
Fuzzy min-max neural networks for categorical data: 
application to missing data imputation 

Pilar Rey-del-Castillo • Jesús Cardeñosa 

Abstract The fuzzy min-max neural network classifier is 
a supervised learning method. This classifier takes the 
hybrid neural networks and fuzzy systems approach. All 
input variables in the network are required to correspond to 
continuously valued variables, and this can be a significant 
constraint in many real-world situations where there are not 
only quantitative but also categorical data. The usual way 
of dealing with this type of variables is to replace the 
categorical by numerical values and treat them as if they 
were continuously valued. But this method, implicitly 
defines a possibly unsuitable metric for the categories. 
A number of different procedures have been proposed to 
tackle the problem. In this article, we present a new 
method. The procedure extends the fuzzy min-max neural 
network input to categorical variables by introducing new 
fuzzy sets, a new operation, and a new architecture. This 
provides for greater flexibility and wider application. The 
proposed method is then applied to missing data imputation 
in voting intention polls. The micro data—the set of the 
respondents' individual answers to the questions—of this 
type of poll are especially suited for evaluating the method 
since they include a large number of numerical and cate­
gorical attributes. 

Keywords Classification • Fuzzy systems • 
Fuzzy min-max neural networks • Imputation • 
Missing data 

1 Introduction 

Missing information in datasets is a by no means uncom­
mon scenario [1—4]. A frequently used procedure to deal 
with this problem in opinion polls is to replace each 
missing variable value with an estimated value or impu­
tation obtained from the values of other variables in the 
same item [5, 6]. 

On the other hand, classification is one of the tasks 
involved in a data mining process. Classification can be 
defined as a procedure in which individual items are placed 
into groups or categories based on quantitative information 
on one or more characteristics inherent to the items 
(referred to as variables, characters, features, etc.,) and 
based on a training set of previously labeled items. Because 
of the appeal of simple rules that are easy to construct, 
fuzzy control systems have been used for the purpose of 
classification from the earliest days of fuzzy logic [7, 8]. 
These systems usually generate a rule for each classifica­
tion category, specifying the rule's antecedent from fuzzy 
sets defined over the input variables set. The rules are easy 
to specify when there are not many categories, but this gets 
harder as the number grows. To overcome this problem, 
some hybrid approaches have been proposed to ease the 
learning of the fuzzy rules [9, 10]. These hybrid procedures 
are mainly based on the combination of fuzzy set theory 
with other methodologies, like evolutionary algorithms and 
neural networks. Neuro-fuzzy computation is one of the 
most popular hybridizations in the artificial intelligence 
literature [11-14], because it combines the merits of the 



neural and fuzzy approaches. It has the generic benefits of 
neural networks—like massive parallelism and robust­
ness—and, at the same time, uses fuzzy logic to model 
vague or qualitative knowledge and convey uncertainty 
[15]. 

The fuzzy min-max neural network classifier is a 
supervised learning method that takes the hybrid neural 
networks and fuzzy systems approach. The original fuzzy 
min-max neural networks model was developed by 
Simpson [16, 17], and was modified and improved in a 
later version [18, 19]. This version offers a new approach 
to dealing with missing input variables data. A number of 
modifications have also been put forward aimed at 
improving the fuzzy membership definition [20], and the 
effectiveness of some of the learning process steps [21-23]. 

A characteristic of the fuzzy min-max neural network 
classifier is that all the input variables for learning and 
classification are required to correspond to numerical, 
continuously valued variables. One typical way of dealing 
with this problem when there are categorical variables, is to 
replace the categorical by numerical values and treat them 
as if they were continuously valued. But this procedure 
implicitly defines a metric for the categories, which may 
not be suitable [24]. This suggests that a different proce­
dure for dealing with categorical variables must be used. 

In this article, we present a method that extends the 
fuzzy min-max neural network classifier input to categor­
ical variables by introducing new fuzzy sets, a new oper­
ation, and a new architecture. This new procedure provides 
for greater flexibility and wider application, and also 
straightforwardly extends the treatment of the missing 
values in the input variables. 

To test the proposed method, it will be used to tackle the 
problem of missing data. Specifically, it will be applied to 
non-response imputation in opinion polls. The micro data 
(the set of the respondents' individual answers to the 
questions) of this type of poll are especially suited for 
evaluating the method, since they include a large number 
of numerical and categorical attributes. To perform cate­
gorical variables imputation, every category or value of the 
variable to be imputed will be associated with a classifier 
class, and the estimation for a missing data input consists 
of the classification category [25]. 

The article is organized as follows. Section 2 gives a 
brief review of the architecture and operation of fuzzy 
min-max neural networks as a starting point for the new 
classifier. Section 3 describes the new fuzzy sets-based 
method used to define new networks and their architecture 
and operation. Section 4 shows the context of the impu­
tation problem to be solved with the new method and 
presents the experimental results. Some conclusions are 
presented in Sect. 5. The results are also compared with the 
outcomes of applying traditional methods to the same data 

sets, resulting in some improvements as shown in the 
outlined experiment. 

2 Fuzzy min-max neural network classifier 

The original fuzzy min-max neural networks algorithm 
was introduced for the first time in two articles by Simpson 
[16, 17]. It is a classification method that separates the joint 
input variables space into classes of any size and shape 
with nonlinear boundaries. Here, we outline a later version 
that includes some improvements [18, 19]. 

2.1 Classification model 

The w input variables must be numerical, and the output is a 
label or category of the discrete set of the categorical 
variable values. A hyperbox in Rn is a Cartesian product of 
closed intervals on the real line and is completely defined 
by its minimum and maximum points, as shown in the 
three-dimensional example in Fig. 1. Although it is possi­
ble to use hyperboxes with an arbitrary range of values in 
any dimension, min-max networks only use values that 
range from 0 to 1. 

The operation is based on the hyperbox fuzzy sets 
defined in the «-dimensional pattern space. Thus, the input 
space is the «-dimensional unit cube In = [0, 1] x [0, 1] 
x • • • x [0, 1]. The hyperbox fuzzy set Bj is defined by the 
ordered set 

Bj = {x, Vj, wj; bj (x, Vj, Wj) }, Vx e Ia (1) 

where Vj = (v,i, ..., Vjn) is the hyperbox minimum, Wj = 
(wji, ..., Wjn) is the maximum, and bj(x, Vj, Wj) is the 
membership function, where all patterns within the 
hyperbox have full-class membership. 

Figure 2 shows an example of how the hyperboxes are 
aggregated to form nonlinear boundaries in a two-class R2 

classification problem. 
Pattern classification works in this type of networks by 

passing an input pattern through each characteristic func­
tion defining each class, and assigning the class with the 

Fig. 1 Hyperbox in R3 defined from its min and max points 



Class one 

L— r r h | | I | _ L J J 
^ — - W — ' 1 C lass t w o 

Fig. 2 Fuzzy min-max hyperboxes along the boundary of a two-class 
problem 

largest value for these functions. Consequently, the first 
step for classifying an input pattern using the min-max 
neural networks classifier is to calculate its membership 
function of each class as the maximum of its membership 
functions of each of the hyperboxes defining this class (the 
maximum is the selected fuzzy union operator). The next 
step is to classify the point as the category corresponding to 
the class with the highest degree of membership. 

One of Gabrys and Bargiela's improvements [18, 19], 
was to allow input patterns that are hyperboxes and not just 
numerical points. In this case, each input is specified by a 
vector Xh, h = 1, 2, ..., M, where Xj, = [xj,, xj}] is the 
Mi input hyperbox defined by its minimum vector x^ = 
(XM> XL> • • •> An) a n d i t s maximum vector x¡J=(x^1; 

x^2, • •., Xfej). When x[j and x¡J are equal, the hyperbox 
shrinks to a point. The membership function of the 
hyperbox fuzzy set Bj for an input xh is defined as 

bj(xh) = min {min[(l - g(xu
hi - Wji, y)), 

i=i, ...,n 

(i-g(vfi-Ai,y))]} (2) 

where y is a parameter regulating how fast the membership 
function decreases and g is the ramp-threshold function of 
two parameters: 

( 1 if x.y > 1 
x.y i fO<x .y< l (3) 

0 ifx.y<0 
The membership function measures the degree to which 

the input pattern xh falls inside of the Bj hyperbox fuzzy 
set. It takes the value 1—full membership—within the 
hyperbox and decays to zero as xh moves away from the 
hyperbox. A two-dimensional example is shown in Fig. 3 
for the hyperbox fuzzy set defined by the minimum 
Vj — (0.4, 0.2), the maximum w¡ = (0.8, 0.4), and the 
parameter y — 3. 

The hyperboxes are incrementally trained by appropri­
ately adjusting their number and volumes in a neural net­
works framework. This accounts for the name of fuzzy 

Fig. 3 Membership function of the hyperbox in I2 defined by the 
minimum v¡ = (0.4, 0.2), the maximum w¡ = (0.8, 0.4), and the 
parameter y = 3 

min-max neural networks. The network architecture and 
learning are described next. 

3 Network architecture 

Figure 4 shows the three-layer feedforward neural network 
implementing Gabrys and Bargiela's fuzzy min-max neu­
ral classifier. Its topology grows adaptively to meet the 
problem requirements. The input layer has 2w nodes, two 
for each of the n input vector dimensions corresponding to 
the input hyperbox minimums (xl

hi) and maximums (x^). 
Each intermediate layer node represents a hyperbox fuzzy 
set, where the connections with the input layer are the 
hyperbox fuzzy set minimum (y,,) and maximum (w,,) 
points, and the activation function is the hyperbox mem­
bership function (2). 

Figure 5 shows the j'th node of the intermediate layer in 
more detail. The connections between the second-layer and 
third-layer nodes are binary values, whose expression is 

_ J 1 if Bj is a hyperbox for class C¿ ,.-, 
Ujk \0 otherwise ^ ' 

where Bj is the j'th intermediate layer node and C¿ is the Mh 
output layer node. The result of this last node represents the 
membership degree of input xh to class k. The activation 
function for each output layer node is the fuzzy union of 
the hyperbox membership functions according to the 
expression c¿ = max. x m bj • Ujt. The classifier result for 
xh is the class k with the greatest ck value. The values for 
the connections are adjusted using the learning algorithm 
described next. 



Fig. 4 Three-layer neural network implementing the fuzzy min-max 
neural network classifier 

Fig. 5 Implementation of the y'th node of the intermediate layer 

3.1 Learning algorithm 

Following Gabrys and Bargiela [18], the learning set con­
sists of M ordered pairs 

{xh,dh}, h=l,...,M (5) 

where Xh = [xj,, xjj] is the Mi input defined by its mini­
mum xj, = (4 1 ; 4 2 , .. , xl

hn) and maximum x¡J = (*»j, 
x%2, ..., x^n) points, and ¿4 € {1, 2, ..., p} is the index of 
one of the p classes. The fuzzy min-max neural networks 
learning algorithm is a three-step expansion-contraction 
process: 

1. Search for the closest expandable hyperbox (if neces­
sary) and expand 

2. Test for hyperbox overlap 
3. Contract hyperbox 

and it is repeated for each training input point. The process 
begins with the input of an ordered pair, searching the 
hyperbox with the highest membership degree that belongs 
to the same class and includes or allows expansion to 
include xh. If none of the hyperboxes satisfies the 
conditions, then a new hyperbox Bk for the input is created, 
adjusted, added to the neural network, and labeled by 
making class(fi^) — dh. 

The hyperbox is expanded by setting 

^ w = min (^ d , 4 ) , i=l,...,n (6) 

w°ew = max(w° ld,4 I.), i=l,...,n (7) 

and is constrained by a user-defined parameter 9, (0 < 
9< 1), where |w,-,- — v,,| <6, V7 = 1, ..., n. The expan­
sion can lead to an overlap between hyperboxes. This is not 
a problem when the overlap is between hyperboxes rep­
resenting the same class. But when the overlap is between 
hyperboxes of different classes, it may mean that one input 
pattern belongs to two or more classes. So, when there is an 
overlap of this type, it is solved using a contraction process, 
following the principle of minimal adjustment where only 
the smallest overlap for one dimension is adjusted. The 
contraction process only eliminates the overlap between 
portions of the hyperbox fuzzy sets from separate classes 
that have full membership, allowing non-unit-valued por­
tions of each of the hyperbox fuzzy sets to overlap. The 
boundaries between two classes are just the points with 
equal membership degree for both classes. 

This learning process forms classes that are non-linearly 
separable. The existing classes can be refined over time and 
new classes can be added without retraining, thereby 
reducing total training time. 

Concerning the issue of algorithm convergence, work by 
Zang et al. [26] is worth mentioning. They developed a rule 
for the min-max neural networks training and proved 
theoretically that converged using stochastic theory. 

3.2 Numerical missing values treatment 

A possible use of the min-max neural networks classifier is 
to perform imputation for categorical missing values as 
will be shown in Sect. 4. How the classifier deals with the 
missing values in the quantitative input variables is another 
question. 

Thanks to the possibility of using hyperboxes as inputs 
[18, 19], missing values are easy to deal with: The missing 
features are represented as real-valued intervals spanning 



the whole range of possible values. The procedure designed 
for learning and classification is to assign the minimum 
x?hi = 1 and the maximum x^¡ = 0 to the ¿th numerical 
missing variable. Applying this strategy, the lower limit of 
the missing variable will never be less than v,¡ and the 
upper limit will never be greater than w,,, ensuring that the 
neural network structure will not have to be changed when 
processing inputs with missing values. It also has the 
advantage that when some limits for a missing feature are 
known, they can be used straightforwardly to contribute to 
the membership function. 

According to Song and Shepperd's [27] missing data 
techniques taxonomy, this is a toleration technique because 
it does not impute missing data but works directly with data 
sets containing missing values. According to the same 
taxonomy, the proposed fuzzy min-max neural network 
algorithm that will be used in Sect. 4 is an imputation 
technique because it estimates each missing value. 

4 New model with input of categorical variables 

In contrast to the original fuzzy min-max neural networks 
classifier, the procedure proposed in this paper considers 
categorical as well as numerical variables as input. The 
problem with the categorical variable input is that there is 
no measure of distance between the different values or 
categories of the variables. This prevents the definition of 
hyperbox fuzzy sets membership functions. 

The new method starts by defining such a distance to 
solve this problem. The following sections describe the 
proposed procedure according to the same framework as 
used in Gabrys and Bargiela's model. The basic process is 
divided into several stages: 

1. Define distances between categories 
2. Define hyperbox fuzzy sets in categorical variables 
3. Extend network architecture and operation 
4. Extend missing data treatment. 

4.1 Defining distances between categories 

To define a distance between the categories of a categorical 
variable, we will consider the relation of this variable to the 
classification variable, which must also be categorical. To 
illustrate this idea, Table 1 shows an example of a two-
dimensional frequency table for the categorical variables 
region and employment situation. 

Table 2 is calculated from Table 1 by just dividing the 
value of each cell by its row total. The vector {q\, ..., qp) 
in each row of Table 2 contains the response rates for the 
employment situation categories in this region, referred to 
as the region's employment situation profile. 

Table 1 Frequency table for region and employment situation 
variables 

Region Employment situation 

Retired 

87 

428 

27 

543 

227 

1,312 

Others 

152 

249 

48 

703 

136 

1,288 

North 

West 

Center 

East 

South 

Total 

360 

548 

132 

811 

264 

2,115 

52 

321 

16 

723 

178 

1,290 

Table 2 Region's employment situation profiles 

Region Employment situation 

North 

West 

Center 

East 

South 

Total 

Employed 

0.55 

0.35 

0.59 

0.29 

0.33 

0.35 

Unemployed 

0.08 

0.21 

0.07 

0.26 

0.22 

0.21 

Retired 

0.13 

0.28 

0.12 

0.2 

0.28 

0.22 

Others 

0.23 

0.16 

0.22 

0.25 

0.17 

0.21 

To define distances between regions, we examine their 
profiles, i.e., the North and Center regions have similar 
profiles (0.55, 0.08, 0.13, 0.23) and (0.59, 0.07, 0.12, 0.22), 
respectively. This means that the employment situation is 
similarly distributed across the categories in these regions. 
The profiles for the West and South regions are also similar, 
albeit different from the North and Center regions, whereas 
the East region is very different to the others. It could be 
said that, regarding the employment situation, the North 
and Center regions are closer to each other than to all the 
others; the West and South are also close, and so on. 

The category profiles are points of the ^-dimensional 
space Rp belonging to the hyperplane defined by 
q\ + • • • + qp = 1 • The distances between the profiles in 
this space can be used to define the distances between the 
categories. In this paper, we consider two distances: 

Euclidean distance: d\(ai,a.j} = * / YJ (pik — Pjk) (8) 
V k=\ 

p 

Logarithmic distance: d2(a¡, aj) = \^ |log/?,i — log^,i| 
k=\ 

(9) 

where a¡, a¡ are the categories and (pa), (pjk), k=l, 
..., p, are the corresponding profiles. As the proportions 
forming the profiles take values between 0 and 1, we 
consider the logarithmic distance in an attempt to prevent 



proportionally short distances between high values from 
overdominating the calculations. To standardize and use 
the distances in the context of fuzzy set membership 
functions, they are also divided by their maximum: 

, . dk(ai,aj) 
ck{ai,aj)= \ ' k=l,2 (10) 

max ¿4 (a,-, ay J 

This idea of distance between profiles appears well suited for 
classification purposes, because it takes into account the 
relation between each categorical variable to be measured 
and the classification variable. Correspondence analysis [28], 
for example, also exploits the same distance. Its use in a 
fuzzy min-max neural networks classifier is discussed next. 

4.2 Defining hyperbox fuzzy sets in categorical 
variables 

The next step after defining the distances between cate­
gories is to define the hyperbox fuzzy sets in the categorical 
dimensions. 

This is not a straightforward step because, unlike 
numerical values, the categories or values of the categori­
cal variable form a discrete rather than a dense set. This 
makes hyperboxes harder to create, update and modify. To 
do this, each hyperbox fuzzy set in the ¿th categorical 
dimension is defined by two categories e,-, and/J-, with a full 
membership function (equal to 1) similar to the two 
points—minimum and maximum—determining the hy­
perbox in the numerical dimensions. In any other category 
aki, this ¿th dimension membership function takes the value 

bji (ahi) = min (1 - c (ahi, eji), 1 - c (ahi, fy)) (11) 

where function c refers to any of the normalized distances 
previously defined in (10), and the size of the hyperbox in 
each dimension is limited by a user-defined parameter 
V, (0 < V < 1), where c(e7I-,/),•) < r\. 

Figure 6 is an example of the symmetric distance 
function c(ak, aj) between the five categories of a variable 
and the membership function bj(ak) obtained from the 
distance for the j'th hyperbox that is determined by the two 
full-membership categories e¡ — 03 andjy — 05. 

When there are numerical and categorical variables, the 
Bj hyperbox membership function—of all the dimen­
sions—is defined by 

bj(xh,ah) 

= m h J min [mm(l-g(4i-wji,y),l-g(vji-x
l
hi,y))], 

I 1=1,...,n 

min [min(l -Ci(au,eji), I-Ci(au,fji))]\ (12) 
/=íi+l,...,íi+r J 

where n is the number of numerical variables and r is the 
number of categorical variables; g is the ramp-threshold 

function defined in (3); c¡, i = n + 1, . . . , « + r, are the 
normalized distances defined in (10) for the categorical 
dimensions; Xj, = [xj, xj}] is the numerical input defined by 
its vectors of minimum (j¿h¡) and maximum (JC¿¿) points; 
3h = (flfej+i, • • -, atin+r) is the categorical input vector; v7-¡ 
is the minimum and w7¡- is the maximum of the j'th hyperbox 
in the ¿th numerical dimension, ¿ = 1, . . . , « ; and e^fy are 
the two categories defining hyperbox Bj in the ¿th cate­
gorical dimension, ¿ = n+ 1, . . . ,« + r. 

Note that the defined distance is suitable for categorical 
inputs with a lot of categories. When the categorical inputs 
are binary, the resulting distance will be the trivial: 

/ \ f 1 if ¿ ^ j , i,j = 1 , 2 , . 
c(ahi,ahj) = ̂ Q . f . ^ < ^ = h 2 (13) 

When defining the hyperbox fuzzy sets for categorical 
variables, we also studied the use of other numbers of 
categories, especially just one, to determine the hyperbox 
fuzzy sets. But, we chose the number of two categories 
because it is similar to the numerical case with the 
maximum and minimum points, and also makes the 
hyperboxes in the categorical dimensions easier to update 
and refine during the learning step. 

4.3 Extended network architecture and operation 

The above membership function treats the categorical 
variables in a similar manner to how it processes numerical 
variables, where the inputs are categories in the first case 
and numerical hyperboxes in the second: the distances c¡ 
play the role of functions g and they are combined by the 
same fuzzy operators. This straightforwardly extends neu­
ral network operation. Figure 7 shows the new network 
architecture including both types of variables, and Fig. 8 is 
the detail of an intermediate layer node. 

The most important difference from Gabrys and Bargi-
ela's network is the input layer, where, apart from the 
2M numerical variable nodes, there are r additional nodes 
for the input categories, each having two connections 
with the second-layer nodes—one for each category e,,, fj¡ 
defining the Bj hyperbox. 

As in the original network, the second layer maintains a 
node for each hyperbox. But, these are different hyperboxes 
because they now have categorical as well as numerical 
dimensions. The activation function of this second-layer is 
the membership function defined in (12). Its connections 
with the first layer are the 2(w + r) defined above. Apart from 
the 2M connections for the numerical features (the same Bj 
hyperbox minimums v7-¡ and maximums w,,-, ¿ = 1, ..., n), 
there are the new 2r connections for the categorical dimen­
sions, that is, the two categories e7¡ and fy defining the Bj 
hyperbox in dimension i, i = n+ 1, . . . ,« + r. 



Fig. 6 The symmetric distance 
function between categories 
c(ak, a¡) and the derived 
membership function b¡ (ak) of 
the hyperbox defined by 
categories e¡ = a3 and/J = a5 

c(ak,a¡) 

W 

Input 
nodes 

Hyperbox 
nodes 

Class 
nodes 

Fig. 7 Topology of the fuzzy min-max neural network implementing 
the new classifier 

Finally, like the original network, the third layer has a 
node for each one of the variable classification categories, 
and its connections with the intermediate layer are the 
same Ujk as defined in (4). 

Learning in this three-layer feedforward neural network 
consists of creating and expanding or contracting hyper­
boxes. Its objective is to establish the connections v7-¡, Wp, 
eji and fj¡, that is, the hyperboxes defining each class. The 
first step—taken only once—is to calculate the distances 
between the categories of categorical variables and the 
resulting membership function, as described above. 

This is followed by the iterative process to set and 
update the connection values. This process is repeated for 
each input and has the same steps as the original network. 

Fig. 8 Detail of the nodes connected with the y'th node of the 
intermediate layer 

In fact, the procedures are exactly the same for the 
numerical dimensions and try to perform similar functions 
for the categorical dimensions. The new method proposed 
for the categorical dimensions results in a more compli­
cated algorithm because of the difficulties in dealing with 
the finite number of categories and the more complex 
architectural design. 

1. Initialization. When a new hyperbox Bj needs to be 
created for numerical dimensions, its minimum and 
maximum points are initially set—as in Gabrys and 
Bargiela's original network—to 
Vji = 1 and Wji = 0, Mi = 1, ..., n (14) 

Applying this strategy, when the j'th hyperbox is 
adjusted for the first time using the input 



Xh = (} hi' •' Ahn' Ahl' Xfrn), the minimum and 

maximum points of this hyperbox would be 

Vji=4i a n d wfi=4i (15) 

The categorical dimensions are also initialized so that 
the expansion step can automatically use the hyperbox 
adjustment process. To do this, the new category a,o is 
introduced in each ¿th categorical variable, 
i = n + 1, . . . , n + r, and each distance function 
definition is extended as 

c(ai0, aik) = c(aik, ai0) = 0, 
V¿ = n + 1 n + r, Vfe 

(16) 

In this way, the two categories initializing hyperbox Bj 

are 

e¡j = aio and f¡¡ = ai0, V¿ = n + 1, 

(17) 

These values are later adjusted when the hyperbox is 
expanded for the first time. The role of the new 
category ai0 is just to improve the network operation, 
and it does not modify the aim of the learning and 
classification steps in any way. 

2. Search for the expandable hyperbox with the highest 

membership degree, and expand. A network input now 

takes the form 

{xh, ah, 4 } (18) 

where Xh = (x[ hi' 
-yX -yXt 

•' Ahn' Ahl' **»)> Ai a r e t h e 

minimums and x%¡ are the maximums of the input 
hyperboxes in dimension i, i = 1, . . . , « ; ah = (flta+i, 
. . . , cihn+r) are the input categories in dimension i, i = 

n + 1, . . . , n + r, and ¿4 € {1, 2, . . . , p} is the index 
of one of the p classes. When the hth input pattern is 
presented, it searches the hyperbox Bj with the highest 
membership degree defined by (12). The first test run is 
to check whether the detected hyperbox and the input 
are members of the same class (dj — dhl). If not, it will 
search the hyperbox with the next highest membership 
degree. Once a hyperbox Bj from the same class of the 
input has been found, it must satisfy a number of 
different numerical and categorical data criteria before 
it can expand to include the input. For the numerical 
dimensions, it must meet the same condition as the 
original network: 

(max(w,¿, xu
u) - mm(vji, xlJ) <6, V/ = 1, 

(19) 

where 9, (0 < 9 < 1) is the user-defined parameter for 
the maximum size of the hyperbox in the numerical 
dimensions.As for the expansion of the categorical 

dimensions, there are different cases depending on the 
values of the two categories defining the hyperbox in 
each dimension. 

Case 1: if the input value in a categorical dimension ahi 

matches one of the values of the categories e,-, or/^, 
there is no need for expansion in this dimension. 

Case 2: when ep — a¡o and^,- — a¡o, that is, neither of the 
two categories are preset, the hyperbox can be 
expanded without further testing. 

Case 3: when e,,- ^ ai0 and^,- — ai0, that is, when only 
one of the two categories defining the hyperbox 
is preset in the /th categorical dimension, the 
following criterion must be satisfied 
c(efl, ahi) <t] (20) 

before the hyperbox can expand, r\ being the 
user-defined parameter for the maximum size of 
the hyperbox in the categorical dimensions 
( 0 < J / < 1 ) . 

Case 4: when e7-¡ ^ a¡o, fp ¥= fl;o and the input category 
for the ¿th dimension ahi is not equal to either e,, 
or fp, first check whether replacing either of the 
two categories e,, or fp defining the hyperbox 
with the input category ahi would increase the 
hyperbox size in this ¿th dimension. If so, later 
test criterion (20) defining the maximum size of 
the resulting hyperbox. 

After verifying the criteria for the numerical and cate­
gorical dimensions, the expandable hyperbox fi, is adjusted 
to include the input by setting the numerical dimensions 

1, 

^T = min U¡d,xi 

w¡¡ 

(21) 

max( *#" ,*£ . (22) 

and setting the categorical dimensions i = n+ 1, ..., n 

as 

Case 1 
Case 2: 
Case 3 

ai0 and fjt 

Case 4: 

ai0 => eji — ahi 

ep =£ ai0 and fp — ai0 =>- ffi — ahi 

eft ^ ai0 and fp =£ ai0 and c(ejh ahi) 

> cifiji, fp) ^> fp — ahi 

eft ^ ai0 and fp =£ ai0 and c(ahi, fp) 

> c(ep, fp) => ep — ahi 

If neither of the existing hyperboxes include or can 
expand to include the input, then a new hyperbox fi, is 
initialized, adjusted, and labeled by setting 

class (Bj) = dh (23) 

3. Overlapping hyperboxes test. All the numerical 
and categorical dimensions must be checked for a 



non-empty overlap between full-membership portions 
of hyperboxes representing different classes, in order 
to prevent an input pattern from being classified in two 
or more different classes at the same time. Hyperboxes 
with only one non-overlapping dimension—numerical 
or categorical—would pass the test. 

4. Hyperboxes contraction according to the test result. 
Only if the overlap test result is positive, that is, 
when there is a non-empty overlap in all the 
numerical and categorical dimensions, are the hyper­
boxes contracted, following the minimum change 
principle, in a single dimension starting with the 
categorical dimensions. We try to change the over­
lapping category of the existing hyperbox for another 
one reducing the hyperbox size, that is, another 
category closer to the remaining category defining the 
hyperbox, in one of these dimensions. If this is 
possible, it is replaced—eliminating the overlap— 
and, if not, we try to contract in another dimension (it 
might not always be feasible to contract hyperboxes 
in this way in a given categorical dimension). When 
there are no more categorical dimensions left, we 
move on to the numerical dimensions. Contraction is 
always possible in numerical dimensions, and it is 
performed as defined for the original network, 
distributing the overlapping space between the two 
hyperboxes [18]. 

This learning algorithm is guaranteed to convergence 
because the extension designed for the categorical inputs is 
based on the previously defined metric between a finite 
number of categories. 

Finally, the new network operates similarly to its pre­
decessor in terms of classification: it is assigned the cate­
gory corresponding to the class with the highest 
membership degree. 

Let us look at a simple example based on data from 
Table 2, to illustrate this procedure. The region is the 
categorical input variable, whereas X — age/100 is the 
numerical input variable and employment situation is 
the categorical variable to be imputed. First, we calculate 
the Euclidean distances between the R row profile vectors 
in Table 2, and then we divide by the greatest of these 
distances to get the distances between regions listed in 
Table 3. 

Now, suppose that result of the above learning steps 
are the three hyperboxes shown in Table 4 defining three 
different classes: 

Then, we calculate the three hyperbox membership 
degrees of the input case z — (0.50, West) to be imputed: 

bm{z) = min{l, min[l - 0.794943, 1 - 0.893085]} 

= min{l, 0.106915} = 0.106915 

bm{z) = min{l, min[l - 0.392967, 1 - 0.794943]} 

= min{l, 0.205057} = 0.205057 

bm{z) = min{0, min[l - 0.893085, 1 - 0.000000]} 

= min{0, 0.106915} = 0.000000 

As hyperbox HI defines the class with the highest 
membership degree, the category Unemployed is assigned 
to the z input case. 

4.4 Categorical missing values treatment 

Numerical missing data inputs are treated in the same way 
as proposed by Gabrys [19]. We also define a toleration 
technique [26] for the inputs with categorical missing 
values. This technique works directly with data sets con­
taining missing data without making imputations as 
follows. 

Categorical values could be missing at two different 
stages of the designed operation. First, they could be 
missing when calculating frequencies and distances 
between categorical variable categories. In this case, the 
calculations would be made using exclusively non-missing 
data, as is usual practice in most statistical software 
packages. Secondly, categorical data required to set and 
update the connections could also be missing during the 
iterative process. The method for dealing with this is also 
designed to use the other variables with non-missing data 
as though there were no missing attributes for this input. 

Table 3 Distances between regions 

North 

West 

Center 

East 

South 

North 

0.000000 

0.794943 

0.119344 

0.888457 

0.839879 

West 

0.794943 

0.000000 

0.893085 

0.392967 

0.067065 

Center 

0.119344 

0.893085 

0.000000 

1.000000 

0.941306 

East 

0.888457 

0.392967 

1.000000 

0.000000 

0.346324 

South 

0.839879 

0.067065 

0.941306 

0.346324 

0.000000 

Table 4 Example of hyperboxes created after the learning 

Hyperbox X input 

HI 

H2 

H3 

[0.49, 0.52] 

[0.46, 0.51] 

[0.86, 0.93] 

Region input 

North, Center 

East, North 

Center, West 

Class or category 
of imputation 

Employed 

Unemployed 

Retired 



This is done by making the hyperbox membership degree 
equal to one for the corresponding dimension and all 
hyperboxes. 

The designed method always takes advantage of all the 
available information. This is useful when there are a lot of 
variables or attributes and they all have missing values. 

5 Case study: application to voting intention 
imputation in a political poll 

A frequent procedure used to collect information about a 
population is to take a survey. When the questions refer to 
individual opinions or attitudes, these surveys are known as 
opinion polls [29, 30]. These polls have proven to be an 
especially fast and easy-to-use tool, because they simplify 
the most technical phases of the survey process. As in most 
surveys, there is usually total or partial non-response— 
when a respondent fails to answer all or some of the 
questions, respectively. The procedure for total non-
response is usually addressed at the sampling design stage. 
This paper focuses on partial non-response. 

Partial non-response is generally solved by imputing 
values to the missing variables from the answers of other 
respondents and from the non-missing variables in 
responses by the same individual. However, the usual way 
of dealing with non-response in polls is to add the "don't 
know/not applicable" category and treat it like any other 
category. Little and Rubin [31] argue that this is not a 
highly recommendable method because it can cause prob­
lems at the results analysis stage, but it is widely applied in 
polls due to its straightforwardness. 

In election polls, though, there is one variable—which 
political party do you intend to vote for in the next general 
elections {voting intention, from now on)—for which the 
above procedure is not good enough, and missing values 
were imputed using other methods. Elsewhere, we pre­
sented a paper where fuzzy control procedures were used to 
estimate voting intention in an electoral poll [32]. It 
stressed the potential of using methods to automatically 
obtain fuzzy set membership functions. This is what we do 
now using neural networks, by imputing missing voting 
intention from the responses to other questions in the same 
survey. 

Different procedures based on neural networks have 
been used to impute numerical variables from other like­
wise numerical values [33-35]. We are not aware of their 
use for imputing categorical variables from other numerical 
and categorical variables, as proposed in this paper. 

To evaluate the operation of the proposed neuro-fuzzy 
classifier, we selected polls number 2555 and 2750 from the 
Sociological Research Center's catalog (the Sociological 
Research Center is an institution responsible for making 

opinion polls for the Spanish Public Administration). These 
surveys refer to the general elections held in Spain in 2004 
and 2008. They contain 16,345 and 13,280 interviews, 
respectively, with an answer to the voting intention ques­
tion. The chosen polls contain questions with different types 
of variables: 

• Quantitative variables. Questions answered by entering 
a numerical value. They include questions referring to 
ideological self-location (the result of asking respon­
dents to place themselves ideologically on a scale of 
1-10, 1 being the extreme left and 10 the extreme 
right). Other possibilities are, the rating of three 
specific political figures, likelihood to vote, and likeli­
hood to vote for three specific political parties, all of 
which are rated on a scale of 0-10. 

• Ordered categorical variables. Questions answered by 
entering categories that are so well ordered that they are 
easy and straightforward to transform into quantitative 
variables. They refer to government and opposition 
party ratings. The answer categories are "very good", 
"good", "fair", "bad" and "very bad", which we 
transform into the values 1, 0.75, 0.5, 0.25 and 0, 
respectively, assuming they are ordered equidistantly. 
They should take values within the unit interval like the 
membership functions of fuzzy sets. 

• Categorical variables with non-ordered categories. 
Questions including voting intention and similar, such 
as vote memory (party the respondent voted for at the 
last general election); the Autonomous Community; 
which of the likely candidates the respondent would 
prefer to see as president of the government; how sure/ 
definite the respondents' voting intention is; the polit­
ical party the respondent tips to win and the political 
party the respondent would prefer to win. 

Although missing values are found in all the above 
variables, this paper focuses on the imputation of the cat­
egorical voting intention variable which is, thus, the clas­
sification feature. Our method will deal with missing data 
in other variables as explained in Sect. 3, depending on the 
variable type. We will explain the procedure for dealing 
with missing data when we present other methods for 
comparison. 

For the purposes of imputation, each class or classifi­
cation category is matched with one of the different values 
the variable to be imputed takes. So, the imputed value is 
the category corresponding to the class with the greatest 
membership degree. 

Eleven categories have been taken for the voting 
intention variable, including the most important political 
parties' names, "blank vote", "abstention" and a category 
of "others". This would appear to be quite a good granu­
larity level for obtaining reliable proportions for 



nationwide voting intention, whereas a larger granularity 
would make the problem tougher. The sixteen numerical 
and ordered and non-ordered categorical variables descri­
bed above are used as classifier inputs for both of the 
surveys. 

The performance of the proposed method is then com­
pared with other classical approaches. For the comparisons, 
we used an evaluation criterion frequently used in the 
supervised classification procedures area: the correctly 
imputed rate, that is, the percentage of imputed values that 
exactly match the original data over the inputs with non-
missing voting intention. A tenfold cross-validation, par­
titioning the test data into ten parts (folds), is performed. 
We retain a single fold as the validation data for testing the 
model, whereas the remaining nine are used as training 
data. The cross-validation process is then repeated 10 times 
with each of the tenfolds, and the results are averaged to 
produce a single estimation. The advantage of this method 
is that all observations are used for both training and val­
idation, and each observation is used for validation exactly 
once. This procedure provides non-biased estimations of 
the correctly imputed rate [36]. 

One of the procedures used nowadays for single impu­
tation of the voting intention variable is to make predic­
tions from logistic regressions on other variables, and this 
is taken as a baseline for comparison. The tenfold cross-
validation of the data sets with logistic regression and the 
sixteen variables (generated using SAS/STATS software, 
Version 9.1.3 of the SAS System for Windows. Copyright 
2002-2003 by SAS Institute Inc., Cary, NC, USA), returns 
the results shown in Table 5. 

Note that, we are likely to come across some problems 
using logistic regression to impute missing values. First of 
all, the likelihood equation for a logistic regression model 
does not always have a finite solution, making it difficult to 
estimate model parameters. Sometimes, there is a non-
unique maximum on the boundary of the parameter space 
at infinity. The existence, finiteness, and uniqueness of 
maximum-likelihood estimates for the logistic regression 
model depend on the patterns of data points in the obser­
vation space. When there is a complete or quasi-complete 
separation, there exist infinite estimations, and only if there 
is an overlap of sample points do unique maximum like­
lihood estimates exist [37]. In our case, there is the pos­
sibility of separation because of the great many variables 
and categories, and the output models are questionable. 

Table 5 Correctly imputed rate 
for the logistic regression 
imputations 

Dataset % Correctly 
imputed 

2555 

2750 

64.20 

63.05 

A second problem with the use of logistic regression is that 
units with missing values in one or more input variables are 
deleted, reducing the learning set size. 

To make an additional comparison using the same fuzzy 
min-max neural network classifier, we looked at another 
distance frequently used with categorical variables: if ah, aj 
are two categories, then 

c3(ah, aj) = 1 -Shj (24) 

where Shj is the Kronecker delta. The resulting hyperbox 
membership function is then defined by 

bj(xh,ah) 

min-i mm mm 
i = l , . . . , n L 

( i - / (4-v^y) . (1 - /^ -4 .7 ) ) ] . 

min \l-c3(ahi,eji)] \ 
i=r+\,...,n+rL K J 

(25) 

where e,, is the only category defining the hyperbox Bj in 
the ¿th dimension. (Note that this distance has no need of 
the r\ parameter because r\ does not make sense if there is 
only one category.) In this case, the membership function 
portion corresponding to a categorical dimension 

mm 
i=n+\, ...,n+r 

[l -c3(ahi, eji)] mm 
i=n+\, ...,n+r 

[l -S(ahi, eji)] 

(26) 

takes only values 1 (when all the categorical inputs are 
equal to each matching hyperbox category) and 0. As a 
result, this Kronecker distance works by learning separate 
numerical variables for each combination of categorical 
variables. 

The experiment run implements a classifier for each one 
of the three membership functions resulting from the three 
distances. As the designed networks have some user-
defined parameters for adjustment (the maximum numeri­
cal hyperbox size 9, the numerical membership function 
decreasing parameter y, and the maximum categorical 
hyperbox size r\), estimations have been made for the set of 
parameter combinations resulting from y — 0.5, 1.5, 2.5, 
3.5, 4.5, 9 = 0.25, 0.35, 0.45, 0.55, 065 and r\ = 0.25, 
0.35, 0.45, 0.55, 0.65. 

Tables 6, 7 and 8 show the correctly imputed rates with 
the tenfold cross-validation for the parameter combinations 
returning the best results for each membership function and 
each dataset in decreasing order of these rates. 

The level of the scores reached with each distance is 
similar for both datasets, but the combinations of the user-
defined parameters with the best results are different. This 
reflects the fact that the input variables are not exactly the 
same in each dataset. 

An important feature or weakness of this kind of 
learning method is that the learning set order may have an 



Table 6 Correctly imputed rate for the proposed method imputations 
using the Euclidean distance 

Table 7 Correctly imputed rate for the proposed method imputations 
using the logarithmic distance 

Dataset 2555 

7 

1.5 

0.5 

1.5 

0.5 

0.5 

0.5 

1.5 

0.5 

0.5 

1.5 

1.5 

0.5 

0.5 

1.5 

1.5 

0.5 

1.5 

1.5 

0.5 

0.5 

e 

0.35 

0.45 

0.35 

0.45 

0.35 

0.45 

0.45 

0.45 

0.35 

0.55 

0.35 

0.45 

0.35 

0.55 

0.45 

0.25 

0.55 

0.45 

0.35 

0.35 

3 

0.65 

0.55 

0.55 

0.45 

0.25 

0.35 

0.65 

0.25 

0.45 

0.55 

0.45 

0.65 

0.55 

0.45 

0.25 

0.65 

0.25 

0.35 

0.65 

0.35 

impact on the i 

repeated ¡ several 

% Correctly 
imputed 

85.63 

85.54 

85.54 

85.46 

85.34 

85.21 

85.21 

85.19 

85.17 

85.16 

85.05 

84.98 

84.97 

84.94 

84.92 

84.9 

84.9 

84.87 

84.86 

84.85 

results. The 

. times with 

Dataset 2750 

7 

2.5 

2.5 

2.5 

2.5 

2.5 

1.5 

2.5 

1.5 

1.5 

1.5 

1.5 

2.5 

1.5 

2.5 

2.5 

1.5 

2.5 

2.5 

1.5 

1.5 

e 

0.55 

0.65 

0.65 

0.55 

0.55 

0.45 

0.55 

0.45 

0.25 

0.35 

0.45 

0.45 

0.35 

0.35 

0.45 

0.65 

0.45 

0.45 

0.45 

0.45 

validation 

a number 

3 

0.55 

0.35 

0.25 

0.35 

0.45 

0.55 

0.25 

0.65 

0.65 

0.65 

0.45 

0.45 

0.45 

0.65 

0.55 

0.25 

0.35 

0.65 

0.25 

0.35 

% Correctly 
imputed 

86.06 

85.95 

85.94 

85.93 

85.93 

85.91 

85.91 

85.89 

85.88 

85.88 

85.88 

85.88 

85.81 

85.79 

85.79 

85.76 

85.76 

85.76 

85.68 

85.66 

process has been 

of different ran-
domizations of the input dataseis to Hpal with this nrohlpm 
The resulting rates were similar. 
me thod's robustness. 

6 Conclusions 

thereby confirming the 

We have shown how the fuzzy min-max neural network 
classifier could be extended to admit cate 
the results of using the method for 
in ( apinion i pol ls . It is possibls 
from Tables 6, 7 and : 

• 

• 

:gorical inputs and 
missing data 

i to extract some 
imputation 

conclusions 

The correctly imputed rates for the Euclidean and the 
logarithmic distance are significantly greater than for 
the Kronecker distance and logistic regression. Results 
are up around 11 percentage points over the Kronecker 
distance and 21 percentage points over logi 
sion in each 

Lstic regres-
input dataset. The results range—ur> to 

86%, even with a great manv classification categories— 
is much better than what 
polls. 
No sis 

is usually achieved in similar 

;nificant difference has been found between the 
behavior of the Euclidean and logarithmic distances in 

Dataset 2555 

7 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

0.5 

1.5 

0.5 

1.5 

1.5 

e 

0.35 

0.45 

0.35 

0.25 

0.65 

0.25 

0.35 

0.45 

0.25 

0.25 

0.35 

0.35 

0.55 
0.25 

0.45 

0.45 

0.55 

0.45 

0.65 

0.45 

S 

0.25 

0.25 

0.35 

0.25 

0.25 

0.35 

0.65 

0.35 

0.65 

0.55 

0.55 

0.45 

0.25 
0.45 

0.45 

0.65 

0.25 

0.55 

0.25 

0.25 

% Correctly 
imputed 

85.57 

85.55 

84.85 

84.55 

84.53 

84.47 

84.38 

83.98 

83.92 

83.9 

83.57 

83.48 

83.48 
83.37 

82.96 

82.75 

82.31 

82.01 

81.72 

81.44 

Dataset 2750 

7 

0.5 

1.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1.5 

0.5 

1.5 

1.5 
1.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1.5 

0 

0.35 

0.35 

0.35 

0.25 

0.35 

0.25 

0.25 

0.45 

0.25 

0.45 

0.35 

0.35 

0.35 
0.45 

0.25 

0.45 

0.35 

0.45 

0.45 

0.25 

S 

0.65 

0.65 

0.55 

0.55 

0.45 

0.65 

0.45 

0.25 

0.35 

0.25 

0.25 

0.35 

0.45 
0.35 

0.25 

0.55 

0.35 

0.35 

0.45 

0.45 

Table 8 Correctly imputed rate for the proposed metho 
using the Kronecker distance 

Data set 2555 

7 

0.5 

0.5 

0.5 

0.5 

0.5 

1.5 

1.5 

1.5 

1.5 

1.5 

2.5 

2.5 

2.5 
2.5 

2.5 

3.5 

3.5 

3.5 

3.5 

3.5 

0 

0.35 

0.45 

0.55 

0.65 

0.25 

0.35 

0.45 

0.55 

0.65 

0.25 

0.65 

0.55 

0.35 
0.45 

0.25 

0.65 

0.55 

0.45 

0.35 

0.25 

% Correctly 

imputed 

76.12 

75.99 

75.69 

75.69 

75.19 

75.08 

74.96 

74.88 

74.75 

74.33 

71.21 

71.19 

71.01 
70.98 

70.19 

63.68 

63.67 

63.36 

63.23 

63.01 

Data set 2750 

7 

0.5 

0.5 

0.5 

1.5 

0.5 

1.5 

1.5 

1.5 

1.5 

2.5 

2.5 

2.5 

2.5 
2.5 

3.5 

3.5 

3.5 

3.5 

3.5 

4.5 

0 

0.45 

0.35 

0.25 

0.55 

0.15 

0.45 

0.25 

0.35 

0.15 

0.55 

0.45 

0.35 

0.25 
0.15 

0.55 

0.45 

0.35 

0.25 

0.15 

0.55 

% Correctly 
imputed 

85.21 

85.18 

85.06 

84.9 

84.86 

84.82 

84.77 

84.73 

84.69 

84.67 

84.64 

84.64 

84.63 
84.62 

84.57 

84.57 

84.49 

84.48 

84.47 

84.45 

d imputations 

% Correctly 

imputed 

72.65 

72.46 

72.42 

72.02 

71.95 

71.93 

71.73 

71.73 

71.15 

67.41 

66.98 

66.74 

66.58 
66.2 

63.25 

63.01 

62.55 

62.17 

61.19 

53.91 



any of the datasets. Thus, the logarithmic distance does 
not appear to solve potential problems stemming from 
proportionally short distances between high input 
values. The question requires more thorough investi­
gation before either of these distances is selected. 

• Gabrys and Bargiela propose the use of different 
parameters 9 and y for each numerical dimension. The 
same parameters were used here, and we were able to 
improve results by varying the y, 9 and r\ thresholds in 
each dimension. 

• The procedure presented here, proves to be especially 
apt if there is a relatively high number of classification 
categories, as opposed to the more commonly dealt 
with case of binary variables with just two categories. 

• Also, note that the proposed neuro-fuzzy classifier is 
well suited when there are a lot of numerical and 
categorical input variables. In the case of missing 
values in input datasets, logistic regression estimations 
take into account only the complete data patterns. As a 
result, the number of inputs decreases dangerously 
when there are a lot of variables all with non-response. 
The proposed procedure always uses all the available 
data in the most efficient way, and the more variables 
there are, the better the results will be. Using this 
method, the select variables step could be eliminated, 
leading to more automatic imputation. 

• Another important point is that the neuro-fuzzy clas­
sifier proposed here, works efficiently when there are 
the two types of inputs—numerical and categorical—in 
the learning dataset. It does not appear to be suitable 
when inputs are exclusively categorical variables 
because of the subsidiary role the categorical variables 
play at the contraction step. Further work will focus on 
testing the procedure in this case. 

References 

1. Rubin DB (1976) Inference and missing data. Biometrika 
63:581-592 

2. Rubin DB (1977) Formalizing subjective notions about the effect 
of non-respondents in sample surveys. J Am Stat Assoc 72(359): 
538-543 

3. Dempster P, Rubin DB (1983) Incomplete data in sample surveys. 
In: Madow WG, Olkin I, Rubin DB (eds) Sample surveys. II. 
Theory and Annotated Bibliograph. Academic Press, New York 

4. Schafer JL, Graham JW (2002) Missing data: our view of the 
state of the art. Psychol Methods 7(2): 147-177 

5. Durrant GB (2005) Imputation methods for handling item-non-
response in the social sciences: a methodological review. Tech. 
Rep. NCRM/002, National Centre for Research Methods and 
Southampton Statistical Sciences Research Institute, University 
of Southampton 

6. Myrtveit I, Stensrud E, Olsson U (2002) Analyzing data sets with 
missing data: an empirical evaluation of imputation methods and 
likelihood-based methods. IEEE Trans Softw Eng 27(11):999-1013 

7. Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic, theory and 
applications. Prentice-Hall, New Jersey 

8. Tanaka K (1997) An introduction to fuzzy logic for practical 
applications. Springer, New York 

9. Yager RR, Filev DP (1996) Relational partitioning of fuzzy rules. 
Fuzzy Sets Syst 80(l):57-69 

10. Dubois D, Prade H (1996) What are fuzzy rules and how to use 
them. Fuzzy Sets Syst 84(2): 169-185 

11. Pedrycz W (1992) Fuzzy neural networks with reference neurons 
as pattern classifiers. IEEE Trans Neural Netw 3(5):770-775 

12. Mitra S, Pal SK (1994) Self-organizing neural network as a fuzzy 
classifier. IEEE Trans Syst Man Cybern A Syst Hum 24(3):385-
399 

13. Meneganti M, Saviello FS, Tagliaferri R (1998) Fuzzy neural 
networks for classification and detection of anomalies. IEEE 
Trans Neural Netw 9(5):848-861 

14. Gabrys B (2004) Learning hybrid neuro-fuzzy classifier models from 
data: to combine or not to combine? Fuzzy Sets Syst 147:39-56 

15. Mitra S, Pal SK, Mitra P (2002) Data mining in soft computing 
framework: a survey. IEEE Trans Neural Netw 13(1):3-14 

16. Simpson PK (1992) Fuzzy min-max neural networks—part 1: 
classification. IEEE Trans Neural Netw 3:776-786 

17. Simpson PK (1993) Fuzzy min-max neural networks—part 2: 
clustering. IEEE Trans Fuzzy Syst 1:32-45 

18. Gabrys B, Bargiela A (2000) General fuzzy min-max neural 
network for clustering and classification. IEEE Trans Neural 
Netw 11:769-783 

19. Gabrys B (2002) Neuro-fuzzy approach to processing inputs with 
missing values in pattern recognition problems. Int J Approx 
Reason 30:149-179 

20. Quteishat M, Lim CP (2006) A modified fuzzy min-max neural 
network and its application to fault classification. In: 11th Online 
world conference soft computing in industrial applications 
(WSC11) 

21. Gabrys B (2002) Agglomerative learning algorithms for general 
fuzzy min-max neural network. J VLSI Signal Process 32:67-82 

22. Bargiela A, Pedrycz W, Tanaka M (2004) An inclusion/exclusion 
fuzzy hyperbox classifier. Int J Knowl Based Intell Eng Syst 
8(2):91-98 

23. Nandedkar P, Biswas PK (2007) A fuzzy min-max neural net­
work classifier with compensatory neuron architecture. IEEE 
Trans Neural Netw 18(l):42-54 

24. Brouwer RK (2002) A feed-forward network for input which is 
both categorical and quantitative. Neural Netw 15(7):881-890 

25. Farhangfar A, Kurgan LA, Pedrycz W (2007) A novel framework 
for imputation of missing values in databases. IEEE Trans Syst 
Man Cybern A Syst Hum 37(5):692-709 

26. Zhang X, Hang CH, Tan S, Wang P (1996) The min-max 
function differentiation and training of fuzzy neural networks. 
IEEE Trans Neural Netw 7(5):1139-1150 

27. Song Q, Shepperd M (2007) Missing data imputation techniques. 
Int J Bus Intell Data Min 2(3):262-291 

28. Greenacre MJ (1984) Theory and applications of correspondence 
analysis. Academic Press, London 

29. Cox R (2006) Principles of statistical inference. Cambridge 
University Press, Cambridge 

30. Allison P (2002) Missing data. Sage, California 
31. Little RJ, Rubin DB (2002) Statistical analysis with missing data, 

2nd edn. Wiley, New York 
32. Cardeñosa J, Rey-del-Castillo P (2007) A fuzzy control approach 

for vote estimation. In: Proceedings of 5th international confer­
ence on information technologies and applications, Varna 

33. Abdella M, Marwala T (2005) The use of genetic algorithms and 
neural networks to approximate missing data in databases. In: 
IEEE 3rd international conference on computational cybernetics, 
pp 207-212 



34. Nelwamondo V, Mohamed S, Marwala T (2007) Missing data: a 
comparison of neural network and expectation maximization 
techniques. Curr Sci 93(11): 1514-1521 

35. Lingras P, Zhong M, Sharma S (2008) Evolutionary regression 
and neural imputations of missing values. In: soft computing 
applications in industry. Studies in Fuzziness and Soft Computing 
Series, vol 226. Springer, Berlin, pp 151-163 

36. Witten H, Frank E (2005) Practical machine learning tools and 
techniques, 2nd edn. Morgan Kaufmann, USA 

37. Santner TJ, Duffy DE (1986) A note on A. Albert and J. 
A. Anderson's conditions for the existence of maximum likeli­
hood estimates in logistic regression models. Biometrika 
73:755-758 


