-
vided in [36] and the application to typical vocal cord dysfunctions
is presented in [7].
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3. Methods

Figure 4 illustrates the workflow of simVoice which is based on the
hybrid aeroacoustic approach (Sect. 3.2) consisting of (1) a flow sim-
ulation, (2) an acoustic source term computation and interpolation
and (3) an acoustic propagation simulation. Thereby, the acoustic
source term excites the acoustic field and is defined by the right
hand side of a the acoustic wave equation governing the propa-
gation simulation and hence features the excitation of the acous-
tic field. In the acoustic propagation simulation, the VFs are fixed,
whereas in the flow simulation they are externally driven. Therefore,
the VF motion is obtained by fitting a vocal fold model (Sect. 3.1) to
real physiological VF oscillations captured by glottal endoscopy.

3.1 Geometry and vocal fold model

For modeling the VF-motion, the commonly used M5 model with
two degrees of freedom (DOFs) and a sinusoidal glottal orifice is cho-
sen (see Fig. 5) [33]. Thereby, each vocal fold has a degree of free-
dom (DOF) of translation y and rotation-DOF ¢. Due to the rotation-
DOF, the model is able to capture the characteristic convergent-to-
divergent shape change of the glottal duct during an oscillation cycle
[21, 22]. Furthermore, typical abnormalities and pathologies of vocal
fold vibration, such as glottal insufficiency (incomplete VF closure),
aperiodic or asymmetric oscillation can be reproduced. Figure 7 il-
lustrates the VF model and provides the main dimensions, of the
larynx. The false vocal folds (fVFs), also known as ventricular folds
are modeled rigid since they are not excited by the glottal airstream.
The temporal evolutions of the DOFs y and ¢ are fitted to reproduce
the measured glottal area waveform (GAW, see Fig. 6), which de-
scribes the temporal evolution of the area of the glottal orifice and
can be obtained by high-speed videoendoscopy measurements dur-
ing phonation in excised larynges (ex-vivo), as well as in living indi-
viduals (in-vivo). The vocal fold shape in the closed and the opened
condition is shown in Fig. 7. Due to numerical issues of the flow
solver, a gap of hpin = 0.2 mm is remaining in the closed condition.
A more detailed description of the applied vocal fold model and lar-
ynx geometry including the shape of the false vocal folds (ventricular
folds) can be found in [30, 31].

In the current version of simVoice, a simplified straight vocal tract
with circular cross-sections according to [28] is used (see Fig. 8).
Compared to a realistic physiological shape, the model complex-
ity is reduced significantly while preserving the acoustic properties.
A more detailed description of the simplification procedure can be
foundin [2, 28].

3.2 Hybrid aeroacoustic approach

simVoice is based on the hybrid aeroacoustic approach which de-
composes the task of sound computation into a flow computation
and an acoustic propagation simulation [35]. For the latter part,
the aeroacoustic source terms depending on the partial differen-
tial equation (PDE) governing the acoustic field (such as Lighthill
acoustic analogy, acoustic perturbation equations, etc.) have to be
computed from the flow field obtained in the first step [35]. The hy-
brid approach is commonly applied in computational aeroacoustics
(CAA) [3, 16, 18, 27, 39-41] due to several advantages:

e Adjustment of simulation features to the specific require-
ments of the respective physical field. Since the characteristics and
dominating phenomena of the flow and the acoustic field differ
substantially, the numerical computation of these fields has their
specific requirements:

— Spatial discretization. The element size can be chosen individ-
ually for the flow and acoustic field (i.e. handle the disparity of
length scales). Whereas in fluid dynamics boundary layers and
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(a) Closed condition. (b) Opened condition.

Fig. 7. Synthetic vocal fold geometry

turbulent eddies need to be resolved, in acoustics the acoustic
waves have to be resolved. Furthermore, the domain of flow
and acoustic simulation can differ. Fluid domain without an im-
pact on the flow and containing no acoustic sources, such as
acoustic propagation regions, can be neglected for the flow
simulation.

— Temporal resolution. While the minimum time step size of
acoustics is defined by the maximum resolved frequency of the
acoustic wave, the minimum time step size of CFD, in general,
depends on turbulent phenomena that must be resolved.

e Assumption of incompressible flow within the CFD simula-
tion. For low Mach number flows (Ma < 0.3), compressibility can
be neglected and solving the incompressible Navier Stokes equa-
tions is sufficient for the subsequent acoustic source term com-
putation. Thus, the computational demanding compressible flow
simulation can be avoided.

In many applications, the reduction of computational effort due
to valid simplification of the flow simulation outweighs the addi-
tional effort due to the acoustic simulation and the acoustic source
term computation and treatment. Furthermore, when the source
term computation is performed on the fly within the CFD-export,
the additional effort is decreased.
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For the present model, the perturbed convective wave equation
(PCWE) is chosen to model the sound generation and propagation
inside the acoustic domain. An advantage of this wave equation is
its numerical efficiency, since it is a PDE with only one scalar un-
known being the acoustic velocity potential 2. The derivation of
so-called acoustic perturbation equations (APEs) [6] is based on the
perturbation ansatz, which is applied to the quantities of the flow
field

p=p+p+p-=p+p°+p° (1)
V=V+V v =V 4V V2 )
p=p+p+0° 3)

according to [9]. Therewith, the pressure p, the flow velocity v, and
the density p are decomposed into a mean part (p, v, p) and a fluc-
tuating part consisting of acoustic (p?, v2, p?) and incompressible
flow components (p'c, vi€). Additionally, a density correction pq is
introduced.

By applying the splitting approach to the compressible flow equa-
tions, the APE-2 system can be derived [6], which was reformulated
by Hippe and Kaltenbacher [10, 15] to

1 DZ wa s 1 Dpic

@ oz M= e @

by introducing the acoustic velocity potential @ defined as
vi= —Vlﬁa . (5)

Thereby, the material parameters p (incompressible fluid density)
and c (speed of sound) depend on the condition of the airstream.
For in-vivo phonation, the material parameters are set to p =
1.145 kgm—3 and ¢ = 355 ms~' corresponding to the condition
of expiration air (T ~ 35 °C, 95% relative humidity) whereas ex-vivo
investigations ambient conditions have to be considered. The PDE
describes aeroacoustic sources generated by incompressible flow
structures and wave propagation through moving media. Since the
solution quantity is a scalar unknown, this form has an enhanced
numerical efficiency compared to the APE-2 system. The differential
operator (material derivative) in Eq. (4) is defined by
D J  _

Dt 3t +v.-V (6)
consisting of the partial time derivative and a convective term, where
V is the mean velocity. The right-hand side (RHS) of Eq. (4) defines
the aeroacoustic source term

1 D ic 1 P) ic _ .
=——= p === p + V~V,OIc
pc? Dt pC at —_———
convective source term 7)
1 apic
T hc ot

wherein the convective term can be neglected for low flow velocities
v due to the dominating partial time derivative especially at high
frequencies. Since low flow velocity applies to human phonation,
the simplification is exploited.

When the mean flow V is also neglected in the wave operator on
the left-hand side of Eq. (4), the weak formulation of the PCWE (4)
reads as

2..a
C1—2 (paaz dx+/V<p-Vwadx:
Q Q
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with ¢ denoting the test function and the integrals being defined
in the computational domain € (volume term) and its boundary
I (boundary term). This weak form of the PCWE is solved by the
FE-based multi-physics solver openCFS for the solution quantity 2
[43]. The relation p? = ,EDD—‘”: allows the calculation of the acoustic
pressure p@.

1) Computational fluid dynamics (CFD) simulation To pro-
vide the flow field for the subsequent acoustic source term com-
putation, the unsteady incompressible Navier-Stokes equations are
solved by the CFD software Star-CCM+ (Siemens PLM Software,
Plano, TX/USA). Compressible effects can be neglected due to the
low flow velocity (mean convective Mach number inside the glot-
tis Ma < 0.1). The computational domain comprises the larynx and
the downstream vocal tract (Fig. 5). The overset mesh algorithm of
Star-CCM+ is used to realize the vocal fold motion, which is based
on the above introduced M5-model. This procedure does not allow
full closure of the vocal folds. Thus, a gap of 0.2 mm is remain-
ing in the closed condition, which causes a negligible leakage flow.
A large eddy simulation (LES) in combination with the wall-adapting
local eddy-viscosity (WALE) subgrid-scale model is used to model the
turbulent flow. The computational grid consists of about 1.3 mil-
lion hexahedral cells with two levels of refinement within the glottal
region. Further details about the flow simulation can be found in
[30, 31]. In Fig. 8 the resulting flow field at t = 0.5 T is visualized by
means of streamlines.

2) Aeroacoustic source term computation and interpolation
Having determined the evolution of the flow field, the simplified
acoustic source term of Eq. (7) can be computed on the CFD grid.
The resulting source term at the time instance t =0.5T is displayed
in Fig. 9. In a next step, the source term has to be interpolated from
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Fig. 10. Comparison of CFD (blue) and acoustic (red) mesh (Color fig-
ure online)

the CFD grid to the generally coarser acoustic grid (see Fig. 10). This
is realized by a conservative interpolation scheme, which considers
the intersection volumes of flow and acoustic cells and hence con-
serves the energy globally, as well as locally [34, 37, 38].

3) Computational acoustics simulation Figure 11 shows the
acoustic simulation setup. The static computational domain covers
the CFD domain at the maximum opening of the vocal folds in or-
der to capture all acoustic sources. The vocal fold motion can be ne-
glected for the acoustic simulation because the glottal gap is acous-
tically compact since

He = @ —0.058 <1, ©)

where hmax =4 mm denotes the maximum glottal gap and fmax =
5 kHz the maximum resolved frequency. Thus, the changing acous-
tic domain has no impact on the wave propagation within the
considered frequency range. In addition to the larynx and vocal
tract, a propagation region is added, which represents the ambi-
ent air, where the voice is emitted. The adjacent perfectly matched
layer (PML) region ensures free field radiation at the boundary [14],
whereas at the larynx inlet wave reflections are avoided by an ab-
sorbing boundary condition (ABC) [14] at Tjet. Compared to a PML,
the ABC does not introduce additional DOFs but provides full ab-
sorption just for plane waves, which applies to the present model
because

C
frnax < >H =9861 Hz, (10)

with H being the larger dimension of the duct cross-section (see
Fig. 5) The remaining bounding surface Ty, is modeled sound-
hard by setting the acoustic particle velocity normal to the wall
Vh = Vi@ - n to zero (natural boundary condition). In order to pre-
serve element quality and meshing flexibility a non-conforming in-
terface of type Nitsche is applied between the vocal tract and the
propagation region, which is also implemented in openCFS [43].
The shape of the vocal tract in Fig. 11 is simplified from a realis-
tic MRI-based human vocal tract (corresponding to the vowel ‘a’) to
a straight rotational symmetric shape while preserving the acoustic
filter characteristics according to the procedure presented in [2].
The simulation setup is the result of a convergence study pre-
sented in [37]. Therein, the element size, the number of elements
within the PML, and further aspects were successively modified to
obtain an efficient acoustic simulation setup. An overview of cell
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Table 1. Details of the computational grid

Region No. elements Max. element size
Larynx 48750 5.0 mm
Vocal tract 23530 6.3mm
Propagation domain 1450 10.6 mm
PML region 1560 11.0mm
Total 93200 11.0 mm

sizes and element numbers is provided in Table 1. While the prop-
agation region with adjacent PML region is meshed by linear hexa-
hedral elements, linear tetrahedral cells are used for the larynx and
the vocal tract to ensure an efficient mesh generation of complex
structures. In total, the acoustic grid of the displayed configuration
consists of 93200 elements.

4. Results

In order to validate the numerical model sim\oice, a measurement
on a test rig with artificial vocal folds (M5-shaped) out of silicone and
a simple cuboid-shaped vocal tract out of aluminum was performed
[19, 20, 22, 23]. Thereby, the shape of the larynx and the vocal tract
of the measurement and the simulation agreed. Figure 12 shows
the resulting acoustic spectra of the measurement of 20 oscillation
cycles of the VFs and the simulation, where the parts of the acoustic
source term in Eq. (7) were considered separately as well as com-
bined. The plot proofs that neglecting the convective source term
is valid since its consideration only changes the spectrum insignif-
icantly. Above 300 Hz, the spectrum of the measurement is well
reproduced by the simulation. Reflections of the acoustic waves at
the walls of the anechoic room in the measurement are thought to
be the reason for the underestimation of the amplitude by the sim-
ulation underneath 300 Hz since this is the cut-off frequency of the
anechoic room. A detailed description of the experimental setup is
published in [19, 20, 22, 23].

4.1 Computational efficiency

Since the goal of the present research work is a clinical application,
a special focus is put on computational efficiency which is a cru-
cial factor for the applicability in a clinical environment for patient
specific treatment approaches. Table 2 summarizes the simulation
details of the principal computational tasks of the hybrid workflow.
It clearly shows that the bottleneck of the workflow is the CFD sim-
ulation demanding 94.5% of the total computation time. However,
this emphasizes the potential of the hybrid approach in terms of
computational efficiency, since the effort due to tasks introduced
by the hybrid approach, is only about 5.5%. Therefore, the reduc-
tion of computational effort due to simplifications on the flow sim-
ulation (incompressible flow, reduction of computational domain)
clearly outweighs the additional effort owing to the hybrid approach
(source term computation and interpolation and acoustic propaga-
tion simulation). Moreover, circumventing FSI of the airflow and the
vocal folds yields a massive reduction of computation time since the
tissue has not to be discretized (no additional DOFs), no material
model of the tissue is required and complex algorithms treating the
moving boundary (VF surface) are avoided.

5. Conclusion

A numerical model called simVoice, which is capable of predicting
the voice based on a measured vocal fold motion and the geometry
of the larynx and vocal tract was presented. The hybrid aeroacoustic
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Table 2. Comparison of simulation details for voice computation of
15 VF oscillation cycles. For the source term computation and inter-
polation (ST) the cell number and time step size decisive for the com-
putational effort is shown

Task No. At No. No. Core Rel.
cells ins time phys. hours core
steps cores hours
CFD 1.3M 1.36e-6 74400 140 150 94.5%
ST 1.3M  1.36e-6 74400 8 8 5.0%
Acou. 09M 1.36e-5 7440 8 0.5 0.5%

approach based on the PCWE and the prescribed vocal fold motion,
which circumvents modeling fluid-structure interaction, contributes
to the high numerical efficiency of the model. However, the CFD
simulation is still too computationally challenging to be performed
on a conventional computer. Thus, special effort will be put into an
efficiency-optimized flow simulation and source term computation.
Moreover, the application of stochastic methods and artificial intel-
ligence for the multiplication of flow data of a reduced number of
oscillation cycles will be investigated. Nevertheless, numerical mod-
els capturing the crucial physical aspects of phonation will develop
in the future and have the potential to support clinical work and to
contribute to a deeper understanding of human voice production.
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