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Abstract In this paper, we propose a swarm intelligence 
localization strategy in which robots have to locate dif­
ferent resource areas in a bounded arena and forage 
between them. The robots have no knowledge of the arena 
dimensions and of the number of resource areas. The 
strategy is based on peer-to-peer local communication 
without the need for any central unit. Social Odometry 
leads to a self-organized path selection. We show how 
collective decisions lead the robots to choose the closest 
resource site from a central place. Results are presented 
with simulated and real robots. 
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1 Introduction 

A safe nest and abundant food are the key aspects to ensure 
animal survival. The ability to find, select and exploit food 
resources is crucial and goes under the name of foraging 
(Deneubourg et al. 1990; Camazine et al. 2003). 

Animals forage in many different ways, adapting to 
changing conditions. A particularly interesting foraging 
strategy is the one of ant colonies. Ants are able to col­
lectively find and select the shortest path to a resource 
by using simple indirect local interactions (Bonabeau 
et al. 1999; Camazine et al. 2003). Their foraging 
effectiveness is the result of a robust strategy based on 
local interactions between a large number of autonomous 
agents. The chemical trails formed by ants are robust 
with respect to changes in the environment and to the 
failure of individuals (Deneubourg et al. 1990). The path 
selected by an individual which leaves pheromone on it 
influences the path chosen by the next ant that passes, 
which also adds pheromone on the path. In this way, one 
specific path is rapidly and collectively selected. After 
multiple interactions, the foragers establish a pheromone 
trail between the nest and a resource site. Experiments 
have shown that because of the trail-laying behavior, ants 
are able to choose the richest or nearest food source from 
a number of different available resources (Beckers et al. 
1992). 

Another interesting foraging strategy is the one based on 
trophallaxis, a strategy that can be observed in many social 
insects species (Liebig et al. 1997). Trophallaxis is the 
transfer of food or other fluids between members of a 
colony through mouth-to-mouth or anus-to-mouth feeding 
(Wheeler 1918). Although trophallaxis studies commonly 
focus on the spreading of fluid throughout a colony (Korst 
and Velthuis 1982; Crailsheim 1992), some studies have 
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shown that it plays an important role in the regulation of 
collective foraging decisions (Camazine 1993). 

In our research, we are interested in localization and 
navigation strategies for swarm robotics inspired by the 
observation of ants (pheromones and trophallaxis). Our 
robots do not mark their environment with any chemical or 
other substance. Rather, the robots use peer-to-peer com­
munication to achieve their task collectively and in a self-
organized manner. This mechanism, previously defined as 
Social Odometry in Gutiérrez et al. (2008b, 2009c), is 
based on the assumption that robots act as sensors for other 
robots. This solution has already proven to be able to cope 
with individual's dead-reckoning errors by exploiting self-
organized cooperation in a group of real robots (Gutiérrez 
et al. 2009b). In a nutshell, the knowledge of each robot 
consists of an estimate of the goals location (state vector) 
and an associated confidence level that decreases with the 
distance traveled (inspired by the state vector covariance 
matrix, Simon 2006). Because the robots use the estimates of 
the others, we engineer an efficient and decentralized knowl­
edge-sharing mechanism which allows the robots to achieve 
their goals, both from an individual and group perspective. 
Estimated locations, confidence levels and actual locations of 
the robots co-evolve in parallel in order to guide each robot to 
the correct objective. This online social dynamics allows the 
population of robots both to reduce the individual's errors and 
to reach a common objective efficiently. 

While in previous works we focused on the reduction in 
the individual's errors, in this paper we extend Social 
Odometry to effective collective decision-making: we 
consider an experimental foraging task in which different 
resource areas are offered to a swarm of robots that col­
lectively select the closest resource area exploiting local 
communication. 

The remainder of this paper is organized as follows. In 
Sect. 2, we discuss related work. In Sect. 3, we give a 
description of the problem under study and an overview of 
the simulator and of the e-puck robot used in our experi­
ments. Section 4 describes the control algorithms used. In 
Sect. 5, we present the experimental results. Finally, in 
Sect. 6 we draw some conclusions. 

2 Related work 

2.1 Basic robot localization 

Optimal filters and map-like representations have been 
applied with remarkable success to robot localization 
(Simmons and Koenig 1995; Cassandra et al. 1996; Burgard 
et al. 1996, 1998; Gutmann et al. 1999, 2001; Chong and 
Kleeman 1997; Wang 1988). Most of these approaches are 
based on Markov localization methods that make use of 

dead-reckoning and absolute or relative measurements. The 
key idea is that each robot maintains an estimate of its 
position which will be updated according to its odometry 
calculations and measurements in the environment. The 
most used probabilistic method has been the Kalman Filter 
(KF) (Kalman 1960; Larsen et al. 1998; Martinelli and 
Siegwart 2003). Although the KF is an efficient recursive 
filter, it requires external information that models the 
environment. Moreover, it is computationally costly. On the 
other hand, map-like approaches (Dudek and Mackenzie 
1993) do not scale well for large groups of robots, and are 
also costly in computational terms. 

2.2 Multi-robot localization 

Typically, when dealing with many robots, inspiration 
from social insects is widely used. However, most of the 
implementations of localization in swarm robotics rely on 
the use of static robots which are not allowed to move, thus 
reducing the effectiveness of the group. In Kurazume et al. 
(1996), part of the robots remain stationary while the rest 
are in motion. The moving group stops after several steps 
and becomes a landmark for the others that take on the role 
of moving robots. In Grabowski et al. (2000), only one 
robot is allowed to move while the others act as immobile 
landmarks, while in Rekleitis et al. (2001) just one robot 
remains stationary while the rest of the group navigates. 
These approaches either require synchronous communica­
tions between all members of the team or a central pro­
cessing unit taking care of the synchronization. In Vaughan 
et al. (2002), each robot shares with a central computer its 
best known path to the goal based on landmarks. The group 
has to be permanently in contact with the data center which 
forwards the information provided by each robot to the 
other members of the group. Therefore, the environment 
must be properly configured before setting up the experi­
ment. In Rekleitis et al. (2003), the robots explore the 
environment in teams of two. Each team of two robots take 
turns moving so that at any time one is stationary and acts 
as a fixed reference point to the robot which moves. Each 
robot is equipped with a robot tracker sensor that reports 
the relative position of the other robot. These position 
measurements are used to update the positions and uncer­
tainties of a multi-robot system. In Szymanski et al. (2006), 
the authors implemented a distributed algorithm that 
finds the shortest path between two goal areas within a 
labyrinth. The robots need to create a virtual chain and be 
static until the collective decision emerges. In Nouyan 
et al. (2008), a chain between two specific areas is created 
and the group can follow it to the goals. The robots in 
the chain are not able to move; consequently, a direct 
relationship exists between the number of available robots 
and the maximum distance between the goals. 



2.3 Foraging in robotics 

One of the most studied tasks in multi-robot localization is 
foraging. Foraging involves a group of robots localizing a 
resource site. Once the resource site has been located, the 
robots collect objects from the resource site and deposit 
them in a target location. We find in the literature many 
strategies based on minimal communication that allow the 
robots to find and carry out their task successfully. For 
instance, in Balch and Arkin (1994), the authors make use 
of a schema-based controller and limited communication to 
show that the robots carry out successfully all of their 
different foraging tasks proposed in an office-like envi­
ronment. Parker (1998) implemented a reactive architec­
ture for a waste cleanup task. Her work is based on a fully 
distributed behavior-based architecture that incorporates 
the use of impatience and acquiescence concepts, which 
allow each robot to achieve adaptive action selection. The 
software architecture possesses a variety of high-level 
functions that can be carried out during the task. Each robot 
individually selects appropriate actions based on the 
activities that other robots are carrying out, the current 
environmental conditions, and the robots internal states. In 
Mataric (1997), the author discusses the challenges of 
learning in a dynamic, noisy, situated and embodied mobile 
multi-robot scenario. The work focuses on synthesizing 
complex group behaviors from simple social interactions 
between individuals. An effective foraging task is achieved 
thanks to a reinforcement learning algorithm. However, the 
speed of learning is reduced as the size of the group 
increases, as a result of interference between the agents. 
Nonetheless, Mataric shows that robots are able to modify 
their behavior and learn social rules, which serve to min­
imize interference and maximize the group effectiveness. 
In Valdastri et al. (2006) and Corradi et al. (2009), the 
authors avoid the use of static robots and implement a 
vector-based communication algorithm in a dust collection 
task. The paper proposes a communication strategy in 
which the robots communicate the location of dust and 
dump areas based on a simple range and bearing micro-
sensor. The sensor approximates the distance to the emitter 
robot by a fixed value which equals half of its maximum 
range and the bearing is discretized in four quadrants. 
Because of the limited sensor resolution and because the 
robots do not keep track of their movements, a high density 
of individuals is needed to achieve the cleaning task 
proposed. 

Some other works make use of "virtual" pheromones 
(Payton et al. 2001). In Payton et al. (2003), the authors 
send symbolic messages, called virtual pheromones, using 
a range and bearing communication device. In this way, by 
using a simple communication system, a swarm becomes a 
distributed computing network within the environment, 

which enables the design of complex group behaviors. The 
messages are propagated locally between robots, producing 
a gradient as they are propagated. The authors describe 
how complex compound behaviors can be obtained from 
combinations of simpler behaviors based on this commu­
nication strategy. McLurkin and Smith (2004) use a geo­
metric-based algorithm to spread autonomous robots in an 
arena and localize different places. Only local inter-robot 
communication and processing are used. A communication 
network made up of gradient-based multi-hop messages is 
used to guide the robot's motion. One robot starts the 
communication which is then relayed throughout the net­
work by the rest of the swarm. If multiple messages are 
received, a robot relays the one with the lowest hop count. 
Therefore, robots move from a central start location to their 
final position along the shortest path. 

Other works try to emulate sensors to focus on the 
pheromone-like paradigm. In Russell (1995, 1999), an odor 
sensor is developed which uses controlled airflow to 
overcome the problem of localizing odor markings. In 
Stella et al. (1995), a robot is equipped with a cheap odor 
sensor able to sense and follow an odor marker deposited 
on the ground. On the other hand, Svennebring and Koenig 
(2003) study a trail-laying process where robots must leave 
trails to cover a terrain. In Wagner et al. (1999) the authors 
use a decentralized multiagent adaptive system with a 
shared memory in which the robots perform a cleaning task 
of an un-mapped building based on graphs. The three 
methods described are adaptive to changes in the envi­
ronment. In Campo et al. (2006), a distributed mechanism 
of negotiation of direction for cooperative transport is 
presented. The robots use a vision software that allows to 
perceive the direction pointed by other robots. The robots 
share their knowledge in order to collectively improve their 
estimate of the goal direction. 

In Purnamadjaja and Russell (2004), the authors 
implement a localization and rescue task inspired by bees. 
For its implementation the robots were equipped with 
specific sensor-actuator elements. Each robot had an oxide 
gas sensor for detecting the gas "pheromones". Three 
whisker sensors detected collisions between robots and 
walls. Finally, a gas heater was controlled to simulate the 
pheromones. When a robot finds a faulty robot, it actuates 
the gas heater. Therefore, the gas starts to be propagated in 
the environment. When robots navigating in the environ­
ment sense the increase in gas concentration, they start 
moving toward the gradient increase until they finally find 
the faulty robot. Another bee-inspired localization appli­
cation is presented in Schmickl and Crailsheim (2008). 
Robots forage from two areas based on robot-to-robot 
interactions inspired by a trophallactic behavior of bees 
without any central unit of communication. Although 
results of the algorithm seem to be promising, it has only 



been tested in simulation; therefore, a real robot imple­
mentation will be necessary to fully understand the benefits 
of this approach. 

In the present work, we show how a group of robots is 
able to collectively choose the closest resource area in a 
foraging task using Social Odometry. Social Odometry is 
not based on any map-like algorithm and despite being 
inspired by the Kalman Filter (see Sect. 4.2), it does not 
require any explicit model of the movement errors. On the 
contrary, a relationship between the distance traveled and a 
confidence level allows the robots to select the closest 
resource site. 

Moreover, Social Odometry uses a range and bearing 
communication sensor which replaces real pheromones. 
The robots communicate their position estimates to their 
neighbors with this sensor (see Sect. 3.3). The communi­
cation does not rely on any central unit. Therefore, no 
synchronization is needed by the robots to exchange their 
information, removing the need for a common time axis. 

3 The task and the robots 

3.1 The task 

The foraging task presented in this paper is carried out in a 
rectangular bounded arena, where a virtual nest area and 
two virtual prey areas are located. Two different experi­
mental setups (ESs) have been chosen to compare and 
study the convergence of the algorithms (see Sect. 5). 
Figure la shows an Asymmetric ES (AES), where the two 
prey are at different distances from the nest. Figure lb 
shows a Symmetric ES (SES), where the two prey are at the 
same distance from the nest. Robots have to find prey and 
virtually carry them to the nest. Robots have no knowledge 
about the dimensions of the arena or the area location. 
They are initially located in a fixed central area with ran­
dom position and orientation, where they cannot perceive 
the nest or prey areas. Once the experiment starts, they 
search for the nest and the prey. When both areas have 
been located they try to forage from one area to the other 
endlessly. Note that the random initialization outside the 
nest area has been chosen because of two main reasons: (i) 
the physical robots could not be initialized at the very same 
time1 in the nest area, given the small nest radius and (ii) 
we wanted the robots to start their foraging without any 
knowledge about the areas in the arena. Therefore, 
although based on a foraging strategy, the experiments 
presented could be easily extended to, for example, a col­
lective cleaning or collective rescue experiment. 

(a) (b) 
PREY 

PREY NEST 

PREY 

PREY 

Fig. 1 a Asymmetric experimental setup: one prey is closer to the 
nest than the other, b Symmetric experimental setup: the two prey are 
at the same distance from the nest 

Fig. 2 a One e-puck robot, b The 10 e-puck robots used in the 
experiments 

3.2 Robot hardware 

For the experiments, we have used the e-puck robot (see 
Fig. 2). E-pucks are modular, robust and non-expensive 
robots designed by Mondada et al. (2009) for research and 
educational purposes. They are small wheeled cylindrical 
robots, 7 cm in diameter, whose mobility is ensured by a 
differential drive system. 

The e-puck hardware and software are fully open source 
providing low-level access to every electronic device and 
offering extension possibilities . They are equipped with 8 
infrared proximity sensors, a 3D accelerometer, a ring of 8 
LEDs and a CMOS camera. Extension boards communi­
cate with the main board through an I2C, SPI or RS232 
bus. Finally, Bluetooth communication is available for 
programming the robot and communicating data to a 
computer or to other Bluetooth devices. 

3.3 Communication hardware 

We have equipped each robot with a local communication 
board, the E-puck Range & Bearing board (Gutiérrez et al. 
2008a, 2009a). The board allows robots to communicate 

This time initialization is used only for evaluation purposes. 
Further details on the robot platform can be found at http:// 

www.e-puck.org. 
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Fig. 3 a Top and b bottom view of the E-puck Range & Bearing 
board 

locally, obtaining at the same time both the range and the 
bearing of the emitter without the need for any centralized 
control or external reference. The E-puck Range & Bearing 
board is controlled by its own processor. A board includes 
12 sets of IR emission/reception modules (see Fig. 3). Each 
of these modules is equipped with one infrared emitting 
diode, one infrared modulated receiver and one infrared 
photodiode3. A Manchester code is implemented because 
the emitted energy is not dependent on the data. Therefore, 
any data sent at a certain distance is received with the same 
intensity. The implementation of the Manchester code 
allows a maximum data rate of 5 kbps. The range of 
communication can be software controlled from 0 to 
80 cm. 

4 Control architecture 

4.1 The controller 

The controller has been implemented using subsumption 
(Brooks 1986), a well-known behavior-based architecture. 
Each behavior is represented using an augmented finite 
state machine (AFSM). Each AFSM carries out an action 
and is responsible for its world perception. 

In the controller, a clock is used by the robots to perform 
the odometry movement calculations. Moreover, the robots 
make use of the following sensors and actuators: 

- Infrared sensors: 8 infrared sensors are distributed 
around the robot's perimeter. They are used to detect 
the presence of obstacles or any neighbors with whom 
the robots can communicate. 

- Ground sensors: 3 infrared sensors are located in the 
lower-front part of the robot. Robots differentiate the 
areas depending on the color of the ground. The nest is 
represented as black, prey as gray and the rest of the 
arena as white. 

For an exhaustive description of the board see http://www. 
rbz.es/randb/. 

- RANDB emitter and receiver: the E-puck Range & 
Bearing board. 

- Motors: the two differential drive motors. 

Figure 4 shows the architecture diagram of the con­
troller. Each layer corresponds to a robot behavior. The 
arrows connect the different AFSMs, the suppressor and 
reset signals. The AFSMs are described below: 

- Avoid: the state machine returns a vector taking into 
account all the IR sensors above a certain threshold. 
The direction sent to the motors is the opposite of this 
vector. 

- Forage: the robot has location information about both 
the nest and the prey areas. It moves from nest to prey 
and back following the shortest path. If the robot 
arrives at one of the two areas, detected by the ground 
sensors, it stores the new estimated position and goes 
toward the other area. If the robot arrives at a place 
where the area was supposed to be but is not, it resets 
its Goal Locations memory. As a consequence, the 
robot enters the wander AFSM. 

- Wander: the robot carries out a random walk. If a nest 
or prey area is found, the robot stores its position in its 
Goal Locations memory. 

- Receive Data: the robot translates the information 
received into its own reference axis. 

- Send Data: the robot transforms the information to 
communicate according to the common reference axis 
(communication axis), and sends it to its neighbors. 

The robots are initially located at random positions 
inside a fixed area in the center of the arena. Inside this area 
robots perceive neither the nest nor the prey areas. Once a 
robot finds the nest or the prey, it stores its position and 
continues with a random walk until it finds the other area. 
When both areas have been located, the robots try to go 
from one area to the other endlessly. Because of the 
movement integration errors, robots might arrive at some 
coordinates where they estimate the area should be located 
but it is not. If this happens, a robot considers itself lost, 
resets its estimated location and starts a random walk until 
it finds both areas again. On the other hand, if a robot 
correctly arrives at one of the areas, it updates the area 
position coordinates. 

When two robots meet, they exchange their estimates 
about the goal areas. However, robots do not share a global 
coordinates system, so they rely on their communication 
axis to transform the information transmitted by their 
neighbor into their own frame. This information can be 
locally transmitted thanks to the E-puck Range & Bearing 
board. Figure 5 shows an example of how information 
about the estimated location of area A, previously visited 
by robot i, is transmitted from robot i to robot j . In a first 

http://www
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Fig. 4 The behavior structure 
of the foraging agents for a 
controller with communication 
defined by four levels of 
competence (layers) and five 
AFSMs (rectangles). The 
suppressor operators are 
represented by circles with an S 
enclosed, while the reset is 
represented by R 
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Fig. 5 Robots sharing information about the estimated location of 
area A. Robot i has previously visited area A and communicates its 
estimates (dyl and </>') to robot j 

step, robot i transmits its estimate of the distance dy and 
direction <\>l of area A to robot j . For the direction, the value 
transmitted is the angle a, obtained from <j>t using the 
communication beam as reference axis: a — <\>l — y\ 
where y' is the bearing provided by the E-puck Range & 
Bearing board. In a second step, robot j transforms the 
received data into its own coordinates system. First, it 
calculates the direction provided by robot i as 
(¡/ — y1 + a — 7i, followed by the calculation of the loca­
tion (J?, y*) of area A: 

j? = )}icos(yi) + dylcos((ft) 

Sp = tf'sinly') + dylsin{(jJ) 
(1) 

where X'J is the range provided by the E-puck Range & 

Bearing board. 

4.2 The social generalized induced fermi filter 

The Social Generalized Induced Fermi Filter (SGIFF) is a 
filter inspired by the Kalman Filter (KF) equations 

induced by the spectral norm of the error covariance 
matrix. Its main idea is to obtain a scalar value which 
represents the uncertainty a robot has about its estimates 
(confidence level). The SGIFF allows the robots to 
evaluate the information they have with respect to the 
information provided by their neighbors by means of a 
confidence-level parameter proportional to the distance 
travelled. Based on this confidence level, the robots are 
able to update their estimate state vector with the infor­
mation provided by other robots without the use of any 
movement error model. Therefore, depending on the 
confidence-level ratio, the robots will adopt or ignore the 
information offered by their neighbors (see Gutiérrez 
et al. 2009b for more details). 

The SGIFF can be explained as follows. Let the state 
vector of the robot i at time k be 

x t — xt y't ei (2) 

where x\ and y\ are the robot's Cartesian coordinates and 
ffk its orientation. 

Robots use dead-reckoning to estimate and reach the 
nest and prey locations. When robot i finds the nest or the 
prey, it stores its a priori estimated location information (its 
actual position and orientation) as x k\k-\ and x :prey,i 

k\k-V 
respectively. Additionally, the robot keeps track of the 
distance travelled since it left the nest or the prey denoted 
by PM^ and /^¡^.'J, respectively, which represents the 
inverse of the a priori confidence level the robot has about 
its estimated information (see Fig. 6). While the robot is 
moving, the uncertainty about its location grows (Smith 
and Cheeseman 1987; Feng et al. 1994). Therefore, its 
confidence level decreases. 

At each time step, robot i checks whether there is 
another robot to communicate with. If there is not, it 
updates its a posteriori estimated goal locations and the 
inverse of the confidence levels as: 



prey,] 

NEST 

inverse of their confidence levels. x ^ J j represents the a priori 
ipreyj represents the estimated nest position of robot i at time k and x ^ 

a priori estimated prey position of robot j at time k. The robots keep 
track of the distance travelled as the inverse of the confidence levels 
( nest,i , vreyj* 

Ak\k 

nestj 
Pk\k 

^k\k 

jrey 
Jk\k 

prey,i 

~ A i | i - 1 

nestj 
— Pk\k-\ 
_ OPrey,' 
~ *k\k-\ 
_ rpreyt 
— Pk\k-\ 

(3) 

In the next step (k + 1), the a priori estimated goal 
locations are updated with the robot's movement in the 
time step duration (Axk+1), and the inverse of the a priori 
confidence levels are updated with the distance travelled 
(Ad'k+1) in the time step duration4: 

priest j priest,i 
Xk+\\k ~ Xk\k 

nestj nestj 
Pk+l\k ~Pk\k 

-—-preyj -—-preyj 
Xk+\\k ~~ Xk\k 

prey,i ^preyj 
Pk+\\k ~ Pk\k 

Ax\ 
k+\ 

Ad), k+\ 

Ax\ 
(4) 

k+\ 

Jk+\\k Jk\k Ad), k+\ 

Therefore, if there is no encounter between the robots, 
the confidence level continues to decrease until the robot 
arrives at the nest or prey or until it gets lost. 

If two robots meet, they communicate and update their 
estimates. In what follows, we show all the different goal 
location exchange 

- None of the two robots know the goal locations: 
Robots do not exchange any information. 

- One robot knows a goal location: Let us assume that 
robot i is the one which has previously visited the goal. 

and the inverse --goal,i 
Its a priori estimated location is x^^ j 
of its corresponding a priori confidence level is pgu^[ • 
Robot j replaces its information with the one provided 
by robot i: 

Note that when a robot spins in place we consider the distance 
traveled as the arc made by one of the wheels. Therefore, 
Ad'k+i = £?k+l • p /2 , where p is the distance between the wheels 
(53 mm for the e-puck) and ¿JJ.+1 is the angular displacement made in 
the time step duration. 

•¿goalj 
Kk\k 

~¡goal,i 
Kk\k-\ 

goalj _ goal,i 
Pk\k Pk\k-\ 

(5) 

Both robots know the goal location: In this case, the 
two robots exchange their information as follows: 

SGIFFlx <¡goal,i 
*k\k 

goal,i _ cr,TPpir.Soal^ r,g°alj\ 
Pk\k -SGltt\Pk\k-vPk\k-\) 

'¡goalj ggoalj goal,i goalj\ 
Sfc|i:-1> *LkVc-Vl'k\k-Vl'k\k-l) 

(6) 

Fig. 6 Robots information about the nest and prey areas and the J 
„ „ . . ^.IliM í . . . t i l l LI 

<¿goalj _ criTi'Ti'(^goalJ vg°al 
Xk\k — ¿ U l r r \^XA|A-1' x>-i>. 

a—,. goalj goalj 
k\k-VPk\k-VPk\k-\ 

„goalj 
Pk\k 

goalj goalj 
SGIFF[Pi^vPk]kZ 

(7) 

Note that pgoa'' values are not initialized until the robot 
finds each area or a neighbor reports about its location. Once 
the robot has found one goal area, pgoal'' is set to 0. On the 
other hand, a robot, to which a neighbor has communicated 
the area position, updates pgoal'' with the value offered by its 
neighbor according to the SGIFF equations. 

In order to produce an a posteriori guess location, each 
robot takes into account all information available, but 
weighs its sources in a different way. To calculate xg

kT , we 
adopt the so called pairwise comparison rule (Traulsen 
et al. 2006, 2007; Santos et al. 2006) often adopted in 
evolutionary/social dynamics studies, to code the social 
learning dynamics, which makes use of the Fermi distri­
bution (see also Fig. 7): 

"""" l (8) 

where 

1 +e 
goaljj _ 

ngoal,ij 

goalj the A vuui.ii vuui.i goalj j n 
ÁPk\k-í=Pk\k-i-Pk\k-\ a n d P measures 

importance of the relative confidence levels in the decision­
making. For low values of /?, the decision-making proceeds 

P = 0.03 
P = 0.1 

-— p = 0.3 
P = 0.7 

/ / 

I / / 

-100 -50 0 

Ap 
50 100 

Fig. 7 The Fermi function that allows robots to decide between their 
own estimate and the information provided by the others 



by averaging the confidence levels whereas for high values 
of /?, we obtain a pure imitation dynamics commonly used 
in cultural evolution (Hammerstein 2003) defined by a 
sharp step function. In the first case, the confidence level 
works as a small perturbation to a simple average between 
the two estimates, while in the latter, each robot is ready to 
completely ignore the estimate which has a smaller relative 
confidence level. 

Hence, we use a weighted average to obtain the new 
location xg

kT '' and inverse confidence level pg
kT '' using the 

Fermi function: 

-^goal,i _ i-, _ goal,i\^goal,i . soal,i f^goalj . ij\ /QN 
Xk\k — \L Sk )Xk\k-\+6k yx-tyk-l^^k) \y) 

goal,i _ i-, _ ngoal,i\ goal,i . eoal,i goalj / l f ) N 

Pk\k - \L 8k )Pk\k-l+8k Pk\k-\ \W> 

Therefore, we observe that the SGIFF fuses the robot 

estimations based on their confidence levels. A better 

confidence level implies its associated measure will have a 

stronger weight on the filter performance. As we will see in 

Sect. 5, this simple mechanism makes collective decisions 

emerge in finding the closer goal area. This is because a 

closer goal gives shorter paths which have less uncertainty, 

and therefore they are chosen by the individuals. Typically, 

when ^pgM_1 ̂ 0 robots average their estimated informa­

tion about the location of the same goal area. On the other 

hand, there is a high probability that robots communicate 

information about different goal areas when ^ í f f - i i s m 

one of its ends. In that case, a robot adopts (Apg]M-\ ~> °°) 

or ignores {^pgM_1 —> —oo) its neighbor estimates. When 

the two prey areas are located at different distances from 

the nest, robots coming from the nearest one {prey A) will 

have a better confidence level than those coming from the 

farthest one {prey B). The difference between confidence 

levels allows the robots coming from prey B to update their 

estimated location of prey B with that of prey A, favoring in 

this way the exploitation of the closest prey. 

5 Experimental evaluation 

In the following, we report results of simulated and real 
experiments and analyze the collective behavior of the 
robots. 

5.1 Experiments in simulation 

Our simulation platform is a fast, specialized multi-robot 
simulator for the e-puck robot. It has a custom rigid body 
physics engine, specialized to simulate only the dynamics 
in environments containing flat terrain, walls and holes. 

This restriction allows for certain optimizations in the 
computation of the physics and thereby reduces the com­
putational resources necessary for running simulations (see 
Christensen 2005 for more details). 

In our simulations, an e-puck is modeled as a cylindrical 
body of 3.5 cm in radius that holds 8 infrared proximity 
sensors distributed around the body, 3 ground sensors on 
the lower-front part of the body and a range and bearing 
communication sensor. IR proximity sensors have a range 
of 5 cm, while the E-puck Range & Bearing module used 
for the communication has a range of 15 cm. For the three 
types of sensors, we have sampled real robot measurements 
and mapped the data into the simulator. Furthermore, we 
added uniformly distributed noise to the samples in order to 
simulate effectively the different sensors. ±20% noise is 
added to the infrared sensors and ±30% to the ground 
sensors. In the range and bearing sensor, noise is added to 
the range (±2.5 cm) and bearing (±20°) values. Moreover, 
each message emitted can be lost with a probability that 
varies linearly from 1 % when the sender-receiver distance 
is less than 1 cm, to 50% when the two robots are 15 cm 
from each other. A differential drive system made up of 
two wheels is fixed to the body of the simulated robot. 
Errors have also been introduced into the encoder sensors 
chosen uniformly random in ±20% of the maximum 
movement at each time step for each wheel. 

The simulator time steps are of 100 ms. At each time 
step, the robot senses the environment, runs the AFSMs 
and actuates. The robot speed has been limited to 6 cm/s 
when moving straight and 3 cm/s when turning. These 
values are also used with the real robots so as to allow 
comparing simulated and real experiments. 

5.1.1 Experimental setup 

As already mentioned, two different experimental setups 
(AES and SES) have been chosen to compare and study the 
convergence of the algorithm (see Fig. 1). Both setups are 
carried out in three different arenas where the dimensions 
and number of robots are changed as shown in Table 1. 
Each experiment is repeated 30 times so as to allow sta­
tistical analysis of the results. 

5.1.2 General performance 

The overall behavior of our controllers is a function of the 
parameter /?. As explained in Sect. 4.2, the value of this 
parameter determines the rate at which the robots adopt or 
ignore their neighbor's information. To assess the general 
impact of this value we have conducted a parameter study. 
We examined eight values defined by 10x, with x e {—5, 
—4, ..., 2}. The general performance was evaluated using a 



Table 1 Parameters describing 
the three arenas used in the 
experiments A r e a d i m e n s i o n s ( m 2 } 

Number of robots 

Experiment duration (s) 

Initial area radius (m) 

Nest and prey radius (m) 

AES: Nest location (x, y) (m) 

AES: Prey 1 location (x, y) (m) 

AES: Prey 2 location (x, y) (m) 

SES: Nest location (x, y) (m) 

SES: Prey 1 location (x, y) (m) 

SES: Prey 2 location (x, y) (m) 

retrieval task, that is, a task in which robots have to 
transport "virtual" items from the prey to the nest area. 
Each time a robot completes a run from the nest to the prey 
and comes back to the nest, we consider the robot has 
succeeded in its task and we count one more round trip. 
Figure 8 shows the number of round trips made by all the 
robots in the experiment for the two ESs in the three dif­
ferent arenas for each f> value. 

The figures show a similar shape for the different ESs 
and arenas. For fie {10~5, 10"4, 10"3} robots perform 
poorly in the retrieval process. This is because the robots 
simply average the available information. This solution is 
suboptimal as it gives too much weight to the estimates 
with low confidence levels. For fi > 10~ , we observe a 
great improvement in the retrieval outcome. However, the 
optimal values are not those which imply pure imitation, 
but a combination of both robots' information. This is 
because every robot has useful information about the areas' 
location. Useful information means that even an estimate 
with low confidence can be of value, especially if the 
confidence levels of the two estimates are close to each 
other or if the estimate of higher confidence is defective. 
Therefore, better solutions are those which take into 
account the estimates of all the robots and weigh them in a 
different way. 

5.1.3 Experimental results 

To analyze the self-organizing properties of the filter, we 
evaluated three different values for fi (fi e {10~2, 10 -1, 1}) 
in the three arenas for the two ESs. 

Asymmetric collective choice. In this test, robots are 
initialized in the AES. The robots start their random walk 
in the center of the arena. Once the nest and one prey are 
located, the robots try to forage from nest to prey endlessly. 
If a robot finds an obstacle (robot or wall) while foraging, it 
tries to communicate with it. Then, if the obstacle is still 
present, the robot moves away of the obstacle until it is not 

Arena 1 

1.2 x 1.7 

10 

1800 

0.2 

0.1 

(0.45, -0.75) 

(-0.45, 0.75) 

(-0.45, -0.75) 

(-0.45, 0.0) 

(0.45, 0.75) 

(0.45, -0.75) 

Arena 2 

3.0 x 4.25 

50 

7200 

0.5 

0.1 

(1.1, -1.7) 

(-1.1, 1.7) 

(-1.1, -1.7) 

(-1.1, 0.0) 

(1.1, 1.7) 

(1.1, -1.7) 

Arena 3 

6.0 x 8.5 

100 

7200 

0.5 

0.1 

(2.2, -3.4) 

(-2.2, 3.4) 

(-2.2, -3.4) 

(-2.2, 0.0) 

(2.2, 3.4) 

(2.2, -3.4) 

detected anymore. In this way, the obstacle is avoided and 
the robot can continue with its foraging behavior. 

Figure 9 shows the percentage of robots in the popula­
tion that forage from one prey area or the other as a 
function of time for different fi values. A robot is consid­
ered to belong to a path if it forages between the nest area 
and one prey area without getting lost. Remember, as 
shown in Sect. 4.1, that a robot is considered lost if it 
arrives at some coordinates where it estimates the goal area 
is located but it is not. 

In the first few minutes of the experiments, the robots 
choose any of the two paths with equal probability, 
depending on the first prey area found. However, the 
shortest path starts recruiting more and more robots after 
some robots have already found both paths. On the longest 
path, we observe a reduction in the number of robots for­
aging on it, arriving at zero in some of the trials. The 
recruitment on the shortest path, in any of the different 
configurations, increases rapidly and non linearly. Note 
that the percentage of robots in the path is lower for the 10 
robots in Arena 1 compared to the percentage of robots in 
the other arenas. The reason is that there are not enough 
robots in the arena to communicate in short periods of time. 
A robot density study is reported in Sect. 5.3 to clarify this 
issue. 

Once the foraging has reached its equilibrium, we count 
the number of robots on the shortest path for each exper­
iment. Figure 10 shows the percentage of experiments in 
which the robots select the shortest path for all the repli­
cations and all the fi values tested in each arena. Note that 
this percentage of traffic is not taken from the total popu­
lation but from the number of robots not considered lost. 
In this situation, we observe that the swarm chooses 
the shortest path in most of the experiments (100% for the 
experiments in Arena 2 and Arena 3 and 90% for the 
experiment in Arena 1). 

The robots collectively choose the closest prey area 
because when two robots coming from different prey areas 
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Fig. 8 Retrieval results for the different ESs and arenas tested in 
simulation (30 replications for each boxplot). Each box comprises 
observations ranging from the first to the third quartile. The median is 

indicated by a horizontal bar, dividing the box into the upper and 
lower part. The whiskers extend to the farthest data points that are 
within 1.5 times the interquartile range. Outliers are shown as circles 
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Fig. 9 Percentage of simulated robots foraging in the two paths for 
the asymmetric experimental setup (AES) and different /? values: 
a Arena 1 (jff = 1), b Arena 2 (jff = 10"1) and c Arena 3 (jff = 10"2) 

(30 replications). The shortest path is represented by the solid lines. In 
its steady state we observe 50% of the population in the shortest path 
in Arena 1, 69% in Arena 2 and 90% in Arena 3 
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Fig. 10 Distribution of the percentage of traffic on the shortest path 
for the simulated asymmetric experimental setup (AES) in a Arena 1, 
b Arena 2 and c Arena 3 (30 replications). Lost robots are not 
considered in the dataset. For the experiments in Arena 2 and Arena 3, 

at the end of each experiment all the robots not considered lost are 
foraging using the shortest path. For Arena 1, more than 80% of the 
experiments end up with most of the robots (80-100%) foraging using 
the shortest path 
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Fig. 11 Percentage of simulated robots foraging in the two paths for 
the asymmetric experimental setup (AES) in a Arena 1, b Arena 2 
and c Arena 3 for the experiments with and without communication 

(30 replications). For the three arenas, the experiments in which the 
robots do not communicate obtain a poor foraging performance 

meet (typically in the vicinity of the nest), they exchange 
their information according to the SGIFF. A robot that uses 
the shortest path, statistically has a better confidence level 
than the one using the longest one, because it has traveled a 
shorter distance since it left the prey area. This confidence-
level difference makes the robots that use the shortest path 
ignore the other's information, and those using the longest 
path adopt the information from the robots using the 
shortest one. Encounters along the same path allow the 
robots to correct their location estimate errors according to 
the better information provided by robots that have a 
slightly better confidence level. 

To study the improvement obtained through the robots' 
communication, we run the same experiments with a setup 
in which the robots do not communicate. Figure 11 com­
pares the percentage of robots foraging in the two paths for 
the experiments with and without communication. Note 
that in the experiments without communication the robots 
are not able to create a path because the odometry errors 
are not collectively corrected. Therefore, the robots obtain 
a poor foraging performance. 

Symmetric collective choice In this test, robots are ini­
tialized in the SES, where the two prey are at the same 
distance from the nest. Because of this symmetry, the 
robots cannot collectively choose one single preferred prey 

based on the distance. In fact, when two robots arriving at 
the nest from different prey areas exchange their estimated 
prey information, the controller fuses the two robots' data 
sending the robot to an erroneous location at some point 
in between the two areas. In an ideal example, two robots 
which arrive at the nest from different prey areas that 
are at the same distance from the nest, will have the 
same confidence level value (j^^l\ =lfm-\)- Therefore, 

= 0.5; hence x ^ ' ' = x f w -
*k\k *k\k 

k\k-i 
vP

rsyj _ 
k\k-i 

However, results in Fig. 12 show that the robots succeed 
in choosing one of the prey areas. The reason is that if after 
the first meeting a robot meets other robots, the filter will 
correct its estimates and hence will guide the robot to the 
correct goal. Nonetheless, the way robots weigh their 
estimates and the equal distance between the nest and the 
prey make the swarm take more time to choose its domi­
nant path collectively and the number of lost robots 
increases, as observed if comparing Fig. 9 with Fig. 12. 
Figure 13 displays the percentage of experiments in which 
the swarm choose one of the paths for each arena. We can 
observe that the robots choose one path or the other with 
the same probability. 
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Fig. 12 Percentage of simulated robots foraging in the two paths 
for the symmetric experimental setup (SES) and different ft values: 
a Arena 1 (jff = 1), b Arena 2 (jff = 10"1) and c Arena 3 (jff = 10"2) 

(30 replications). The chosen path is represented by the solid lines. In 
its steady state, we observe 40% of the swarm in the chosen path in 
Arena 1, 58% in Arena 2 and 75% in Arena 3 

Fig. 13 Distribution of the 
percentage of traffic on the 
selected path for the simulated 
symmetric experimental setup 
(SES) in a Arena 1, b Arena 2 
and c Arena 3 (30 replications). 
Lost robots are not considered 
in the dataset. For the three 
arenas robots choose with equal 
probability one prey area or the 
other 
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Fig. 14 Percentage of simulated robots foraging in the two paths for 
the symmetric experimental setup (SES) in a Arena 1, b Arena 2 
and c Arena 3 for the experiments with and without communication 

(30 replications). For the three arenas, the experiments in which the 
robots do not communicate obtain a poor foraging performance 

As in the asymmetric experiment, we run the same 
experiments with a setup in which the robots do not 
communicate. Figure 14 compares the percentage of robots 
foraging in any of the two paths in the experiments with 
and without communication. As in the AES, in the exper­
iments in which the robots do not communicate, the swarm 
is not able to create a path because the odometry errors are 
not corrected. 

5.2 Experiments with real robots 

Experiments with real robots were carried out in Arena 1 
(1.7 x 1.2 m2) with 10 e-pucks and lasted 1,800 s. Robots 
start in a central round area of 0.2 m radius with random 
position and orientation. Data collection is managed 

through the Bluetooth connection. Because of Bluetooth 
limitations, two different computers are used to commu­
nicate with 5 different robots each. Robots are initialized 
simultaneously and keep track of a timer which is initial­
ized at the beginning. This timer allows the robots to have 
the same time reference axis, which is not used by the 
robots to perform the task but it is used by us for evaluation 
purposes. When a robot arrives at one of the two goal areas 
(i.e., nest or prey) or it gets lost, the robot sends a Bluetooth 
command to the computer, indicating the state in which it 
finds itself (i.e., nest, prey or lost) and the time at which the 
event takes place. After 1,800 s, the controller stops and 
robots are randomly re-initialized. The 8 IR proximity 
sensors are used as input to the avoid and communication 
behaviors. The nest and prey areas are detected with the 



ground sensors. The communication range of the E-puck 
Range & Bearing board has been limited to 15 cm, as in 
the simulation experiments, to avoid the IR signals spread 
over the arena. 

We selected f$ = 1 from the simulation results and 
ported the controller to the real robot. Figure 15a shows 
results of the exploration of the robots as a function of time 
for the AES. We observe that robots are able to collectively 
choose to forage from the closest prey, where more than 
80% of the robots not considered lost end up foraging using 
the shortest path (see Fig. 15b). Note that in 7% of the 
experiments, less than 20% of the foraging robots were 
using the shortest path. This situation was observed in 
experiments in which a small percentage of robots (fewer 
than three robots) were foraging in the arena while the rest 
of the group was lost. If we look at Fig. 15a and b simul­
taneously, we observe that on average 4-5 robots are lost, 
4-5 robots are foraging using the shortest path and 1 robot 
is foraging using the longest path. Finally, a comparison 
between the experiments with and without communication 

Fig. 15 Results for the experiments with real robots in the asym­
metric experimental setup (AES) and ft = 1 (30 replications). 
a Percentage of e-puck robots foraging in the two paths. In its steady 
state we observe 45% of the population using the shortest path. 
b Distribution of the percentage of traffic on the shortest path. Lost 
robots are not considered in the dataset. More than 80% of the robots 
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Fig. 16 Results for the experiments with real robots in the symmetric 
experimental setup (SES) and ft = 1 (30 replications), a Percentage 
of e-puck robots foraging in the two paths. In its steady state we 
observe 35% of the population using the chosen path, b Distribution 
of the percentage of traffic on the selected path. Lost robots are not 
considered in the dataset. Robots choose with equal probability one 

is shown in Fig. 15c. We observe that the robots obtain a 
poor foraging performance in the experiments without 
communication as already observed in the simulation 
experiments. Figure 16 shows results of the experiments in 
the SES. As already observed in the experiments with 
simulated robots, the swarm is able to collectively choose 
one of the two prey area offered. 

Notice that there are quantitative differences between 
the real and the simulated experiments. These differences 
are mainly due to the imperfect communication model of 
the range and bearing sensor implemented in simulation. 
Another problem is the reflection caused by the borders of 
the arena that distort some of the bearing measurements 
when robots are near the borders. Moreover, we have 
observed some interferences between the range and bearing 
sensor and the IR proximity sensors. These alterations in 
the range and bearing produce extra errors not modeled in 
the simulation, which make the robots miscalculate the 
information given by other neighbors. However, we 
observe the same behavior in all the qualitative measures 

that are not lost are foraging using the shortest path at the end of the 
experiment, c Comparison of the percentage of robots foraging on 
the two paths for the experiments with and without communication. 
The robots obtain a poor foraging performance in the experiments 
without communication 

prey area or the other. Once collectively chosen, less than 5% of the 
robots forage using the other path, c Comparison of the percentage of 
robots foraging in the two paths for the experiments with and without 
communication. The robots obtain a poor foraging performance in the 
experiments without communication 
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Table 2 Parameters used for the robot density study (a) AES on Arena 1 

Arena 1 Arena 2 Arena 3 

Initial number of robots 

Final number of robots 

Number of robots step 

dmm (m) 

5 

70 

5 

0.9 

and only a decrease of less 
robots foraging in the chosen 

than 

10 

200 

10 

2.2 

10% in 

20 

320 

20 

4.4 

the number of 
or shortest path. 

.c 
CO 
Q. 

(1) 

0 

£ 
o 
o 
ce 

5.3 Robot density study 

For a better understanding of the robot behavior, we run a 
set of experiments in simulation where we modified the 
number of robots at run time. In these experiments, we only 
use the Asymmetric Experiment Setup. The number of 
robots used in the experiments is given in Table 2: in 
Arena 1 are used from 5 to 70 robots with 5-robot steps, 
in Arena 2 from 10 to 200 robots with 10-robot steps and in 
Arena 3 from 20 to 320 robots with 20-robot steps. Notice 
that the number of robots is different because of the arena 
dimensions. In Arena 3, a swarm with few robots could not 
communicate in short periods of time and the robots would 
therefore get lost. On the other hand, a swarm with a high 
number of robots in Arena 1 would create a crowded 
environment in which the robots could not move. 

Results (see Fig. 17) show that the percentage of robots 
in the shortest path depends on the number of robots in the 
arena. We observe two situations in which less than 50% of 
the total number of robots are foraging using the shortest 
path. In the first situation, there are not enough robots in the 
arena so it is difficult for them to communicate in short 
periods of time. Therefore, the robots are not able to correct 
their estimates and most of them get lost. This happened 
when there were less than 10 robots in Arena 1, 20 robots 
in Arena 2 and 30 robots in Arena 3. 

Let us define the parameter q> as: 

N 
9 = d„ (11) 

where N is the number of robots in the experiment and d^n 
is the distance between the nest and the closest prey. 

If we compare this number of robots with the distance 
between the nest and the closest prey, we observe there is a 
lower bound in which cpn¿n ~ 10. The second situation is 
when there are so many robots that the number of collisions 
increases and the robots do not maintain themselves in the 
path. This situation is found for more than 45 robots in 
Arena 1, 110 robots in Arena 2 and 200 robots in Arena 3. 
These values give an upper bound of <pmax — 50. More­
over, we observe an optimum value of q>opt ~ 25 that 
makes more than 80% of the robots in the experiment 
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Fig. 17 Percentage of simulated robots foraging using the shortest 
path. Results for the different arenas tested are displayed (30 
replications for each boxplot). Each box comprises observations 
ranging from the first to the third quartile. The median is indicated by 
a horizontal bar, dividing the box into the upper and lower part. The 
whiskers extend to the farthest data points that are within 1.5 times 
the interquartile range. Outliers are shown as circles 

forage in the shortest path. (Table 3 shows cpmin, <pmax
 a nd 

cpopt results for the three arenas). 
While q> has a major influence during the foraging 

behavior, the arena size is important for the wander 



Table 3 Results of the robot density study 

Minimum number of robots 

V'min 

Optimum number of robots 

<Popt 

Maximum number of robots 

V'max 

Arena 1 

10 

11.11 

20 

22.22 

45 

50.00 

Arena 2 

20 

9.09 

60 

27.27 

110 

50.00 

Arena 3 

40 

9.09 

100 

22.72 

200 

45.45 

(a) 
AES on Arena 1 

behavior. However, a study about the relationship 
between the arena size and the number of robots 
becomes complex because it depends on many factors: 
the position where the robots are initialized, the location 
of the prey and nest areas, the number of robots already 
in the path, etc. Nevertheless, we have studied the 
recruitment behavior; that is, we have studied the time it 
takes for all the robots to locate the nest and prey areas 
at least once. Notice that the information transmitted by 
other robots could be erroneous because of the odometry 
errors. Therefore, we can not consider this information 
as a success of localization (recruitment) (see Nouyan 
et al. (2009)). Hence, a robot must arrive to both the nest 
and the prey areas to consider a recruitment success. As 
deduced from the controller behavior, a robot which has 
found one or both areas is able to recruit other robots by 
communicating the goals location. In our results, we 
observe that for small group sizes the robots have dif­
ficulties to encounter and communicate. Therefore, the 
robots are not recruited toward the nest or prey areas as 
fast as expected. On the other hand, for large group 
sizes, the robots' movement inside the arena becomes 
difficult because of the collisions. Hence, not all the 
robots are able to locate both areas for the experiment 
duration. Figure 18 shows results about the recruit­
ment process for the three different arenas. Minimum 
recruitment time values were observed for 20 robots 
for Arena 1, 60 robots for Arena 2 and 100 robots for 
Arena 3. 

6 Conclusions 

We have presented an experimental study of a collective 
choice mechanism that results from a simple control 
architecture. The robots rely on their odometry and on local 
communication to adopt/ignore information given by their 
neighbors. We have conducted a foraging experiment 
where robots collectively and in a self-organized manner 
choose one resource site (prey) and virtually transport 
items to a home (nest). We have considered two experi­
mental setups: (i) an asymmetric experimental setup, where 

(c) 

0 e a ? 

5 10 20 30 40 50 60 

Number of robots in experiment 

AES on Arena 2 

70 

10 30 50 70 90 110 130 150 170 190 

Number of robots in experiment 

AES on Arena 3 O O -g. _ _ _ _ 

° o 8 ° 

I o S 

\ ' - m 

- ? y tj y P ? i 

20 60 100 140 180 220 260 

Number of robots in experiment 
300 

Fig. 18 Time used for the recruitment process in the different arenas 
and with the different numbers of simulated robots tested (30 
replications for each boxplot). Each box comprises observations 
ranging from the first to the third quartile. The median is indicated by 
a horizontal bar, dividing the box into the upper and lower part. The 
whiskers extend to the farthest data points that are within 1.5 times 
the interquartile range. Outliers are shown as circles 

two prey are located at different distances from the nest and 
(ii) a symmetric experimental setup, where the two prey are 
located at the same distance from the nest. 



In a simulated environment, we have first studied in a 
retrieval task the impact of the /? parameter, which deter­
mines the importance of the relative confidence levels in 
the decision-making. We have tested our controller in three 
different arenas using the two experimental setups. We 
have observed two main phenomena. On the one hand, 
once a trail becomes by chance a little stronger than the 
other, it is followed more accurately, and is thus more 
reinforced. On the other hand, the shorter a path, the 
stronger it is on average. This is because they get higher 
weights (better confidence levels) when fusing the esti­
mates. The combination of these two phenomena leads to a 
collective choice in favor of the nearest source. 

In general, our controller achieves a good performance 
both with real and simulated robots. However, a small 
difference between the real and simulated experiments has 
been observed in the quantitative measures. This difference 
is because of the sensor modelling and the non-systematic 
errors in the robot's movement. The experiment with real 
robots could be improved by increasing the number of 
robots. This would imply more frequent information shar­
ing and therefore a better real robot performance, as 
explained in Sect. 5.3. 

Our strategy shows two desirable properties typical of 
swarm robotics systems: (i) scalability and (ii) robustness 
to noisy conditions. Scalability has been directly tested in 
the simulation experiments, while robustness has been 
tested in the real experiments. 

An interesting extension to our controller would be a 
mechanism that allows experimentation in environments 
that include obstacles. Finally, it would be interesting to 
study the on-line tuning of parameter /?. 
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