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Abstract Many of the studies related to supervised

learning have focused on the resolution of multiclass

problems. A standard technique used to resolve these

problems is to decompose the original multiclass problem

into multiple binary problems. In this paper, we propose a

new learning model applicable to multi-class domains in

which the examples are described by a large number of

features. The proposed model is an Artificial Neural Net-

work ensemble in which the base learners are composed by

the union of a binary classifier and a multiclass classifier.

To analyze the viability and quality of this system, it will

be validated in two real domains: traffic sign recognition

and hand-written digit recognition. Experimental results

show that our model is at least as accurate as other methods

reported in the bibliography but has a considerable

advantage respecting size, computational complexity, and

running time.

Keywords Classifier ensemble � Multiclass learning �
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1 Introduction

A supervised learning problem is one in which a given set

of examples and their classes, S = {(X1, y1), (X2, y2), ….

(Xn, yn)}, has the objective of finding the f function that

allows the prediction of the associated class to new

examples: f(Xi) = yi. When the set of classes is of finite

cardinality and contains more than two elements, the

machine learning application receives the name of multi-

class learning and the f function is called multi-class

classifier.

The simplest, most cited, and probably most criticized

approach used in multi-class classification problems is the

so-called one against all (OAA) scheme [1 3]. In this

model, the k class problem is broken down into k binary

classification problems, each of which distinguishes or

separates one class from the (k - 1) remaining classes.

Therefore, each binary classifier is able to indicate if an

example belongs or not to its associated class, but when an

example is classified as not belonging to ‘‘its class’’, it is

not able to determine to which of the k - 1 remaining

classes the example belongs to.

This characteristic is implicit to the one against all

architecture and makes the errors made by only one clas-

sifier difficult to rectify. This means that diversity [4] of the

binary classifiers (independency in the production of their

errors) does not always imply an improvement in the

classification given by the ensemble. More detailed anal-

ysis is as follows.

Given a one against all architecture integrated by k di-

chotomic classifiers with a binary output (yi [{0, 1}, i [{1,

2, …, k}) and suppose that, when trying to classify a certain

example, only one of these classifiers catalogues it wrong,

that is, the dichotomic classifiers are diverse. Under these

circumstances, the possible situations that can arise are

1. Classifier Cj, which makes the error, classifies as

negative (yj = 0) an example than should be classified

as positive (false negative). Since for the rest of the

classifiers this example is negative, the output for all of

M. P. Sesmero (&) � J. M. Alonso Weber � G. Gutiérrez �
A. Ledezma � A. Sanchis

Computer Science Department,

Universidad Carlos III de Madrid,

Avda. de la Universidad 30,

28911 Leganés, Madrid, Spain

e mail: msesmero@inf.uc3m.es

1

Cita bibliográfica
Published in: Neural Computing & Applications, 2010



them will be {0}, and, therefore, the global output for

the ensemble will be {0, …, 0, …, 0}. This means that,

the only mechanism to decide the class of the example

is a random guess, and therefore the error is not

rectifiable.

2. Classifier Cj classifies as positive (yj = 1) an example

that should be classified as negative (false positive). In

this case, two classifiers will exist, Ci and Cj, that will

classify the example as belonging to its class (yi = 1

and yj = 1), while the rest of the classifiers will

catalogue it as negative (yk = 0, i = k, j = k).

Consequently, as in the previous situation, it will be

impossible to clearly determine to which class the

example belongs to.

Therefore, the accuracy of the one against all architec-

ture depends principally on the accuracy of the dichotomic

classifiers integrating it, but not on its diversity.

To deal with this problem, many schemes based on this

architecture use classifiers with output values in the [0, 1]

range in order to assign the class label of the classifier with

the largest output value [3, 5 7]. Mathematically,

cðxÞ ¼ Fðx; y1; y2; . . .; ykÞ ¼ arg maxðyiÞ
i¼1;...;k

ð1Þ

This modification avoids ties and ambiguous labeling and

also creates certain dependence between the diversity of

the classifiers and the accuracy of the ensemble. Never-

theless, the correct classification of an example depends

heavily on the output value given by a specific classifier

(that associated to the class which the example belongs to).

That is, x 2 ci will be correctly classified by the ensemble,

if and only if, yi [ yk V k = i, where yk is the output value

of Ck classifier.

Therefore, relation between the diversity of the classi-

fiers and the accuracy of the ensemble is not always

guaranteed, since it depends on a criterion (yi [ yk) that is

not faced by the learning algorithms. In this paper, we

propose a modification of the one against all architecture,

in order to rectify this difficulty and to guarantee that the

diversity of the base classifiers produces on an increase in

the ensembles accuracy.

Another issue that is dealt with in this paper is the need

to build a system capable of resolving problems in which

the examples are described by a high number of features. In

theory, more features should provide more accurate clas-

sifiers but, in practice, irrelevant or redundant features

may have a negative effect on the accuracy of the classifiers

[8 10]. Furthermore, due to running time requirements or

constraints imposed by the problem itself, feature selection

can be an essential requisite in certain domains. For

example, when the designed classification system has to be

implemented in hardware as an Artificial Neural Network

on FPGA -Field Programmable Gate Array-, a high number

of features make the implementation unviable [11].

Following the terminology found in [12], the system

proposed here is an ensemble of classifiers in which

diversity is obtained manipulating the output targets [3],

manipulating the input features [13, 14] and injecting

randomness into the learning process [15].

As with the one against all architecture, the number of

individuals that will integrate the ensemble coincides with

the cardinality of the set of classes. The biggest difference

compared to the one against all architecture is that, in this

new model, the ensemble members will not be binary

classifiers, but modules composed of a binary classifier and

a multi-class classifier (Fig. 1). To simplify terminology,

these modules will be called base modules and the multi-

class classifiers will be called complementary classifiers.

Since one of the aims of our work is to develop a system

that can be implemented in hardware using FPGA’s, prior

to the construction of each classifier a feature selection

process will be performed. This reduction allows the con-

struction of simpler classifiers and therefore, systems with

a reduced learning and classification time. With the

objective of increasing models accuracy, the feature subset

used to generate the classifiers is not unique but depends on

the task associated with each classifier.

The remainder of this paper is organized as follows. In

Sect. 2, we present the proposed architecture in detail.

Section 3 presents and analyzes the empirical evaluation of

this approach. Finally, in Sect. 4, conclusions and future

work are summarized.

2 System architecture

The main goal of this paper is to develop a new multiple

classifier system characterized by learning from examples

belonging to one of k classes (k C 3) and described by a

high number of features. In order to obtain an accurate

system, the ensemble will be composed of a number of

more simple classifiers in which diversity is obtained:

1. Manipulating the output values that are given to the

learning algorithm.

2. Varying the feature subsets used to generate the base

classifiers.

3. Injecting randomness into the learning process.

Fig. 1 An illustration of the ith base module
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In contrast to the multi-class methods based on binary

decomposition (One Against All (OAA), One Against One

(OAO) [16, 17], or Error-Correcting Output Codes

(ECOC) [18]), the ensemble we are proposing is based on

the idea that the classifier modules integrating it do not

only indicate if an example belongs to one or more specific

classes, but they attempt to explicitly indicate the particular

class it belongs to. Each module is composed of two

classifiers (Fig. 1): the first one, Ci, is a binary classifier

trained to distinguish if an example belongs to a certain

class or not. The second classifier, called complementary

classifier and named Ci, is a multi-class classifier with k - 1

outputs representing classes {cj}, where j = i. This last

classifier will only intervene under certain circumstances

(see Sect. 2.2).

2.1 Base module construction

In this section, a detailed explanation is given on the design

of the base modules and their components: the binary

(Sect. 2.1.1) and the complementary classifiers (Sect.

2.1.2). Section 2.2 deals with their interaction.

2.1.1 Binary classifiers

As stated before, the binary classifiers composing the

ensemble are analogous to the ones used in the one against

all architecture. Therefore, each binary classifier is trained

with the same data set but with different class labels. To

train the ith classifier, the training data set Xtr is decom-

posed in two sets, Xtr ¼ Xþi
tr [ X i

tr , where Xþi
tr contains all

the class i examples, labeled as ‘‘1’’, and X i
tr contains all

the examples belonging to all other classes, labeled as ‘‘0’’.

One of the premises that must be satisfied by this model

is the ability to work with examples described by a high

number of features. Practical experience shows that using

as much as possible input information (features) does not

imply a higher output accuracy. To facilitate and improve

the learning process, once the class associated with each

example is recoded, the process of determining the subset

of most relevant features will take place. This feature

selection process has been carried out using the Weka tool

[19] (version 3.4.12). After analyzing several feature

selection methods [20], Correlation-based Feature Selec-

tion (CFS) [21], with Best First [22, 23] as search strategy

was chosen as the method for feature selection.

Once the initial data set has been processed and the

training set associated with each binary classifier has been

generated, the next step is building these classifiers. In our

experiments, the classifiers are one hidden layer Neural

Networks trained with the Back-Propagation algorithm

(Fig. 2) [24], in which:

(a) The number of input neurons depends on the number

of features selected by CFS for the corresponding

binary problem.

(b) The size of the hidden layer has been experimentally

determined by trial and error.

(c) The output layer has a single neuron.

2.1.2 Complementary classifiers

The aim of the complementary classifier, Ci, is to classify

those examples that have been rejected by the corre-

sponding binary classifier (Ci). If the binary classifier is

reliable, these examples will belong to one of the k - 1

classes that the binary classifier learns as negative. Faced

with this situation, it seems logical to build Ci from

examples that belong to these k - 1 classes. However, if

the binary classifier produces a false negative, the com-

plementary classifier will be forced to classify an example

that does not belong to any of the classes it has learned. To

guarantee that Ci does not generate outputs that might

produce ambiguity or conflictive situations, these classifi-

ers will be trained with examples belonging to all classes.

To achieve diverse classifiers with k - 1 outputs, before

the construction of Ci classifier, a new recoding of the class

associated with each example will be performed. Specifi-

cally, the coding associated with the examples belonging to

the ith class will be a vector of k - 1 components where all

the values will be ‘‘0’’. On the other hand, the codification

associated with the examples belonging to the jth class will

be carried out establishing a correspondence between the

different classes and the k - 1 components that make up

the output vector. Therefore, for a domain in which there

are three classes, c1, c2, c3, the codification associated with

the learning examples Xi linked to the C1 classifier will be:

Fig. 2 Construction of the binary classifiers
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f0; 0g if Xi 2 c1

f1; 0g if Xi 2 c2

f0; 1g if Xi 2 c3

With the objective of providing these classifiers with a

larger diversity, the feature selection process has been

performed considering only the examples associated with

k - 1 classes. Proceeding in this way, complementary

classifier will be built on different training sets, and

consequently will be more diverse.

As with the binary classifiers, the complementary clas-

sifiers will be implemented as one hidden layer neural

networks. In this case, the number of output nodes will be

k - 1 (Fig. 3).

2.2 Classifier integration

Once the classifiers that make up a base module have been

built, the next step is to determine their interrelation. In

order to do so, three options have been analyzed:

(a) Parallel combination When this architecture is

applied, the output given by the classifying module

associated with the ith class is a vector of k components

(Yi(x) = [y1, y2, …, yk]) in which the yi component is

generated by the binary classifier and the rest of

components by the complementary classifier. There-

fore, to find out the class associated with an example, it

is necessary to know the output generated by both the

binary classifier and the complementary classifier.

(b) Serial combination The complementary classifier

only intervenes when the binary classifier (Ci)

classifies the example as not belonging to ‘‘its class’’.

In this case, the output given by the base module

linked to the i-th class will be the same to that

described for the parallel combination. Otherwise, the

output of this module will be a vector in which the

only component different from zero will be that

generated by Ci (Yi(x) = [0, 0, …, yi, …, 0]).

Since the output of the binary classifier is a contin-

uous value within the [0,1] range, the critical point in

this scheme is determining the threshold (h) that (1)

allows a binary classifier to discern if an example

belongs or not to its associated class (x [ ci if

yi(x) [ h) and, (2) minimizes the ensemble error.

Figure 4 shows, for the domains analyzed in Sect. 3,

the relationship between ensemble accuracy and the

threshold value. The output of the ensemble is

computed averaging the outputs given by each base

module and choosing then the one of highest value.

Mathematically,

CðxÞ ¼ arg max k
i¼1

Pk
j¼1 yji

k

 !

ð2Þ

where yji is the jth output of the ith module and k the

number of classes.

There are several things to note. First, the serial com-

bination is equivalent to the OAA architecture for a

threshold value of h = 0, and is equivalent to the par-

allel architecture when the threshold is h = 1. Second,

serial and parallel combinations perform equally well

for all threshold values h C 0.05. Indeed, the statistical

tests used in Sect. 3 cannot distinguish them.

Fig. 3 Structure of the ith complementary classifier (Ci)

(a) (b)Fig. 4 Relationship between

ensemble accuracy and h for:

a Traffic sign recognition and

b Handwritten digit recognition.

For h 0 the architecture is

equivalent to an OAA
architecture and for h 1 it

corresponds to the parallel
combination
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(c) Hierarchical combination The intervention of the

complementary classifiers depends on the result given

by the classifiers that compose the OAA architecture. In

other words, it establishes a hierarchical dependence

between the ensemble made up of binary classifiers

(OAA architecture) and the performance of the com-

plementary classifiers: If the OAA architecture is capable

of unequivocally classifying an example, the comple-

mentary classifiers will not be used. On the other hand,

examples ambiguously labeled by the OAA architecture

will be sent to the complementary classifiers.

From this perspective, the OAA architecture is consid-

ered capable of unequivocally classifying an example

when the yi (i [ {1, 2, …, k}) binary classifier outputs

satisfy the following relation:

9i=yi [ h1 and yj\h2 8 j 6¼ i ð3Þ

where h1 and h2 are different thresholds/h1 C h2.

Figure 5 shows that the best performance region is

defined for the threshold values h1 = 1 or h2 = 0. For

both cases, the hierarchical architecture is equivalent

to the parallel combination. Figure 6 illustrates the

binary-complementary integration schemes analyzed

in this work.

3 Empirical evaluation

3.1 Data and methods

The proposed system has been tested in two real domains:

Traffic sign recognition and Hand-written digit recognition.

In both domains, the patterns are images in PGM

(Portable Gray Map) format. The number of features

(pixels) used to describe each instance (image) is: 1,024

(32 9 32) for traffic signs and 784 (28 9 28) for hand-

(a) (b)

Fig. 5 Relation between h1 and h2 and the ensembles accuracy for a Traffic sign recognition and b Handwritten digit recognition. h1 1 and

h2 0 equivalent to parallel combination

(a)

(b) (c)

Fig. 6 Binary complementary

integration: a Parallel; b Serial;

c Hierarchical
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written digits. In order to analyze the viability and the

quality of the proposed system, its results will be compared

to those obtained by:

(a) A single neural network with one hidden layer and

k output nodes (k = number of classes in each

domain).

(b) A system of k Neural Networks modeled using an

OAA scheme.

(c) Bagging [25] with ANN as base classifiers. As a

means of determining the number of base classifiers

in this architecture, an attempt has been made to reach

a balance between Quinlan’s 10 replicas [26], Brei-

man’s 50 replicas [25] and the computational cost of

training a neural network. Based on this data, and

after an analysis of the relationship between the

number of classifiers and the error rate of the system,

carried out during some of the experiments, we finally

chose 20 as the best number of replicas. This is quite

close to the number of replicas proposed by Opitz and

Maclin [27] who assert that whenever Bagging is

implemented with Neural Networks, the largest error-

reduction rate occurs when using between 10 and 15

base classifiers. In order to make result comparable

[28], the average Eq. (2) will be used as combining

rule.

Therefore, both domains will be evaluated comparing

the proposed new model (using the parallel combination)

with three classification models: single NN, OAA archi-

tecture, and Bagging, all with feature selection. Addition-

ally, some results with these three models without feature

selection are included as a reference.

The feature selection processes have been carried out

considering solely the training examples and have been

performed using the Weka tool. Once the most relevant

feature subset is determined, it will be regarded as a spe-

cific idiosyncratic parameter of the corresponding classi-

fier. In order to achieve this objective among others, the

neural networks used in each model have been imple-

mented using a software simulator written in C?? and

developed by the authors of this paper.

In order to analyze the influence of the diversity of the

base classifiers on the ensemble accuracy, some well-

known measures of diversity [29, 30] will be computed.

Table 1 shows a summary of the used measures of diver-

sity, their types (pairwise or non-pairwise), and the theo-

retic relationship between diversity and accuracy of the

ensemble.

For all pairwise measures (plain disagreement, fail/non-

fail disagreement, the Q statistic, the correlation coefficient

and the kappa statistic), ensemble diversity is equal to the

averaged value over all pairs of classifiers:

Mav ¼
2

LðL� 1Þ
XL 1

i¼1

XL

k¼iþ1

Mi;k ð4Þ

In the following subsections, there is a description of the

evaluated domains, as well as a detailed explanation of the

characteristics of the distinct systems implemented and

the experimental results obtained in each of them.

3.2 Traffic sign recognition

The reason for our interest in this domain is the need to

build Advanced Driver Assistance Systems (ADAS), which

have, among other functions, the capacity to warn drivers

of potential dangers, avoid or induce the realization of

certain manoeuvres and limit driving speed. The need for

integration of the classification module into a ADSS

capable of operating in real time poses certain design

Table 1 Summary of the 6 measures of diversity used

Name Symbol Definition P :/;

Plain disagreement measure Plain 1
N

PN
n 1 DiffðCiðxnÞ;CjðxnÞÞ Y :

Fail/non fail disagreement measure Dis N01 þN10

N11 þN10 þN01 þN00
Y :

Q statistic Q N11N00�N01N10

N11N00 þN01N10
Y ;

Correlation coefficient q N11N00�N01N10

ðN11 þN10ÞðN01 þN00ÞðN11 þN01ÞðN10 þN00Þ
p Y ;

Kappa degree of agreement statistic j
Pk

i¼1
Nii

N �
Pk

i¼1

Ni�
N

N�i
Nð Þ

1�
Pk

i¼1

Ni�
N

N�i
Nð Þ

Y ;

Ambiguity Amb 1
LNK

PL
l 1

PN
n 1

PK
k 1 Is ðClðxkÞ kÞ Nn

k

L

� �2 N :

The arrow specifies whether diversity is greater if the measure is lower (;) or greater (:). ‘P’ stands for ‘Pairwise’ measures

N is the number of instances in the data set; L is the number of base classifiers; K is the number of classes; Nab is the number of instances in the

data set, classified correctly (a 1) or incorrectly (a 0) by the classifier i, and correctly (b 1) or incorrectly (b 0) by the classifier j; Nij is

the number of instances in the data set, recognized as class i by the first classifier and as class j by the second one; Ci(xn) is the class assigned by

classifier i to instance xn Nn
k is the number of base classifiers that assign instance n to class k; Is() is a truth predicate
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restrictions which make its construction difficult. For

example, in order to embed the designed software system

as a FPGA hardware implementation, the classification

algorithm must be based on neural networks with a limit of

200 nodes for each network.

This domain contains 900 images of prohibition traffic

signs distributed evenly among nine classes (Fig. 7): no

pedestrian entry, no left/right turn, no stopping or parking,

no passing and the signs limiting the speed to 20 40 50 60

and 100 km/h.

To create the data set, each image has been scaled to

32 9 32 pixels and saved in PGM format. This pre-

processing allows us to describe each pattern with a

1,033-component vector, in which the first 1,024 ele-

ments represent the grayscale values for each pixel, and

the last nine elements codify the corresponding sign

class.

To evaluate the accuracy of the implemented models

and determine if the differences among them are statisti-

cally significant, we have used a statistical test called

combined 5 9 2cv F-test [31]. This test is based on per-

forming five replications of twofold cross-validation. In

each replication, the available data are randomly parti-

tioned into two equal sized sets. Then, each learning

algorithm is trained on one data set and tested on the other.

If p
ðjÞ
i is the difference between the error rates of the two

classifiers on fold j of replication i and s2
i ¼

p
ð1Þ
i � pi

� �2

þ p
ð2Þ
i � pi

� �2

is the estimated variance on

replication i (pi ¼ p
ð1Þ
i þ p

ð2Þ
i

� �
=2), then, the statistic:

F - test ¼
P5

i¼1

P2
j¼1 p

ðjÞ
i

� �2

2
P5

i¼1 s2
i

ð5Þ

is approximately F distributed with 10 and 5 degrees of

freedom. Therefore, we reject the hypothesis that the two

classifiers have the same error rate with 0.95 confidence if

F-test is greater than 4.735.

Once the data sets that will be used in the experimental

part have been determined, the next step is to determine the

topology of classifiers that integrate each model. After

running several different experimental tests [32], we

decided to use neural networks in which the size of the

hidden layer depends on the amount of neurons present in

the input layer, that is, on the cardinality of the feature

space. Thus, the number of hidden neurons varies from 50

for a full feature space, to 30 for a downsized input space

through feature selection.

Table 2 shows the performance obtained by the proposed

new model compared with a single neural network, an OAA

architecture and Bagging when they are built using:

(a) The full feature space 1,024 features.

(b) The feature subsets obtained when applying CFS. For

both, Bagging and the neuronal network with nine

output nodes, the cardinality of these subsets is

129 ± 10. The number of features selected in the

construction of the binary and the complementary

classifiers associated with the different classes is

shown in Table 3.

If we apply the F-test (Table 5) on the results derived

from executing 5 9 2cv on each of the classification

models (Table 4), it can be deduced at a 0.95 significance

level that the proposed model is:

1. Statistically better than any of the other models with

feature selection (F-test is greater than 4.735 and the

new models accuracy is the highest).

2. Statistically equivalent to all those models which are

built using the full feature space (F-test \4.735).

For those systems with the best performance, Table 6

summarizes the ensembles classification time (on a

2.5 GHz Intel Xeon) and other main characteristics of the

base learners (training time, number and size). According

to these values, we can conclude that compared with tra-

ditional OAA and Bagging method, this new model

improves in size and running time. Compared with the

single full feature space ANN, the running time is slightly

higher, but it should be considered that the new model is

simulated serially. Considering its highly parallelizable

nature, the running time can be reduced by a factor

equivalent to the number of individual base modules.

In order to analyze the influence of diversity of the base

classifiers on the ensembles accuracy, several measures of

diversity are computed for Bagging (with and without

feature selection) and for the new proposed model (results

are shown in Table 7). It is interesting to note that mea-

sures where low values indicate high diversity (Q, q and j)

have high values, whereas measures where high values

indicate high diversity (plain, dis and amb) have low val-

ues. As reported in [33], this could be an indication of the

lack of any strong relationship between diversity measures

and ensemble accuracy in real-life classification problems.

Fig. 7 Examples for the nine different traffic sign classes
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Table 2 Performance of the evaluated models on the traffic sign classification problem

Original feature space Feature subspace selected by CFS

1 ANN (%) OAA (%) Bagging (%) 1 ANN (%) OAA (%) Bagging (%) New model (%)

C1 98.40 98.60 98.60 98.20 97.60 98.20 98.20

C2 98.60 99.80 99.40 98.20 98.80 98.60 99.40

C3 91.20 90.20 95.80 83.00 80.00 85.80 89.20

C4 93.20 93.20 93.80 93.20 87.80 93.00 94.80

C5 95.60 94.80 95.20 94.00 91.40 94.60 94.80

C6 75.80 77.40 75.80 67.60 58.60 70.00 75.40

C7 81.60 82.40 82.40 81.40 80.40 79.60 82.40

C8 87.80 89.40 88.80 88.20 87.20 91.00 90.80

C9 87.60 86.20 87.80 77.20 69.80 77.40 80.60

Total 89.98 90.22 90.84 86.78 83.51 87.58 89.51

The values for Ci indicate the true positive rate (recall) for class Ci examples. The values for Total indicate the models accuracy. The models on

the left have been built using the full feature space and the models on the right have been built using feature selection. Bold face type indicates

the best values in each category

Table 3 Number of selected

features in the construction of

the binary and the

complementary classifiers

In the first column appears the

label of each class

Class Road sign type Number of selected features

Binary classifier Complementary classifier

C1 No pedestrians 72 ± 8 119 ± 7

C2 No (left, right) turn ahead 71 ± 11 144 ± 9

C3 No stopping and no parking 67 ± 13 115 ± 9

C4 No passing 73 ± 11 118 ± 12

C5 60 km speed limit 91 ± 8 152 ± 12

C6 50 km speed limit 65 ± 12 126 ± 13

C7 40 km speed limit 81 ± 15 130 ± 9

C8 20 km speed limit 75 ± 15 140 ± 11

C9 100 km speed limit 65 ± 11 129 ± 8

Table 4 Errors committed by

each model shown fold wise

(450 examples per fold)

Fold 1 ANN 1024 1 ANN CFS OAA 1024 OAA CFS Bagging 1024 Bagging CFS New model

1 1 46 70 42 84 37 55 46

1 2 42 63 42 74 29 53 50

2 1 45 50 39 66 37 50 39

2 2 52 64 44 85 45 53 44

3 1 50 62 49 80 49 59 49

3 2 40 56 39 67 42 54 51

4 1 51 59 48 68 44 67 57

4 2 46 52 48 75 42 57 39

5 1 44 59 47 77 49 58 49

5 2 49 61 42 66 38 53 48

Mean 46.5 59.6 44 74.2 41.2 55.9 47.2

8



3.3 Hand-written digit recognition

The MNIST data collection (available at http://yann.lecun.

com/exdb/mnist/) was used to assess the system’s capacity

to recognize hand-written digits.

This data collection [34] has 60,000 training examples

and 10,000 test examples. Hand-written digits are repre-

sented as grayscale 28 9 28-pixel images and belong to 10

different classes (Fig. 8).

As in the previous case, the proposed system will be

compared to the following classification models:

(a) A single classifier

(b) An OAA architecture

(c) Bagging formed by 20 base classifiers.

All these models were implemented by using one hidden

layer neural networks with Back-propagation as learning

algorithm. On the other hand, the number of neurons present

in the input layer depends on whether CFS is applied or not.

Whenever no feature selection process is applied, the number

of input nodes is 784. On the other hand, if Bagging or the

single NN are combined with CFS the number of inputs is

218. Finally, the number of neurons in the binary classifiers

and in their corresponding complementary classifiers when

CFS is applied is shown on Table 8.

Due to the large amount of examples and input features,

the learning phase in this domain is very time-demanding.

Therefore, the number of neurons present in the hidden

layer has been previously established according to the

number of input and output neurons. Thus, when CFS is

applied, binary classifiers have 15 hidden neurons, whereas

multiclass classifiers have 50. On the other hand, when

working with the full feature space (784 features), binary

classifiers have 50 hidden neurons, whereas multiclass

classifiers have 100.

In this domain, the statistical comparison of the different

classification models will be done using the McNemar Test.

This test is considered to be less reliable than the F-test, but

it is also regarded as the best alternative whenever the

computational cost of the experiment does not allow a

cross-validation process.

The McNemar Test [35], as well as the F-test, enables a

comparison of two classifiers, fA and fB, when they are

trained and tested on the same data sets. It has the fol-

lowing formulation: If

n00 is the number of examples misclassified by both fA
and fB
n01 is the number of examples misclassified by fA but not

by fB
n10 is the number of examples misclassified by fB but not

by fA
n11 is the number of examples misclassified by neither fA
nor fB

Table 5 Performance comparison between two models M1 (horizontally) and M2 (vertically) through the variation of the combined 5 9 2cv F
test

1 ANN 1024 1 ANN CFS OAA 1024 OAA CFS Bagging 1024 Bagging CFS New model

1ANN 1024 X 23.62 (?) 1.30 (.) 13.81 (?) 1.99 (.) 6.44 ( ) 0.95 (.)

1ANN CFS X 11.66 ( ) 5.40 (?) 17.65 ( ) 2.99 (.) 4.80 ( )

OAA 1024 X 24.48 (?) 2.30 (.) 11.29 ( ) 0.85 (.)

OAA CFS X 47.50 ( ) 5.68 ( ) 6.09 ( )

Bagging 1024 X 14.77 (?) 1.50 (.)

Bagging CFS X 5.51 ( )

New model X

A (.) symbol indicates that M1 and M2 are statistically equivalent (F test B 4.71). A (?) symbol indicates that the M1 model significantly

outperforms model M2. A ( ) symbol indicates the contrary

Table 6 Ensembles classification time on a 2.5 GHz intel Xeon and details (training time, number, and size) of base learners. In the New model

the number of neurons and weights for both the binary and the complementary classifiers are shown

Classification time

(450 instances)

Training time

(500 cycles)

Number of

base learners

Input

units

Weights

(layer 1)

Hidden

units

Weights

(layer 2)

Output units

1 ANN (1024) 0m0.244 s 1m32.178 s 1 1,024 51,200 50 450 9

Bagging (1024) 0m1.288 s 1m32.178 s 20 1,024 51,200 50 450 9

OAA (1024) 0m0.684 s 1m31.818 s 9 1,024 51,200 50 50 1

New model 0m0.292 s 0m12.757 s 9 74 ± 13 2,226 ± 408 30 30 1

9 131 ± 15 3,921 ± 463 30 240 8
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then:

v2 ¼ n01 � n10j j � 1ð Þ2

n01 þ n10

ð6Þ

is a Chi-square statistic with one degree of freedom.

Therefore, if v2 B 3.84 is satisfied, then we can admit, with

a 0.05 significance level, that the classifiers have the same

percentage error.

Tables 9, 10, 11, 12, 13 sum up the experimental

results obtained when implementing the aforementioned

models.

The conclusion of the analysis of the values shown in

Tables 9 and 10 is that the performance of the proposed

new model is equivalent to those of Bagging and of the

OAA architecture when they work with the whole set of

features. As the decrease in the number of features defining

the examples entails a drastic reduction of the testing and

training time (Table 13), we can conclude that the pro-

posed system is as precise as Bagging and the OAA

architecture, but clearly much more efficient. Due to the

lower performance of the single full feature space ANN,

the evaluation of its running time is not appropriate.

According to the measures of diversity used in this study

(Table 11), the base classifiers that compose both Bagging

and the proposed model are not very diverse. Nevertheless,

Table 12 shows an accuracy improvement of the ensemble

in relation to the base classifiers.

4 Conclusions

In this paper, we have proposed a new classification

architecture that efficiently resolves problems where the

Table 7 Traffic sign

recognition. Diversity values for

each ensemble shown fold wise

(450 examples per fold)

Low values of Q, q and j
correspond to high diversity.
High values of plain, dis and

amb correspond to high
diversity. Bold face type

indicates the algorithm with the

highest diversity

Fold Model Plain Dis Q q j Amb

1 1 New model 0.177 0.136 0.883 0.503 0.800 0.018

Bagging 1024 0.178 0.135 0.880 0.498 0.799 0.019

Bagging BFCFS 0.162 0.129 0.902 0.550 0.817 0.017

1 2 New model 0.158 0.121 0.896 0.506 0.822 0.016

Bagging 1024 0.156 0.123 0.879 0.474 0.824 0.016

Bagging BFCFS 0.137 0.096 0.946 0.634 0.846 0.014

2 1 New model 0.170 0.119 0.902 0.525 0.808 0.017

Bagging 1024 0.162 0.116 0.901 0.519 0.817 0.017

Bagging BFCFS 0.138 0.098 0.937 0.598 0.844 0.015

2 2 New model 0.191 0.133 0.899 0.542 0.784 0.019

Bagging 1024 0.173 0.131 0.882 0.502 0.805 0.018

Bagging BFCFS 0.144 0.109 0.930 0.594 0.838 0.015

3 1 New model 0.157 0.106 0.933 0.601 0.823 0.015

Bagging 1024 0.169 0.122 0.907 0.549 0.810 0.018

Bagging BFCFS 0.143 0.100 0.947 0.646 0.838 0.015

3 2 New model 0.180 0.130 0.881 0.500 0.798 0.018

Bagging 1024 0.174 0.125 0.894 0.515 0.804 0.018

Bagging BFCFS 0.138 0.103 0.938 0.611 0.844 0.015

4 1 New model 0.164 0.116 0.916 0.557 0.815 0.016

Bagging 1024 0.176 0.131 0.888 0.510 0.802 0.019

Bagging BFCFS 0.146 0.106 0.940 0.627 0.835 0.015

4 2 New model 0.166 0.122 0.905 0.539 0.813 0.016

Bagging 1024 0.172 0.133 0.872 0.484 0.806 0.018

Bagging BFCFS 0.146 0.106 0.933 0.598 0.835 0.015

5 1 New model 0.175 0.129 0.894 0.525 0.802 0.017

Bagging 1024 0.174 0.129 0.894 0.524 0.804 0.018

Bagging BFCFS 0.156 0.119 0.918 0.574 0.824 0.016

5 2 New model 0.171 0.121 0.903 0.534 0.807 0.017

Bagging 1024 0.157 0.118 0.894 0.503 0.823 0.017

Bagging BFCFS 0.136 0.098 0.942 0.622 0.847 0.014

Fig. 8 Examples from the MNIST database
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examples belong to one of k classes (k [ 2) and are

described by a high number of features. This architecture

can be considered a classifier ensemble in which each

component is also an ensemble. The latter ensembles have

been called base modules and are composed of a binary

classifier and a multi-class classifier which we have des-

ignated as complementary classifier. Following Diette-

rich’s terminology, the diversity of the base modules is

obtained modifying the class label associated to each

example, varying the feature subspace used to generate the

ensemble members and injecting randomness into the

learning process (random weight setting in the Backprop-

agation algorithm for training neural networks).

Table 8 Number of selected features

Digit Number of selected features

Binary classifier Complementary classifier

0 70 192

1 118 206

2 97 210

3 104 203

4 77 210

5 47 208

6 73 185

7 71 200

8 84 203

9 87 219

In the first column appears the label of each class

Table 9 Accuracy on the test set (%) for the evaluated classification methods

Original feature space Feature subspace selected by CFS

1ANN

784 9 100 9 10

OAA

784 9 50 9 1

Bagging

784 9 100 9 10

1ANN

218 9 50 9 10

OAA

CFS 9 15 9 1

Bagging

218 9 50 9 10

New

model

C0 98.06 98.78 99.08 98.47 98.06 98.98 99.08

C1 98.85 99.12 98.85 98.50 98.50 98.68 98.77

C2 95.54 97.38 96.90 92.83 91.67 95.74 96.32

C3 95.05 97.33 97.82 93.86 92.57 95.84 97.33

C4 96.84 97.25 97.56 94.81 94.20 96.54 97.15

C5 95.18 95.96 96.52 91.82 86.88 94.73 96.08

C6 96.97 97.91 97.49 95.51 94.05 97.18 98.02

C7 95.91 96.50 96.50 94.16 92.22 95.62 96.79

C8 95.59 96.30 96.71 93.02 88.19 95.89 97.02

C9 95.24 95.44 95.44 91.58 92.07 94.85 94.75

Total 96.36 97.23 97.31 94.52 92.97 96.44 97.15

Table 10 Errors and values for the McNemar test

1ANN

784 9 100 9 10

1ANN

218 9 50 9 10

OAA

784 9 50 9 1

OAA

CFS 9 15 9 1

Bagging

784 9 100 9 10

Bagging

218 9 50 9 10

New

model

1ANN 784 9 100 9 10 364 220 172 228 202 209 187

1ANN 218 9 50 9 10 70.95 ( ) 548 192 287 208 272 226

OAA 784 9 50 9 1 24.90 (?) 165.31 (?) 277 192 175 191 174

OAA CFS 9 15 9 1 186.98 ( ) 35.03 ( ) 303.06 ( ) 703 211 250 225

Bagging 784 9 100 9 10 38.59 (?) 192.73 (?) 0.25 (.) 340.89 (?) 269 221 205

Bagging 218 9 50 9 10 0.16 (.) 101.34 (?) 24.24 ( ) 214.16 (?) 40.42 ( ) 356 250

New model 22.12 (?) 180.17 (?) 0.23 (.) 323.21 (?) 1.56 (.) 34.75 (?) 285

The values of the diagonal (shown in bold) correspond to the errors committed by each model. Values above the diagonal show the common

errors for two experiments (n00). Values under the diagonal represent the values obtained with Eq. (6). A (?) symbol indicates that model M1

(horizontally) significantly outperforms model M2 (vertically), a ( ) symbol indicates the contrary. A (.) symbol stands for equivalent models

Table 11 Diversity values for bagging (with and without feature

selection) and for the new model

Model Plain Dis Q q j Amb

New model 0.059 0.049 0.952 0.491 0.934 0.005

Bagging 1024 0.045 0.037 0.968 0.531 0.950 0.004

Bagging BFCFS 0.060 0.049 0.957 0.523 0.933 0.006

Bold face type indicates the algorithm with the highest diversity
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Furthermore, it can be concluded that, unlike other models,

the proposed architecture uses three of the five techniques

(Bayesian Voting, Manipulating the Training Examples,

Manipulating the Input Features, Manipulating the Output

Targets and Injecting Randomness) suggested by Dietterich

to guarantee the diversity of the ensemble.

In this new architecture, the feature selection process is

carried out using a supervised method, which is indepen-

dent of the learning algorithm (filtering method) used in the

classifier construction. In other words, the feature set

chosen in each case depends on what examples are used in

training and on the label class associated with each of

them, but not on the learning algorithm inherent to each

classifier.

Another advantage of this system compared to other

models like Bagging, is that the number of classifiers

integrating the ensemble is predetermined. That is, the

proposed model avoids one of the main drawbacks that the

design of a large number of classifier ensembles presents:

determining the number of base classifiers optimizing the

set [36 39]. On the other hand, and contrary to other

models like Boosting [40], the independence of the clas-

sifiers that make up the ensemble allows the classifiers to

be constructed simultaneously on distributed computers,

shortening the total training time.

The experimental results indicate that our model’s

accuracy is comparable to the one obtained with other

classic classification methods (a single Neural Network,

Bagging and OAA). However, the drastic decrease in the

number of features that describe the examples improves

our model with regard to size, computational complexity,

and running time. These improvements make the presented

model not only a good proposal from the software point of

view, but it can also be considered a good alternative to the

construction of real time working systems implementing

the classifiers with FPGA’s [11].

In the future, we intend to evaluate the quality of the

system in other domains and analyze the dependence

between the proposed model and the algorithm used in

the construction of the classifiers integrating the

ensemble.
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