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Abstract
Cuckoo search (CS) is a relatively new algorithm, developed by Yang and Deb in 2009, and
CS is efficient in solving global optimization problems. In this paper, we review the fundamental
ideas of cuckoo search and the latest developments as well as its applications. We analyze the
algorithm and gain insight into its search mechanisms and find out why it is efficient. We also
discuss the essence of algorithms and its link to self-organizing systems, and finally we propose
some important topics for further research.
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1 Introduction

Optimization concerns many disciplines with a wide range of applications. As time, money and
resources are always limited, optimization is ever-increasingly more important. For example, energy-
saving designs and green solutions to many industrial problems require a paradigm shift in thinking
and design practice. On the other hand, people want smart and intelligent products, and computa-
tional intelligence has emerged as a promising area with potentially wide-ranging impact. Nowadays
machine learning often uses optimization algorithms to enhance its learning performance, while op-
timization also borrow ideas from machine learning such as statistical learning theory and neural
networks. In this article, we will focus on the introduction of cuckoo search a powerful, nature-
inspired metaheuristic algorithm for optimization and computational intelligence.

In almost all applications in engineering and industry, we are always trying to optimize some-
thing — whether to minimize the cost and energy consumption, or to maximize the profit, output,
performance and efficiency [37, (19, [40]. The optimal use of available resources of any sort requires a
paradigm shift in scientific thinking, this is because most real-world applications have far more com-
plicated factors and parameters to affect how the system behaves. For any optimization problem,
the integrated components of the optimization process are the optimization algorithm, an efficient
numerical simulator and a realistic-representation of the physical processes we wish to model and
optimize. This is often a time-consuming process, and in many cases, the computational costs are
usually very high. Once we have a good model, the overall computation costs are determined by the
optimization algorithms used for search and the numerical solver used for simulation.

Search algorithms are the tools and techniques for achieving optimality of the problem of interest.
This search for optimality is complicated further by the fact that uncertainty almost always presents
in the real-world systems. Therefore, we seek not only the optimal design but also robust design in
engineering and industry. Optimal solutions, which are not robust enough, are not practical in reality.
Suboptimal solutions or good robust solutions are often the choice in such cases. Optimization
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problems can be formulated in many ways. For example, the commonly used method of least-
squares is a special case of maximum-likelihood formulations. By far the most widely formulation
is to write a nonlinear optimization problem as

minimize f;(x), (i =1,2,..., M), (1)

subject to the constraints
hj(x) =0, (j=1,2,...J), (2)
gk(m)goa (k:15277K)7 (3)

where f;, h; and gy are in general nonlinear functions. Here the design vector or design variables
x = (z1,22,...,24) can be continuous, discrete or mixed in d-dimensional space. The functions
fi are called objective or cost functions, and when M > 1, the optimization is multiobjective
or multicriteria [37]. It is possible to combine different objectives into a single objective, though
multiobjective optimization can give far more information and insight into the problem. It is worth
pointing out that here we write the problem as a minimization problem, it can also be written as a
maximization by simply replacing f;(x) by —f;(x).

When all functions are nonlinear, we are dealing with nonlinear constrained problems. In some
special cases when f;, h; and g are linear, the problem becomes linear, and we can use the widely
linear programming techniques such as the simplex method. When some design variables can only
take discrete values (often integers), while other variables are real continuous, the problem is of
mixed type, which is often difficult to solve, especially for large-scale optimization problems.

2 The Essence of an Optimization Algorithm

2.1 Optimization Algorithm

Optimization is a process of searching for the optimal solutions to a particular problem of interest,
and this search process can be carried out using multiple agents which essentially form a system of
evolving agents. This system can evolve by iterations according to a set of rules or mathematical
equations. Consequently, such a system will show some emergent characteristics, leading to self-
organizing states which correspond to some optima in the search space. Once the self-organized
states are reached, we say the system converges. Therefore, design of an efficient optimization
algorithm is equivalent to mimicking the evolution of a self-organizing system [T, [17].

2.2 The Essence of an Algorithm

Mathematically speaking, an algorithm is a procedure to generate outputs for a given set of inputs.
From the optimization point of view, an optimization algorithm generates a new solution z**! to a
given problem from a know solution ! at iteration or time ¢. That is

' = A(z!, p(t)), (4)

where A is a nonlinear mapping from a given solution d-dimensional vector ! to a new solution
vector '*1. The algorithm A has k algorithm-dependent parameters p(t) = (p1, ..., px) which can
time-dependent and can thus be tuned.

To find the optimal solution x, to a given optimization problem .S with an often infinitely number
of states is to select some desired states ¢ from all states ¢, according to some predefined criterion
D. We have

A@)
SW) — S(d(xx)), ()
where the final converged state ¢ corresponds to an optimal solution @, of the problem of interest.

The selection of the system states in the design space is carried out by running the optimization
algorithm A. The behavior of the algorithm is controlled by the parameters p, the initial solution



x'=Y and the stopping criterion D. We can view the combined S + A(t) as a complex system with
a self-organizing capability.

The change of states or solutions of the problem of interest is through the algorithm A. In many
classical algorithms such as hill-climbing, gradient information of the problem S is used so as to
select states, say, the minimum value of the landscape, and the stopping criterion can be a given
tolerance or accuracy, or zero gradient, etc.

An algorithm can act like a tool to tune a complex system. If an algorithm does not use any
state information of the problem, then the algorithm is more likely to be versatile to deal with
many types of problem. However, such black-box approaches can also imply that the algorithm
may not be efficient as it could be for a given type of problem. For example, if the optimization
problem is convex, algorithms that use such convexity information will be more efficient than the
ones that do not use such information. In order to be efficient to select states/solutions efficiently,
the information from the search process should be used to enhance the search process. In many case,
such information is often fed into the selection mechanism of an algorithm. By far the most widely
used selection mechanism to select or keep the best solution found so far. That is, the simplest form
of ‘survival of the fitness’.

From the schematic representation (Bl of the optimization process, we can see that the perfor-
mance of an algorithm may also depend on the type of problem S it solves. On the other hand, the
final, global optimality is achievable or not (within a given number of iterations) will also depend
on the algorithm used. This may be another way of stating the so-called no-free-lunch theorems.

Optimization algorithms can very diverse with several dozen widely used algorithms. The main
characteristics of different algorithms will only depend on the actual, nonlinear, often implicit form
of A(t) and its parameters p(t).

2.3 Efficiency of an Algorithm

An efficient optimization algorithm is very important to ensure the optimal solutions are reachable.
The essence of an algorithm is a search or optimization process implemented correctly so as to
carry out the desired search (though not necessarily efficiently). It can be integrated and linked
with other modelling components. There are many optimization algorithms in the literature and no
single algorithm is suitable for all problems [36].

Algorithms can be classified as deterministic or stochastic. If an algorithm works in a mechan-
ically deterministic manner without any random nature, it is called deterministic. For such an
algorithm, it will reach the same final solution if we start with the same initial point. Hill-climbing
and downhill simplex are good examples of deterministic algorithms. On the other hand, if there
is some randomness in the algorithm, the algorithm will usually reach a different point every time
we run the algorithm, even though we start with the same initial point. Genetic algorithms and
hill-climbing with a random restart are good examples of stochastic algorithms.

Analyzing current metaheuristic algorithms in more detail, we can single out the type of ran-
domness that a particular algorithm is employing. For example, the simplest and yet often very
efficient method is to introduce a random starting point for a deterministic algorithm. The well-
known hill-climbing with random restart is a good example. This simple strategy is both efficient
in most cases and easy to implement in practice. A more elaborate way to introduce randomness to
an algorithm is to use randomness inside different components of an algorithm, and in this case, we
often call such algorithms heuristic or more often metaheuristic [37, [38].

Metaheuristic algorithms are often nature-inspired, and they are now among the most widely
used algorithms for optimization. They have many advantages over conventional algorithms [37]
13]. Metaheuristic algorithms are very diverse, including genetic algorithms, simulated annealing,
differential evolution, ant and bee algorithms, bat algorithm, particle swarm optimization, harmony
search, firefly algorithm, cuckoo search and others [I8] B8] [41] [14]. Here we will introduce cuckoo
search in great detail.



3 Cuckoo Search and Analysis

3.1 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms, developed in 2009
by Xin-She Yang and Suash Deb [42] 43| [44]. CS is based on the brood parasitism of some cuckoo
species. In addition, this algorithm is enhanced by the so-called Lvy flights [24], rather than by
simple isotropic random walks. Recent studies show that CS is potentially far more efficient than
PSO and genetic algorithms [42]. Cuckoo are fascinating birds, not only because of the beautiful
sounds they can make, but also because of their aggressive reproduction strategy. Some species such
as the ani and Guira cuckoos lay their eggs in communal nests, though they may remove others’
eggs to increase the hatching probability of their own eggs. Quite a number of species engage the
obligate brood parasitism by laying their eggs in the nests of other host birds (often other species).

For simplicity in describing the standard Cuckoo Search, we now use the following three idealized
rules:

e Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
e The best nests with high-quality eggs will be carried over to the next generations;

e The number of available host nests is fixed, and the egg laid by a cuckoo is discovered by the
host bird with a probability . In this case, the host bird can either get rid of the egg, or simply
abandon the nest and build a completely new nest.

As a further approximation, this last assumption can be approximated by a fraction p, of the
n host nests are replaced by new nests (with new random solutions). For a maximization problem,
the quality or fitness of a solution can simply be proportional to the value of the objective function.
Other forms of fitness can be defined in a similar way to the fitness function in genetic algorithms.

For the implementation point of view, we can use the following simple representations that each
egg in a nest represents a solution, and each cuckoo can lay only one egg (thus representing one
solution), the aim is to use the new and potentially better solutions (cuckoos) to replace a not-so-
good solution in the nests. Obviously, this algorithm can be extended to the more complicated case
where each nest has multiple eggs representing a set of solutions. For this present introduction,
we will use the simplest approach where each nest has only a single egg. In this case, there is no
distinction between egg, nest or cuckoo, as each nest corresponds to one egg which also represents
one cuckoo.

This algorithm uses a balanced combination of a local random walk and the global explorative
random walk, controlled by a switching parameter p,. The local random walk can be written as

a " =xl +as @ H(py — ) ® (af — ), (6)

where wz and !, are two different solutions selected randomly by random permutation, H(u) is a
Heaviside function, € is a random number drawn from a uniform distribution, and s is the step size.
On the other hand, the global random walk is carried out by using Lévy flights

:BEH = wf +alL(s, ), (7)

where
A'(A\) sin(mA/2) 1

L(Sv)\): T Sl+>‘7

(s> 50 >0). (8)

Here ao > 0 is the step size scaling factor, which should be related to the scales of the problem of
interest. In most cases, we can use & = O(L/10), where L is the characteristic scale of the problem of
interest, while in some cases & = O(L/100) can be more effective and avoid flying to far. The above
equation is essentially the stochastic equation for a random walk. In general, a random walk is a
Markov chain whose next status/location only depends on the current location (the first term in the
above equation) and the transition probability (the second term). However, a substantial fraction
of the new solutions should be generated by far field randomization and their locations should be



far enough from the current best solution; this will make sure that the system will not be trapped
in a local optimum [42] 43].

The literature on cuckoo search is expanding rapidly. There has been a lot of attention and
recent studies using cuckoo search with a diverse range of applications [5] [6] 9] 10, 1] 13} 16, 45].
Walton et al. improved the algorithm by formulating a modified cuckoo search algorithm [34], while
Yang and Deb extended it to multiobjective optimization problems [44].

3.2 Why Cuckoo Search is so Efficient?

Theoretical studies of particle swarm optimization have suggested that PSO can converge quickly
to the current best solution, but not necessarily the global best solutions [7 [15] 35]. In fact, some
analyses suggest that PSO updating equations do not satisfy the global convergence conditions, and
thus there is no guarantee for global convergence. On the other hand, it has proved that cuckoo search
satisfy the global convergence requirements and thus has guaranteed global convergence properties
[35]. This implies that for multimodal optimization, PSO may converge prematurely to a local
optimum, while cuckoo search can usually converge to the global optimality.

Furthermore, cuckoo search has two search capabilities: local search and global search, controlled
by a switching/discovery probability. As mentioned in Section 3.1, the local search is very intensive
with about 1/4 of the search time (for p, = 0.25), while global search takes about 3/4 of the total
search time. This allows that the search space can be explored more efficiently on the global scale,
and consequently the global optimality can be found with a higher probability.

A further advantage of cuckoo search is that its global search uses Lévy flights or process, rather
than standard random walks. As Lévy flights have infinite mean and variance, CS can explore
the search space more efficiently than algorithms by standard Gaussian process. This advantage,
combined with both local and search capabilities and guaranteed global convergence, makes cuckoo
search very efficiently. Indeed, various studies and applications have demonstrated that cuckoo
search is very efficient [43 [13] 14} (34 [8], 28].

4 Applications

Cuckoo search has been applied in many areas of optimization and computational intelligene with
promising efficiency. For example, in the engineering design applications, cuckoo search has superior
performance over other algorithms for a range of continuous optimization problems such as spring
design and welded beam design problems [43] 13} [14].

In addition, a modifed cuckoo search by Walton et al. [34] has demonstrated to be very efficient
for solving nonlinear problems such as mesh generation. Vazquez [33] used cuckoo search to train
spiking neural network models, while Chifu et al. [5] optimized semantic web service composition
processes using cuckoo search. Furthermore, Kumar and Chakarverty [20] achieved optimal design
for reliable embedded system using cuckoo search, and Kaveh and Bakhshpoori [16] used CS to
successfully design steel frames. Yildiz [45] has used CS to select optimal machine parameters in
milling operation with enhanced results, and while Zheng and Zhou [46] provided a variant of cuckoo
search using Gaussian process.

On the other hand, a discrete cuckoo search algorithm has been proposed by Tein and Ramli
[30] to solve nurse scheduling problems. Cuckoo search has also been used to generate independent
paths for software testing and test data generation [28] 28] [6]. In the context of data fussion and
wireless sensor network, cuckoo search has been shown to be very efficient [9, [I0]. Furthermore,
a variant of cuckoo search in combination with quantum-based approach has been developed to
solve Knapsack problems efficiently [21I]. From the algorithm analysis point of view, a conceptural
comparison of cuckoo search with particle swarm optimization (PSO), differential evolution (DE),
artificial bee colony (ABC) by Civicioglu and Desdo [8] suggested that cuckoo search and differential
evoluton algorithms provide more robust results than PSO and ABC. Gandomi et al. [I3] provided
a more extensive comparison study for solving various sets of structural optimization problems and
concluded that cuckoo search obtained better results than other algorithms such as PSO and gentic



algorithms (GA). Speed [27] modified the Lévy cuckoo search and shown that CS can deal with very
large-scale problems. Among the diverse applications, an interesting performance enhancement has
been obtained by using cuckoo search to train neural networks as shown by Valian et al. [31] and
reliability optimization problems [32].

For complex phase equilibrium applications, Bhargava et al. [2] have shown that cuckoo search
offers a reliable method for solving thermodynamic calculations. At the same time, Bulatovié¢ et
al. [3] have solved a six-bar double dwell linkage problem using cuckoo search, and Moravej and
Akhlaghi [22] have solved DG allocation problem in distribution networks with good convergence
rate and performance. Taweewat and Wutiwiwatchi have combined cuckoo search and supervised
neural network to estimate musical pitch with reduced size and higher accuracy [29).

As a further extension, Yang and Deb [44] produced a multiobjective cuckoo search (MOCS)
for design engineering appplications. For multiobjective scheduling problems, a significant progress
was made by Chandrasekaran and Simon [4] using cuckoo search algorithm, which demonstrated the
superiority of their proposed methodology.

Recent studies have demonstrated that cuckoo search can performance significantly better than
other algorithms in many applications [13] 23], 46| 45].

5 Discussion and Concluding Remarks

Swarm intelligence based algorithms such as cuckoo search and particle swarm optimization are
very efficient in solving a wide range of nonlinear optimization problems, and thus have diverse
applications in sciences and engineering. Some algorithms (e.g., cuckoo search) can have very good
global convergence. However, there are still some challenging issues that need to be resolved in
future studies.

One key issue is that there is a significant gap between theory and practice. Most metaheuristic
algorithms have good applications in practice, but mathematical analysis of these algorithms lacks
far behind. In fact, apart from a few limited results about the convergence and stability about algo-
rithms such as particle swarm, genetic algorithms and cuckoo search, many algorithms do not have
theoretical analysis. Therefore, we may know they can work well in practice, we hardly understand
why it works and how to improve them with a good understanding of their working mechanisms.

Another important issue is that all metaheuristic algorithms have algorithm-dependent parame-
ters, and the actual values/setting of these parameters will largely influence the performance of an
algorithm. Therefore, the proper parameter-tuning itself becomes an optimization problem. In fact,
parameter-tuning is an important area of research [12], which deserves more research attention.

In addition, even with very good applications of many algorithms, most of these applications
concern the cases with the number of design variables less than a few hundreds. It would be more
beneficial to real-world applications if the number of variables can increase to several thousands or
even to the order of millions.

All these challenging issues may motivate more research in the near future. There is no doubt
more applications of cuckoo search will be seen in the expanding literature in the coming years.
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