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Abstract Currently the best algorithms for predict-

ing transcription factor binding sites in DNA sequences

are severely limited in accuracy. There is good reason

to believe that predictions from different classes of al-

gorithms could be used in conjunction to improve the

quality of predictions. In this paper, we apply Single

Layer Networks, Rules Sets, Support Vector Machines

and the Adaboost algorithm to predictions from 12 key

real valued algorithms. Furthermore, we use a ‘window’

of consecutive results as the input vector in order to

contextualise the neighbouring results. We improve the

classification result with the aid of under- and over- sam-

pling techniques. We find that Support Vector Machines

and the Adaboost algorithm outperform the original in-

dividual algorithms and the other classifiers employed

in this work. In particular they give a better tradeoff

between Recall and Precision.

1 Introduction

In this paper, we address the problem of identifying tran-

scription factor binding sites in DNA sequences. There

are many different algorithms for searching binding sites

[36,5,8,7] in current use. However, most of them produce

a high rate of false positive predictions. This is problem-

atic for practicing biologists who wish to validate these
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results - testing a prediction is costly. We attempt to re-

duce these false positive predictions using classification

techniques taken from the field of machine learning.

To do this we first integrate the results from 12 dif-

ferent base algorithms for identifying binding sites, using

non-linear classification techniques. To further improve

classification results, we employ windowed inputs, where

a fixed number of consecutive results are used as an in-

put vector in order to contextualise the neighbouring re-

sults. The data has two classes labeled at the nucleotide

level as either part of binding sites or non-binding sites,

with about 93% being non-binding sites. We make use of

sampling techniques, working with a traditional neural

network: single layer networks (SLN), rules sets (C4.5-

Rules), a contemporary classification algorithm: support

vector machines (SVM) and the Adaboost algorithm.

In previous work we have used binary valued base

algorithms [26], here we extend this to use as much in-

formation as possible, as provided by the real valued base

algorithms.

We expound the problem domain in the next section.

In Section 3, we introduce the datasets used in this pa-

per. We explain how we apply under- and over- sampling

techniques in Section 4. Section 5 presents the classifi-

cation algorithms used in this work. A set of common

metrics and receiver operating characteristics graphs for

assessing classifier performance are covered in Section 6.

Section 7 briefly introduces our experiments and gives

all the experimental results. The degree of matching be-

tween prediction and experimental verification is visu-

alised in Section 8. The paper ends in Section 9 with

conclusions.

2 Problem Domain

It is increasingly acknowledged that much of the varia-

tion in complexity of organisms is due to differences in

the regulation of gene activity rather than to differences

in the genetic specifications for protein coding per se.

Gene activity is dynamic, being regulated by the com-

plex interplay of gene regulatory networks and all their

many components. Whereas the general principles un-

derlying the translation of the coding regions of genes

(exons) into their protein products are largely compre-

hended, the mapping between a gene’s expression and

the information contained in (non-coding) regulatory re-

gions of the genome is not well understood. These reg-

ulatory regions are short stretches of DNA upstream or

downstream of the position where gene transcription be-

gins. They are generally composed of dense clusters of

so-called transcription factor binding sites (TFBS). In

turn, these binding sites are recognized by transcription

factors, proteins that - upon binding to them - act as re-

pressors or activators, thus controlling the rate of tran-

scription.

Recent research has made clear that genetic regula-

tory mechanisms are much more intricate than was once

assumed. For example, a single base substitution will

commonly modify the intensity of the interaction be-
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tween transcription factor and DNA rather than abol-

ish it. This implies that such regions are fairly robust

to mutations. It also allows a relatively small number of

transcription factors to produce a wide range of patterns

of gene expression. Furthermore, certain weakly bind-

ing transcription factors require the assistance of other,

more vigorously binding proteins whereas others com-

pete for access to a single regulatory site. The situation

is further complicated by the fact that certain regula-

tory regions are more accessible to transcription factors

than others [33]. In higher eukaryotes some of these re-

gions may be located far upstream or downstream of the

target gene. These are called enhancers or cis-regulatory

modules, which make possible additional heuristics for

their computational prediction.

One of the most exciting, but also challenging ar-

eas of current biological research is therefore devoted

to the understanding of the regulation of gene expres-

sion. The identification of regulatory regions and tran-

scription factor binding sites clearly forms an essential

step in this endeavour. However, although as much as

50% of the human genome is estimated to be regulatory

[21], most of this is not yet deciphered. The desire for

large scale understanding has driven the development

of high throughput methods. It favours computational

approaches because these sidestep the ultimately more

reliable but slow and expensive route of experimental

verification.

Regulatory regions appear to have statistical prop-

erties that help to distinguish them from other parts

of the genome, such as the over-representation of sim-

ilar sequential motifs [10,34,2] and a sequential persis-

tency and an informational entropy that is intermediate

between those of exons and non-coding, non-regulatory

DNA [30]. These and other statistical properties are ex-

ploited by various types of algorithms for predicting TFBS,

or their motifs, from raw sequence data. Enumerative

algorithms build or assume a background model of base

pair distribution in the DNA non-coding regions that

do not contain TFBS, and look for motifs in the given

sequence that are statistically significant against this

background. They are often applied to (putative) co-

regulated genes found by expression (micro-) array anal-

ysis. Another enumerative approach is phylogenetic foot-

printing, which identifies motifs by comparing sequences

from phylogenetically related species. Iterative algorithms

use techniques such as Expectation Maximization to de-

fine weight matrices for the most over-represented mo-

tifs. These algorithms also require a collection of up-

stream sequences from possibly co-regulated genes and

a model for background distribution. Content based al-

gorithms segment the available sequence into a ’lexicon’

of words and look for regularities in the way one would

proceed to decipher a text consisting of a long string of

letters written in an unknown language in which words

are not delineated.
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The downside of the developments sketched above is

that we are currently burdened by a bewildering vari-

ety of algorithms. Nowadays it takes quite some compu-

tational and statistical expertise to make an educated

choice about what methods to use. Even more worry-

ing is the fact that many of the published algorithms

are still severely limited in accuracy and of uncertain

quality. Not only is picking regulatory regions out of

the background of other non-coding DNA sequences a

non-trivial enterprise, also the fierce competition in the

prediction market hardly allows for a thorough eval-

uation. For example, in a large sample of annotated

yeast promoter sequences, a selection of 12 key algo-

rithms, as used in this study, were unable to reduce the

error rate of positive predictions below 80%, with be-

tween 20% and 65% of annotated binding sites recovered.

The choice of algorithms for use in this study was in-

fluenced by two factors: firstly, the necessity of ensuring

representation of all major prediction strategies and sec-

ondly, we limited the choice to algorithms that were eas-

ily incorporated into the Mogul Motif Prediction Pipeline

developed at the Institute for Systems Biology (ISB)

(http://labs.systemsbiology.net/bolouri/Mogul/)

which was used for this work. These algorithms represent

a wide variety of approaches to the problem of transcrip-

tion factor binding site prediction, such as the use of reg-

ular expression searches, position weight matrix (PWM)

scanning, statistical analysis, co-regulation and evolu-

tionary comparisons.

As already stated none of our 12 algorithms perform

very well independently. One way to overcome this prob-

lem is to combine the outcomes of a large number of algo-

rithms instead of relying on the result of just one. The

importance of such meta-classifiers goes without ques-

tion and their investigation will therefore be at the core

of this paper. In the work described here we take the

results from the 12 aforementioned algorithms and com-

bine them into 2 different feature vectors, as shown in

next section. We then investigate whether the integrated

classification results of the algorithms can produce bet-

ter classifications than any one algorithm alone.

3 Description of the Data

The data consists of a set of annotated promoters taken

from the S.cerevisiae promoter database (http://rulai.

cshl.edu/SCPD/), which is one of the largest and most

reliable collections of experimentally verified annotated

data available. The dataset has 68910 possible binding

positions and a prediction result for each of the 12 al-

gorithms. Table 1 shows the categorisation of these 12

algorithms, where two of them are the same algorithm

(Dream) running in two different prediction modes: over

and under represented motifs.

The label information contains the best information

we have been able to gather for the location of known

binding sites in the sequences. We use −1 to denote the

prediction that there is no binding site at this location

and +1 to denote the prediction that there is a binding
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Table 1 Categorization of algorithms used in this study.

Strategy Algorithm

Scanning Fuzznuc [36]

Motif Scanner [31]

Ahab [23]

Statistical PARS [38]

Dream (over and under represented

motifs) [1]

Verbumculus [3]

Co-Regulatory MEME [5]

AlignACE [16]

Sampler (Institute for Systems Bi-

ology) [37]

Evolutionary SeqComp [8]

Footprinter [7]

site at this location. For each of the 12 base algorithms,

a prediction result can be either binary or real valued,

see Figure 1. The data therefore consists of 68910 12-ary

real vectors each with an associated binary label.

In this work, we divide our dataset into a training

set and a test set: the first 2/3 (including 45943 nu-

cleotides) is the training set and the last 1/3 (includ-

ing 22967 nucleotides) is the test set. Amongst the data

there are repeated vectors, some with the same label

(repeated items) and some with different labels (incon-

sistent items). It is obviously unhelpful to have these

repeated or inconsistent items in the training set, so

they are removed. We call the resulting data the con-

sistent training set. However in the case of the test set

it is reasonable to consider both the full set of data and

the subset consisting of only the consistent test items.

The removal of repeated and inconsistent data dramati-

cally reduces the number of data items: only 28% (about

12790 nucleotides) of data is left in the training set (see

Table 2).

As the data is drawn from a sequence of DNA nu-

cleotides the label of other near locations is relevant to

the label of a particular location. We therefore contex-

tualise the training and test data by windowing the vec-

tors, as shown in Figure 2. We use the locations up to

three either side, giving a window size of 7, and a conse-

quent input vector size of 84. This has the considerable

additional benefit of eliminating most of the repeated

and inconsistent data: as can be seen in Table 2 now

less than 7% of the training data is lost : 42919 of the

original 45943 data items are retained.

The training set consists of either single vectors or

windowed vectors. In both cases only consistent, non-

repeating data is used. The test data consists of either

single vectors or windowed vectors as appropriate. Either

the full test set or the relevant consistent subset is used.

There is however, a special case, namely when we want

to compare the windowed model with the single input

version. Here we want to evaluate the windowed model

on the locations represented in the consistent test set of

the single vector model. We therefore construct a test set

for the windowed model consisting of only those vectors

corresponding to the 7 locations around each of the data



6 Yi Sun et al.

A CG T C T

results
12 key algorithm 

Known binding sites

gene sequence
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Fig. 1 The dataset has 68910 columns, each with a possible binding prediction (binary or real valued). The 12 algorithms

give their own prediction for each sequence position and one such column is shown.

Table 2 Description of the datasets used in this work.

Type Size

Training consistent
single 12790

windowed 42919

single 5966

Test consistent restricted

windowed

5966

full
single 22967

windowed 22967

points in the single consistent test set, this is referred to

as the restricted windowed set.

4 Sampling Techniques for Imbalanced Dataset

Learning

In our dataset, there are less than 10% binding posi-

tions amongst all the vectors, so this is an imbalanced

dataset [19]. Since the dataset is imbalanced, the super-

vised classification algorithms will be expected to over

predict the majority class, namely the non-binding site

category. This is demonstrated in the very poor results

shown in Section 7.2.2 for imbalanced data. There are

various methods of dealing with imbalanced data [18]. In

this work, we concentrate on the data-based method [11]:

using under-sampling of the majority class (negative ex-

amples) and over-sampling of the minority class (positive
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Fig. 2 The window size is set to 7 in this study. The middle label of 7 continuous prediction sites is the label for a new

windowed inputs. The length of each windowed input now is 12 × 7.

examples). We combine both over-sampling and under-

sampling methods in our experiments.

For under-sampling, we randomly selected a subset of

data points from the majority class. The over-sampling

case is more complex. In [19], the author addresses an

important issue that the class imbalance problem is only

a problem when the minority class contains very small

subclusters. This indicates that simply over sampling

with replacements may not significantly improve minor-

ity class recognition. To overcome this problem, we ap-

ply a synthetic minority over-sampling technique as pro-

posed in [11]. For each pattern in the minority class, a

new pattern belonging to the minority class can then be

generated as follows:

– We search for its K−nearest neighbours in the mi-

nority class using a Euclidean distance like measure.

(Since the dataset is a mixed one of continuous and

binary features, we follow the suggestion in [11] to

calculate this measure, see below.)

– for continuous features, a new feature value denoted

by xnew
d is given by:

xnew
d = xn

d + rand(0, 1)× (xn
d − xNN

d )

where the difference of each feature between the pat-

tern (xn) and its nearest neighbour (xNN ) is taken,

and then multiplied by a random number between 0

and 1, and added to the corresponding feature of the

pattern.
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– for binary features, the majority voting principle is

applied to each element of the K−nearest neighbours

in the feature space.

We take 5 nearest neighbours, and double the number

of items in the minority class.

The calculation of the Euclidean distance like mea-

sure is given in [11] and is as follows: if the binary fea-

tures do not differ between a pattern and its nearest

neighbour, then a zero difference is used in the measure;

if they do differ, then the median of standard deviations

of all the real valued features for the minority class is

used.

For example: assume two points, x′ and x, from the

minority class in D dimensions, with the first two di-

mensions being binary, the Euclidean distance is given

as follows:

Eulidean distance =

√√√√Med2 + Med2 +
D∑

d=3

(x′d − xd)2,

where Med = median
(
std(x3), std(x4), . . . , std(xD)

)
, and

std denotes the standard deviation.

The actual ratio of minority to majority class is de-

termined by the under-sampling rate of the majority

class. According to our previous experience, we set the

final ratio to a half, which works well in this work.

5 Supervised Classifiers

In this section, we briefly introduce the supervised clas-

sifiers used in our experiments. Readers who are inter-

ested in those classification techniques can follow the

references to learn more.

Suppose we have a training dataset {xn, tn}n=1,...,N ,

where xn ∈ RD is the input, and tn is the corresponding

target. In classification the task is to assign each new

input x to one of the classes, ci, where i = 1, . . . , C. We

shall denote y as the corresponding predictor of each

input.

5.1 Single Layer Networks (SLN)

First of all, we consider a simple type of classifier, using

a non-linear function g(·) on the weighted sum a of the

components of an input, and which can be written as

follows [6]:

y = g(a) , (1)

where

a = wT x + w0 , (2)

and g(·) is an activation function, w is the weight vec-

tor determining the orientation of the separating hyper-

plane, and w0 is the bias determining the position of the

hyperplane in the data space.

For the two-class problem, one choice for the activa-

tion function is the logistic sigmoid activation function

given by

g(a) =
1

1 + exp(−a)
. (3)

The logistic sigmoid function is monotonic, and its in-

terval is (0, 1). It allows the outputs of the discriminant

to be interpreted as posterior probabilities.
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The single layer neural network is equivalent to a lo-

gistic discrimination analysis. This is employed because

the weights from the network can easily be interpreted

as weighting factors for the algorithms, giving an easily

understood combination rule.

5.2 Rules Sets

Rules sets applied in this work are derived from C4.5 de-

cision trees [22], which induces classification models. In a

decision tree, each node corresponds to each attribute of

data, while each arc to a possible value of the attribute.

A leaf of the tree specifies a classification result.

The information involved in each node is measured

by Entropy, denoted by Info(·). Given a probability dis-

tribution P = {p1, . . . , pJ}, Entropy is defined as follows:

Info(P ) =
J∑

j=1

pj · log pj . (4)

To rank attributes and to build decision trees, a no-

tion Gain is given by:

Gain(x, N) = Info(
nci

N
)−

L∑

l=1

Nl

N
Info(

n′ci

Nl
); (5)

where nci is the number of data points belonging to class

ci in the dataset, L the number of partitions divided on

the values of x, Nl the number of data points in partition

l, and n′ci
the number of data points belonging to class

ci in the partition Nl.

The attribute with greatest gain among the attributes

and not yet considered in the path from the root is lo-

cated at each node.

Each path in the decision tree, from the root to a

leaf, determines a rule and all the rules constitute the

rule set.

5.3 Support Vector Machine (SVM)

The SVM is a recently developed technique in the ma-

chine learning field. The basic idea of the SVM is to find

the decision hyperplane that has maximum margin: the

distance of the closest point to the hyperplane (as shown

in Fig. 3). The general form of the decision function for

SVM is given by [25]

y(x) =
N∑

n=1

αntnk(x,xn) + b (6)

with constraints
∑N

n=1 αntn = 0 and 0 ≤ αn ≤ A, where

b is a threshold, the αi are Lagrange multipliers intro-

duced in a constrained optimisation problem, and A is

a constant to determine the trade-off between minimis-

ing the training error and maximizing the margin. In

equation (6), k(x,xn) is a kernel function, which defines

a similarity measure for x and xn. The effect of using

a kernel function is to implicitly map the data points

into a higher-dimensional feature space, and to take the

inner-product in that feature space. The potential ben-

efit of using a kernel function is that the data is more

likely to be linearly separable in the feature space, and

also the actual mapping to the higher-dimensional space

is never needed. During the training, only a few αn are

non-zero. Patterns with αn having non-zero values are
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Fig. 3 A binary classification toy problem: separate dots from triangles. The solid line shows the optimal hyperplane. The

dashed lines parallel to the solid one show how much one can move the decision hyperplane without misclassification of the

data. The patterns on the dotted lines are the support vectors.

called support vectors. In our experiments, we used a

Gaussian kernel function.

5.4 The Adaboost Algorithm

The Adaboost algorithm [17] produces a sequence of

weak classifiers that collectively form a strong classi-

fier. The algorithm begins with a weak classifier. The

data points that are poorly classified, then have their

frequency increased and the new dataset is used to train

a second weak classifier. This process continuous for a

specified number of iterations. The final strong classifier

is a linear combination of the weak classifiers. Here the

weak classifier used is a single layer neural network. A

description of the Adaboost process [17] is as follows:

– Inputs: data points {xn, tn}n=1,...,N , where tn ∈ {−1,+1},

number of iterations M;

– Initialise weights: d1
n = 1/N ;

– Do for m = 1, . . . ,M ,

– Train classifier on the training set with respect

to {dm
1 , . . . , dm

N}, and obtain an hypothesis hm:

x → {−1, +1};

– Calculate the weighted training error εm of hm;

εm =
∑

n:tn 6=hm(xn)

dm
n ,

– Set:
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αm =
1
2

log
1− εm

εm

– Update weights:

d(m+1)
n =

dm
n exp{−αmynhm(xn)}

Zm

where Zm is a normalization constant such

that
∑N

n=1 d
(m+1)
n = 1.

– Terminate if εm = 0 or ε ≥ 1
2 and set M = m− 1;

– The final strong classifier is then:

h(x) =
M∑

m=1

αm∑M
t=1 αt

hm(x)

The Adaboost algorithm has a number of interesting

properties. In [17], it was shown that the training error of

the strong classifier approaches zero exponentially in the

number of iterations. In [24], it was suggested that the

generalisation performance of the Adaboost algorithm is

related to the margin (separation) of the examples, and

that it can rapidly achieve a large margin.

5.5 Majority Voting and Weighted Voting

In majority voting, each base algorithm contributes a

single vote for its class. the majority class wins. While

in weighted majority voting, each base algorithm votes

with its confidence, which is measured by the probability

that the given pattern (I) is positive (P), computed from

the training set with single inputs as follows:

p(P|I) ≈ The number of the true positive examples
The number of all the positive predictions

.

(7)

Table 3 A confusion matrix: where TN is the number of

true negative samples; FP is false positive samples; FN is

false negative samples; TP is true positive samples.

TN FP

FN TP

Let W+ denote the summed confidence of the base algo-

rithms that give a positive prediction, W the negative.

If W+ > W , then the data is predicted as a part of a

binding site; otherwise, as a non-binding site.

6 Classifier Performance

It is apparent that for a problem domain with an im-

balanced dataset, classification accuracy rate is not suf-

ficient as a standard performance measure. To evaluate

classifiers used in this work, we apply Receiver Operat-

ing Characteristics (ROC) analysis [13] and several com-

mon performance metrics, such as Recall, Precision and

F-score [9,20], which are calculated in order to quantify

the performance of the classification algorithm on the

minority class. The Correlation Coefficient as described

in [32], is also defined. This gives a measure of correlation

of predicted binding sites and known binding sites.

6.1 Performance metrics

Based on the confusion matrix (see Table 3) computed

from the test results, several common performance met-

rics can be defined as follows:
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Recall =
TP

(TP + FN)
, (8)

Precision =
TP

(TP + FP)
, (9)

F-Score =
2 · Recall · Precision
Recall+Precision

, (10)

FP Rate =
FP

FP+TN
. (11)

Furthermore the Correlation Coefficient (CC), is given

below:

CC =
TP · TN− FN · FP√

(TP +FN)(TN+FP)(TP+FP)(TN+FN)
,

(12)

In the context of identifying binding sites a high Pre-

cision and low FP Rate are particularly important, as

a higher cost is associated with a degradation of per-

formance on these metrics. Where there is a trade-off

between Precision and Recall integration of the metrics

using the F-Score provides a single metric for evaluating

overall performance.

6.2 ROC curves

ROC analysis has been used in the field of signal detec-

tion for a long time. Recently, it has also been employed

in the machine learning and data mining domains. Here

we follow [13] to give a basic idea of ROC curves.

In a ROC diagram, the true positive rate (also called

Recall) is plotted on the Y axis and the false positive rate

(FP Rate) is plotted on the X axis. Points in the top left

of the diagram therefore have a high TP rate and a low

FP rate, and so represent good classifiers. The classifiers

used here all produce a real valued output, that can be

considered as a class membership probability. It is nor-

mal when using a ROC diagram to compare classifiers,

to generate a set of points in ROC space by varying the

threshold used to determine class membership. In this

way a ROC curve corresponding to the performance of

a single classifier, but with a varying threshold, is pro-

duced. One classifier is clearly better only when it dom-

inates another over the entire performance space [13].

One attractive property of ROC curves is that they are

insensitive to changes in class distribution, which makes

them useful for analysing performance of classifiers using

imbalanced datasets.

As noted for a ROC curve to be generated a real

valued classifier is needed. The original SVM is a binary

classifier. However, as described in [35] it is possible for

the SVM to generate real valued outputs . For majority

voting and weighted majority voting, we adopt methods

proposed in [14]. The score assigned to each pattern is

the fraction of votes won by the majority in majority

voting. In weighted majority voting the class with the

highest summed confidence wins, and the score is the

average confidence. For the neural network classifiers a

real valued output is automatically generated.

Often to measure the performance of a classifier, it

is convenient to use a single metric and the area under

a ROC curve (AUC) can be used for this purpose. Its

value ranges from 0 to 1. An effective classifier should

have an AUC of more than 0.5.



Integrating Genomic Binding Site Predictions using Real-valued Meta Classifiers 13

7 Experiments and Results

7.1 Experiments

The SVM experiments were completed using libsvm,

which is available from the URL

http://www.csie.ntu.edu.tw/∼cjlin/libsvm. The C4.5-

Rules experiments were undertaken using C4.5 software

from [22]. C4.5-Rules is a companion program to C4.5. It

creates rules sets by post-processing decision trees gen-

erated using the C4.5 algorithm first. The SLN was im-

plemented using the Netlab toolbox, which is available

from the URL http://www.ncrg.aston.ac.uk/netlab/.

7.1.1 Parameter Settings Since we do not have enough

data to build up an independent validation set to eval-

uate the model, all the user-chosen parameters are ob-

tained using cross-validation. There are two training sets

(single or windowed), and for each of these sets, and each

classifier, the following cross validation procedure is car-

ried out. The training set is divided into 5 equal subsets,

one of which is to be a validation set, and there are there-

fore 5 possible such sets. For each classifier a range of rea-

sonable parameter settings are selected. Each parameter

setting is validated on each of the five validation sets,

having previously been trained on the other 4/5 of the

training data. The mean performance, as measured by

the AUC metric over these 5 validations, is taken as the

overall performance of the classifier with this parameter

setting. The parameter setting with best performance

is then used with this classifier and the corresponding

data set (single or windowed) in the subsequent exper-

iments. For example the SVM has two parameters and

six different combinations were evaluated.

There are several approaches to generate an averag-

ing ROC curve from different test sets [13]. In this pa-

per, average ROC curves of the cross-validation results

are obtained by first generating a ROC curve for each of

the validation sets, and then by calculating the average

scores from them.

The standard deviation of the AUC can therefore be

attained using the cross-validation method. When only

a single curve is available, the standard error can be

approximated as follows [15],

se =

√
A(1−A) + (Np − 1)(Q1 −A2) + (Nn − 1)(Q2 −A2)

NnNp
,

(13)

where A denotes AUC, Nn and Np are the number of

negative and positive examples respectively, and

Q1 =
A

2−A
,

Q2 =
2A2

1 + A
.

7.2 Results

7.2.1 Cross validation In this experiment, we trained

and tested the classifiers using 5-fold cross-validation as

described above. The best set of parameters for each

classifier were selected and the resulting AUC value (av-

eraged over the 5-fold validation) is shown in Table 4.

Table 4 also shows standard deviations computed using

cross-validation. For both single and windowed inputs,
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the C4.5-Rules have the best performance. In addition,

due to the different size of the training sets (see Table

2), almost all classifiers have smaller standard deviations

with windowed inputs than single inputs.

Table 4 Cross validation with different classifiers.

Input Classifier Mean of AUC Std

SLN 74.41 2.04

Single SVM 78.36 1.8

C4.5-Rules 86.55 1.21

SLN 75.94 0.59

Windowed SVM 75.14 0.31

C4.5-Rules 87.01 1.24

7.2.2 SLN results for the original imbalanced data with

no sampling The results of the SLN trained with con-

sistent, but imbalanced, data is shown in Table 5. The

SVM and C4.5 algorithms have similar performance. It

can be seen that the F-Score is very poor (particularly

when compared to the F-Score for the best algorithm

shown in the first rows of Tables 6 and 7). It suggests

that the classifiers over predict the majority class. Thus,

it is necessary to apply sampling methods in this work.

Results of the SLN, SVM, C4.5-Rules and Adaboost

shown in the following sections are obtained with sam-

pled inputs.

7.2.3 Classification results on the fixed consistent test set

with single and restricted windowed inputs This test set

has 5966 data points (see section 3) in both the single

and restricted windowed versions.

The results of performance metrics are shown in Ta-

ble 6, together with the best base algorithm (the one

with the highest F-Score). Compared with the best base

algorithm, all classifiers with both single and windowed

inputs, except MV and WMV decrease the FP Rate and

increase the Precision. It can be seen that the Adaboost

algorithm with single inputs gives the best Precision and

F-Score and the lowest FP Rate. It improves the Preci-

sion by 55.6%, the F-Score by 17.8% and decreases the

FP Rate by 57.4% when compared with the best base

algorithm. However this is at a cost: in comparison to

the best base algorithm the Recall has been decreased.

The classifier has become more conservative, predicting

binding sites less often but with greater accuracy. When

comparing the single and windowed results the only ma-

jor difference is that C4.5-Rules does a lot better with

single input data.

Figs. 4 and 5 show the correlation coefficient (CC)

and the F-Score of each classifier with single and win-

dowed inputs respectively. Fig. 4 shows that the Ad-

aboost algorithm and WMV have similar performance

on the CC, though WMV gives a slightly better value.

It also shows that the Adaboost algorithm has the high-

est F-Score. Fig. 5 shows that the Adaboost algorithm

outperforms all the other classifiers on both measures.

Fig. 6 shows ROC curves obtained with single inputs.

The curves show that the Adaboost algorithm, SVM and
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Table 5 Performance (%) of an SLN on the consistent and full test sets for the original imbalanced data.

Test set Recall Precision F-Score FP Rate CC

Consistent 0.95 50.00 1.87 0.07 6.15

Full 0.70 41.67 1.37 0.07 4.74

Table 6 Performance (%) on the single and restricted windowed test sets.

Input Classifier Recall Precision F-Score FP Rate CC

best Alg. 40.95 17.46 24.48 14.66 18.12

MV 43.10 13.14 20.14 21.57 17.21

WMV 41.19 17.35 24.42 14.86 23.25

Single SLN 28.81 22.16 25.05 7.66 18.76

SVM 32.14 24.46 27.78 7.52 21.74

C4.5-Rules 29.29 23.08 25.81 7.39 19.64

Adaboost 30.71 27.16 28.83 6.24 23.13

SLN 34.29 18.87 24.34 11.16 17.71

Restricted SVM 38.81 20.25 26.61 11.58 20.25

windowed C4.5-Rules 23.57 18.64 20.82 7.79 19.64

Adaboost 37.38 22.66 28.21 9.66 22.13

Best Alg. MV WMV SLN SVM   C4.5−Rules          Adaboost
0

0.05

0.1

0.15

0.2

0.25

F−Score
CC

Fig. 4 Bar graph: statistics comparing the accuracy of different classifiers on consistent dataset with single inputs.
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Best Alg. SLN SVM C4.5−Rules    Adaboost
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Fig. 5 Bar graph: statistics comparing the accuracy of different classifiers on consistent dataset with windowed inputs.
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Fig. 6 ROC graph: five classifiers applied to the consistent test set with single inputs.
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SLN have similar performance, outperforming the oth-

ers over most of performance space. MV and WMV are

the weakest. When the FP Rate is greater than about

0.65, MV and WMV have a little higher Recall than the

others. Figs. 7 and 8 are the AUC values of each clas-

sifier with error bars specified by the se (Equation 13).

On single inputs (Fig. 7) SLN, SVM and Adaboost are

similar, but do better than the other algorithms. Fig. 8

shows the SVM is significantly better than all the others

on the windowed inputs.

In summary, the Adaboost algorithm performs well

on the AUC measure and outperforms all the other clas-

sifiers on the biologically important values of Precision,

FP Rate and F-Score.

7.2.4 Classification results on the full test set with single

and windowed inputs In this experiment, we use the full

test set. All the results are presented in Table 7, Figs. 9

and 10. One of the corresponding ROC curves and AUC

with error bars are shown in Figs. 11, 12 and 13.

Looking at the results for single inputs, the SVM

performs well on the F-Score. The Recall values of the

SLN, SVM, C4.5-Rules and the Adaboost algorithm are

lower than the best base algorithm. This is explained by

their far lower FP Rate and higher Precision, in partic-

ular the Adaboost algorithm reduces the FP Rate from

the best base algorithm by 61.5% and increases Preci-

sion by 52.4%. With windowed inputs the story is very

much the same. In fact the windowed SVM is the overall

best performer on F-Score across single and windowed

classifiers, even improving on the Recall of the best base

algorithm. The C4.5-Rules perform particularly poorly,

as is shown in Fig. 11, where over some of the range it

is predicting below random. Comparing the SVM and

the Adaboost algorithm with the best base algorithm,

the SVM improves F-score by 17.3%, improves the Pre-

cision by 27.7% and decreases FP Rate by 25.7%, while

the Adaboost algorithm improves F-Score by 13.8%, im-

proves the Precision by 35.9% and decreases by FP Rate

41.7%, both with windowed inputs.

For the other measures, Figs. 9 and 10 show that

the Adaboost algorithm has a similar performance to

the SVM, though the SVM gives slightly better values.

When considering the AUC metric, the SLN performs

well with single inputs, while the SVM does well with

windowed inputs.

8 Visualisation of Results

To aid in the biological interpretation of our results a

well known visualisation tool is used. This tool is the

Apollo Genome Annotation Browser [39]. It allows us to

see the predictions made by the algorithms in relation

to the “known” binding sites, in situ, on the genome

fragments under consideration.

Figs. 14 and 15 show an alignment of various fea-

tures along the DNA promoter sequences for the genes

SIS1 and PHO84. In each figure, a) represents results

obtained with single inputs and b) represents results ob-
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MV WMV SLN SVM C4.5−Rules Adaboost
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Fig. 7 The graph of AUC (%) of each classifier on the consistent possible binding sites with single inputs, with error bars

specified by the standard error (se).
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Fig. 8 The graph of AUC (%) of each classifier on the consistent possible binding sites with windowed inputs, with error bars

specified by the standard error (se).
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Table 7 Performance (%) on the full test set with single and windowed inputs.

Input Classifier Recall Precision F-Score FP Rate CC

best Alg. 36.36 18.40 24.44 10.73 18.86

MV 35.73 15.12 21.25 13.35 15.27

WMV 34.75 20.04 25.42 9.23 19.87

Single SLN 25.19 25.09 25.14 5.01 20.15

SVM 27.91 26.97 27.43 5.03 22.52

C4.5-Rules 23.03 23.14 23.08 5.09 17.98

Adaboost 24.21 28.05 25.99 4.13 21.52

SLN 31.82 22.66 26.47 7.23 21.04

Windowed SVM 36.78 23.50 28.67 7.97 23.67

C4.5-Rules 22.26 19.70 20.90 6.04 17.98

Adaboost 31.33 25.00 27.81 6.26 22.59

Best Alg. MV WMV SLN SVM   C4.5−Rules          Adaboost
0

0.05

0.1

0.15

0.2

0.25

F−Score
CC

Fig. 9 Bar graph: statistics comparing the accuracy of different classifiers on the full test dataset with single inputs.

tained from the windowed inputs. The scale bar indicates

size and distribution of elements in basepairs. There are

two Fuzznuc predictions, one above and one below the

scale, which represent predictions made on both the for-

ward and reverse DNA strands.

These figures should not be considered representa-

tive for the performance on all genes, which is typi-
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Best Alg. SLN SVM C4.5−Rules    Adaboost
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Fig. 10 Bar graph: statistics comparing the accuracy of different classifiers on the full test dataset with windowed inputs.
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Fig. 11 ROC graph: three classifiers applied to the full test set using windowed inputs.
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MV WMV SLN SVM C4.5−Rules Adaboost
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Fig. 12 The graph of AUC (%) of each classifier on the full possible binding sites with single inputs, with error bars specified

by the standard error (se).
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Fig. 13 The graph of AUC (%) of each classifier on full possible binding sites with windowed inputs, with error bars specified

by the standard error (se).
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Fig. 14 Visualisation for the gene SIS1:(1) - Known Sites;(2) - Adaboost; (3) - SVM;(4) - SLN; (5) - C4.5; (6) - WMV; (7) -

MV; (8) - Best Algorithm (fuzznuc). Visualisations were created using the Apollo Genome Annotation Browser.

Fig. 15 Visualisation for the gene PHO84:(1) - Known Sites;(2) - Adaboost; (3) - SVM;(4) - SLN; (5) - C4.5; (6) - WMV;

(7) - MV; (8) - Best Algorithm (fuzznuc). Visualisations were created using the Apollo Genome Annotation Browser.
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cally highly variable from one promoter sequence to an-

other, however they illustrate some simple examples.

The “known” binding sites are shown in red (1) and rep-

resent the best available information for the location of

in vivo functional cis-regulatory elements. The remain-

ing features represent alignments of the respective pre-

dictions from the best original algorithm and the classi-

fication algorithms used in this study, one per line.

It can be seen from the visualisations that in all

examples the SVM is the most conservative predictor,

closely followed by the SLN and the Adaboost algorithm.

This may be an explanation for the fact that for SIS1,

which has only one annotated binding site, the SVM is

the best performing algorithm, while for PHO84, which

has five annotated binding sites, the Adaboost algorithm

outperforms the other algorithms. There also seems to be

a clear advantage, predominantly in terms of increased

recall, for windowing in the example of PHO84 which

does not seem to be shown for SIS1. However, it is dan-

gerous to rely too heavily on the completeness of the

annotated data, there being no way, currently, to assure

that this is the case. These kinds of questions can only

be answered conclusively by experimental validation of

algorithm predictions. Our choice of S.cerevisiae for our

model being largely influenced by the higher confidence

generally associated with its state of genomic annota-

tion. It should also be noted that it is frequently the case

that some post-processing should be done on the predic-

tions, for instance, to eliminate predicted sites that do

not have sufficient length to be considered as real bind-

ing sites.

9 Conclusions

The most significant result presented here is that by in-

tegrating the 12 algorithms and subsequently using an

SVM or the Adaboost algorithm to classify the data, re-

sults in a considerable improvement in binding site pre-

diction. In fact when considering the full test set with

windowed inputs, our best result was using the Adaboost

algorithm, which improves F-Score by 13.8%, improves

the Precision by 35.9% and decreases FP Rate by 41.7%

when compared to the best base algorithm. As expected

the SVM gave a better classification result than the

SLN and the decision trees. Majority voting was actu-

ally worse than the best individual algorithm. However,

weighted majority voting was a little better. C4.5 has a

tendency to badly overfit the training data and produce

very poor predictions, sometimes worse than random.

By windowing the data we were able to significantly

reduce the number of inconsistent data points. In fact

only 7% of the data is lost when windowing as against

72% otherwise. In recent work [27], we investigate the

classification results on the windowed dataset when us-

ing different feature selection filtering methods. Interest-

ingly, it is shown that the worst performing algorithms

were not detrimental to the overall performance of the

meta-classifier.
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Recently, we have applied our method to the much

more complicated multicellular eukaryotic genome of the

mouse [29]. Again, the results showed that integrating

individual evidences/predictions by a meta-classifier can

improve classification performance. It should be noted

that these results rely critically on the use of sampling

for the imbalanced data. Without sampling, as shown

in Table 5, we obtained very poor results (see [28] for a

further exposition).

Future work will investigate i) searching for a method

to find out a suitable ratio of minority to majority classes,

which could give better results; ii) building up a robust

classifier based on our observation to Fig. 6, where the

SVM and the Adaboost algorithm can be combined with

MV and generate a ROC curve dominating the whole

ROC space; iii) further investigate the biological signifi-

cance of our results.
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25. B. Scholköpf and A. J. Smola, Learning with Kernels:

Support Vector Machines, Regularization, Optimization,

and Beyond, The MIT Press, 2002.

26. Y. Sun, M. Robinson, R. Adams, P. Kayes, A. G. Rust

and N.Davey, “Integrating binding site predictions using

meta classification methods”, Proceedings ICANNGA05,

2005.

27. Y. Sun, M. Robinson, R. te Boekhorst, R. Adams, , A.

G. Rust and N.Davey, “Using feature selection filtering

metohds for binding site predictions”, submitted to The 5th

IEEE International Conference on Cognitive Informatics,

ICCI05, Beijing, 2006.

28. Y. Sun, M. Robinson, R. te Boekhorst, R. Adams, , A.

G. Rust and N.Davey, “Using sampling methods to im-

prove binding site predictions”, accepted by the 14 th Eu-

ropean Symposium on Artificial Neural Networks, ESANN,

Bruges, 2006.

29. Y. Sun, M. Robinson, R. Adams, A. Rust and

N. Davey,“Prediction of Binding Sites in the Mouse

Genome using Support Vector Machine”, Proceedings of



26 Yi Sun et al.

18th International Conference on Artificial Neural Net-

works (ICANN2008), Prague, September 2008, Editors V.

Kurkova, R. Neruda, J. Koutnik, Springer Part 2 (LNCS

5164), pp 91-100.

30. R. te Boekhorst, I. Abnizova, and C. L. Nehaniv, “An

adaptive sliding windopw algorithm for inferring DNA

functionality from sequence information”, submitted to Ap-

plied Bioinformatics, 2004.

31. G. Thijs, K. Marchal, M. Lescot, S. Rombauts, B. De

Moor, RouzP and Y. Moreau, “A Gibbs Sampling method

to detect over-represented motifs in upstream regions of co-

expressed genes,” Proceedings Recomb’2001, 305-312, 2001.

32. M. Tompa, et al., “Assessing computational tools for

the discovery of transcription factor binding sites,” Nature

Biotechnology, 23(1), January 2005.

33. R. J. White, Gene Transcription: Mechanisms and Con-

trol, Blackwell, 2001.

34. T. G. Wolfsberg, A. E. Gabrieliam, A. E. Campbell, M.

J. Cho, R. J. Spouge, and D. Landsman, “Candidatge reg-

ulatory sequence elements for cell cycle - dependent tran-

scription in Sacharomyces cerevisiae.” Genome Research,

9, 775-792.

35. T. F. Wu, C. J. Lin and R. C. Weng, “Probability Esti-

mates for multi-class classification by pairwise coupling,”

Journal of Machine Learning Research, 5 pp. 975-1005,

2004.

36. http://emboss.sourceforge.net/.

37. http://sourceforge.net/projects/netmotsa

38. http://sourceforge.net/projects/pars

39. http://www.fruitfly.org/annot/apollo


