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Abstract— Biochemical networks are of great practical 

importance. The interaction of biological compounds in cells has 

been enforced to a proper understanding by the numerous 

bioinformatics projects which contributed with a vast amount of 

biological information. The construction of biochemical systems 

(systems of chemical reactions) which include both topology and 

kinetic rates of the chemical reactions is NP-hard and is a well-

studied systems biology problem. In this paper we propose a 

hybrid architecture which combines genetic programming and 

simulated annealing in order to generate and optimize both the 

topology (the network) and the reaction rates of a biochemical 

system. Simulations and analysis of an artificial model and three 

real models (two models and the noisy version of one of them 

show promising results for the proposed method. 

Keywords—systems biology, biochemical systems, genetic 

programming, simulated annealing, optimization, Petri nets 

I. INTRODUCTION  

In the context of theoretical chemistry as well as systems 

and synthetic biology, a problem of interest is the collection 

detailed information on time-dependent chemical 

concentration data for large networks of biochemical 

reactions. This is done with the purpose of identifying the 

exact structure of a network of chemical reactions for which 

the identity of the chemical species present in the network is 

known but a priori no information is available on the species 

interactions. 

The most convenient way of visualizing biochemical 

systems is by using a graphical representation. The graphical 

representation of a pathway in terms of chemical structures 

offers a great flexibility in visualizing a biochemical system. 

The system contains a list of components and interactions 

between these components which are then transcribed in 

terms of mathematical equations.  

We consider three types of entities that contribute to the 

composition of a system: 

 Metabolites, whose concentrations change during an 

experiment 

 Enzymes, which do not change appreciably during an 

experiment 

 Parameters (or kinetic rates) which have constant 

value during the experiment. 

Modelling of a biochemical system involves inferring from 

observed data the complex interlinked chains of biochemical 

reactions that lead to a biochemical product of interest. The 

observed data are time-course measurements of the 

concentrations of a variety of biological entities over time.  

The kinetic model involves a set of substances interacting 

through a network of reactions. 

In this paper we focus on the automatic identification of 

network (pathway) structures and their corresponding kinetic 

rates from observed time-domain concentrations alone 

(without assuming a given basic structure or any given 

reaction kinetics). The work in this paper represents an 

extension of our previous work [15] and includes a more 

detailed description of the computational system as well as 

two more experiments. 

The paper is organized as follows: Section II describes the 

biological problem of biochemical systems (networks) 

representation and modeling. Section III presents existing 

work in this area. Section IV describes in very details our 

approach. Section V is dedicated to numerical experiments 

and Section VI concludes the work. 

II. BIOCHEMICAL SYSTEMS 

Mathematical formulations of metabolic pathways 

represent a biochemical system as a series of differential 

equations by providing a kinetic equation for each reaction of 

the pathway. Petri net theory is an alternative formulation 

based on discrete-event systems. 

A. Reaction kinetics 

The basic units of a biochemical pathway are reactions 

between pairs of biomolecules. In the field of biochemistry, a 

reaction is defined as the process of transforming the 

molecules of the reactants in a different product within a time 

period. There exist two main types of reactions: spontaneous 

reactions, and enzymatic reactions.  



A spontaneous reaction is a decaying reaction which 

involves the conversion of the components of a reactant into 

another product. Due to the forward and reverse reaction rates 

existing in a biochemical system, any spontaneous reaction 

can become reversible between the reactant and the product. 

The other type of reaction is one that is mediated (or 

catalyzed) by an enzyme. The enzyme is simply a protein that 

facilitates a chemical reaction). In catalyzed reactions, the 

enzyme enters and exits the reaction unchanged, but is critical 

to yielding the product of the reaction from the reactant's 

constituent parts.  

An enzymatic reaction is in fact a catalysed biochemical 

reaction which encourages the transformation of a set of 

reactants into a set of products. The catalysis of the reaction is 

enforced by the enzyme reducing the amount of energy which 

is required to reach a higher energy transitional state [8]. An 

enzymatic reaction assumes the presence of at least a 

substrate, as reactant, a product and of an enzyme for the 

process of molecule conversion. 

Mass action kinetics are a set of rules which are used in 

chemistry and chemical engineering to describe the dynamics 

of a reaction system. Three patterns have been defined for 

mass action kinetics to disclose the catalytic mechanism of 

enzymes in enzymatic reactions and metabolism [17]. There 

are three forms of mass action kinetics; the first rule is the one 

used in our model and is given below. 

 

Mass Action 1 (MA1) 

The MA1 considers the mechanism by which the reactants act 

to form an active complex together with a substrate, to modify 

a substrate to decay a product, and to release the product 

within dissociation. To each property employed by MS1 a 

kinetic rate is associated to each singular reaction. The 

processes in which an enzyme interferes are summarized by 

the equation:  

 

             (1) 

 

where S is a substrate which, together with the enzyme E, 

forms an active complex with the kinetic rate k1; with the rate 

k2 the intermediary form E /S is decomposed to the initial 

reactants; the product P is formed from E /S with the kinetic 

rate k3. 

The atomic component of a biochemical system can be 

considered the simplest reaction which occurs in the system 

(which is considered to be less than an enzymatic reaction 

described by any of the mass action kinetic rules). Two 

patterns for the atomic reactions have been established, one 

pattern for creating a species out of, at least, two species, and 

one pattern for decomposing one species into, at least, two 

species.  

 

Building pattern. Two species are merged together to form a 

third one with a specific kinetic rate. Within this pattern, one 

of the input species is a substrate and the other one plays the 

role of an enzyme. The generically called product resulted 

between a substrate and an enzyme is an active complex. In 

equation (2), S1 is the substrate, S2 is the enzyme and S3 is the 

resulting active complex which it could have been noted as 

well as S1 /S2. 

                          (2) 

 

Decomposing pattern. A product is dissociated back to its 

forming speciess with a certain kinetic rate. On such a pattern, 

from the two resulted reactants one is enzyme. In equation (3), 

S3 is the active complex, S1 is the substrate and S2 is the 

enzyme. 

             (3) 

 

Thus, the enzymatic reaction for MA1, (given in equation (1)), 

can be decomposed into atomic components as follows: 

  

(i)  

(ii)                        (4) 

(iii)  

With the above notation, the component (i) respects the 

building pattern, while the components (ii), and (iii) respect 

the decomposing pattern. 

B. Petri nets 

A Petri net is one of the mathematical modelling structures 

used for the description of distributed systems, but mostly in 

biochemical systems as a reaction-system behaviour 

descriptor. One such net is composed of two types by nodes – 

places and transitions – connected through edges. The usage 

of Petri nets in biological systems comes as a natural solution 

as biochemical reactions are inherently bipartite (species, 

interactions), concurrent (interactions occur independent or 

parallel) and stochastic [2]; such attributes describe best the 

structure of the Petri nets. The advantages of using Petri nets 

to model biological systems come from the intuitive and 

executable modelling style which is imposed. This structure 

offers true concurrency and partial order semantics is 

involved. Another point is gained by Petri nets as it enforces 

the development of mathematical analysis techniques on it, 

hence over the modelled biological system [2]. 

The Petri net can represent a number of biological 

compounds through its places, tokens and links. A place 

corresponds to a node of the net and tokens at a node can be 

used to represent concentration levels. Links between places 

represent links in a pathway. 

III. RELATED WORK 

In [6] a basic evolutionary algorithm is used to infer 

biochemical systems. The entire solution is revolved around 

the syntax and semantics offered by the functional Petri nets. 

The input for the algorithm is limited to a sample of the 

targeted behaviour of the system. A limitation on the number 

of species that can participate in a reaction has been imposed 

(only two can take part); this is an application convention 



sustained by the fact that reaction involving more than two 

reactants and products are likely to occur and do not influence 

the system too much. 

The representation of the solution (respectively of the 

individual) is an encoding mechanism of the corresponding 

functional Petri net (see Figure 1). The network is split into a 

set of encoding series, each one corresponding to an 

enzymatic reaction. In the encoding string only substrates and 

products are considered. The smallest part of the encoding 

represents species and it contains the name of the species, its 

id, and the kinetic rate associated to the enzymatic reaction in 

play. Figure 1 shows how from a reaction (represented as Petri 

net) the specific encoding is generated. Each candidate 

solution is evaluated based on the associated fitness function. 

The fitness function is designed as the numerical difference 

between the behaviour of the generated system and the target 

behaviour given as input. 

 

S1

S2

E Pk

(S1, 1, k)(S2, 2, k)(P, 3, k)

 
Fig. 1. Solution encoding used in [6]. 

 

 

In [16] a method for inferring biological systems characterized 

by differential equation is developed using Genetic 

Programming (GP). Initially the application was creating for 

generating systems for gene regulation and due to the good 

performance it has been extended to biological systems. In the 

implementation, a system of differential equations to model 

the dynamics of the behaviour of the system has been used; 

the generated equation system is given by: 

 

fractdXidt = fiX1,X2,…,Xn,  i = (1, 2,…, n)  

 

where Xi is a state variable and n is the number of components 

in the system. 

The GP algorithm has been applied over the right-hand side of 

the equations in the systems. Each equation (seen as a gene) 

was manipulated as a function tree. The authors of [16] 

reported that better results have been achieved by hybridizing 

the GP algorithm with the least mean squares method. 

The approach presented in [10] uses evolutionary algorithms 

and Petri nets for modelling a biochemical system. The 

biochemical network is represented using a Petri net which is 

then translated into a string representation used by the 

evolutionary algorithm. The transformation allows the 

application of evolutionary operators in an easy manner. 
The method is applied in particular for metabolic pathways.  

A combination of evolutionary strategies and simulated 
annealing is employed in [21][22], but the model considers a 
piece-wise approach rather than a global construction. 

 

IV. LEARNING THE NETWORK 

ARCHITECTURE AND KINETIC RATES 

In order to learn the architecture of the biochemical network 

and the associated kinetic rates, we propose a combination of 

two well-known intelligent systems: genetic programming 

[13][14] and simulated annealing [1][9]. We combine them in 

an integrated manner (as depicted in Figure 2) in the sense that 

the main thread of the algorithm is conducted by genetic 

programming while the simulated annealing is inserted for 

speeding up the kinetic rates optimization process.  

The SA approach is fully dependent of the output generated by 

the GP iterations and it is not targeted to offer self-sufficient 

solution. 

GENETIC 
PROGRAMMING

SIMULATED 
ANNEALING

INPUT OUTPUT

 
Fig. 2. Generic architecture of the integrated hybrid intelligent system. 

A. Implementation 

The main thread of the algorithm is designed to respect almost 

accurately the structure of a generic GP algorithm which has 

access and full-rights for modifying the entire content of the 

representation of the solution. 

The SA algorithm is involved within the GP code in order to 

overcome some of its short-comings generated by the large 

amount of parameters to optimize. The solution space for SA 

is much smaller than the one of GP as the access that SA gets 

to the solution representation is much smaller. The decision 

when to call SA is important as it is made on the assumption 

that until that point suitable solutions have been generated 

regarding the network topology. For the applications 

considered in this work, the decision has been taken on the 

basis of empirical data gathered during the executions: every 

30 GP iterations, SA will come in to smooth the second part of 

the problem (appropriate kinetic rates). 

The purpose of combining GP algorithm with an optimization 

heuristic (in our case SA) is not only to perform faster 

optimisation for one of the dimensions of the problem. SA can 

be seen as a new GP operator (not in general, but strictly for 

this particular problem of network inference) for increasing 

the diversity and encourage a global convergence of the 

algorithm.  

As previously mentioned, the SA algorithm is called every 30 

generation; at each call-point not only an SA is employed, but 



a considerable number of SA execution threads. Each SA 

thread is assigned to a GP chromosome, chosen using the 

survival selection operator. Once the SA optimization is over, 

the updated chromosomes are pushed back into the 

population. After being pushed back in the GP, the SA-

optimized chromosomes serve as a base for another 

crossover/mutation session before a new GP iteration. The 

constants which influence the execution of any SA algorithm, 

initial and final temperature, and cycles per temperature, are 

generated randomly within a specific range for each 

chromosome on the execution thread in order to encourage the 

diversity of the solutions retrieved back. 

The conceptual description of the hybrid method for inferring 

a biochemical network can be easily followed in the flowchart 

in Figure 3. 

 

Initialize
population

30 GP
iterations

GP iteration

Selection
for

recombination

YES NO

SA

Survival 
selection

Recombination Mutation

Number of 
iterations 
reached

YESNO

Exit
 

Fig. 3. Flowchart of the GP and SA algorithms interaction and 

application. 

 

The following sections present how the components of the GP 

algorithm – chromosome representation, fitness function, 

selection, crossover and mutation operators – are modelled for 

biochemical networks and how SA is implemented. 

 

1) GP Components 

The components to be set for genetic programming are: 

- chromosome, which encodes the solution of the problem 

- fitness function, which evaluates the suitability of a 

solution 

- mutation and crossover operators, that contribute to the 

generation of new solutions 

Usually a GP solution is evolved using a single type of 

mutation and crossover; however, due to the complexity of the 

problem and the number of parameters to optimize, there have 

been implemented multiple types of operators which will be 

presented in the following sections. 

 

a) Representation 

A solution for our problem is a network of reactions together 

with their kinetic rates.  

Solutions space is defined as the set of all possible reaction 

models involving the given enzymes, substrates and, possibly, 

products.  

A chromosome consists of a set of reactions that occur in the 

corresponding real-life biochemical system, and having 

attached to each reaction a certain kinetic rate. The connection 

between this solution representation and Petri nets, which are 

mostly used for visualizing and simulating over a reaction 

model, is tight and it can be easily translated from one 

representation to another. 

The chromosome encodes the solution by considering and 

containing a set of reactions. For each reaction there exist a set 

of reactants (input species), a set of products (output species), 

and a kinetic rate attached to it. Figure 4 explains in a straight-

forward manner how a solution of the problem (visualized as a 

Petri net) is translated into a GP chromosome; the Petri net is 

the solution, while the table is the chromosome (each line in 

the table is a gene). 

A validity condition per chromosome is employed: a 

chromosome is valid if it contains every complex species 

(composed of several simple species) in the output of at least 

one reaction; in other words, a set of reaction in a valid 

chromosome should be able to generate all the species in the 

system. However, the validity condition should not be always 

accounted as it imposes a hard constraint on the candidate 

chromosomes; instead, the appreciation for validity is 

imported into the fitness function. 

 

b) Fitness function 

The behaviour for the chromosome is computed in the same 

manner described in [12], respectively by solving this system 

of ordinary differential equations (ODEs) associated to the 

network encoded in the chromosome. For example, the 

equations below represent the ODE system associated with the 

biochemical network in Figure 4. 

 

 

 

 

 

 

 

 

 



 

 
where: 

- si(t) represents the concentration of species i at time step t 

and 

- rj  represents the kinetic rate associated to j
th

 reaction. 

For evaluating the fitness, the difference between the target 

concentration and the concentrations obtained by evaluated 

model is calculated. The absolute values of these differences 

are summed up as given in equation (5).  

The purpose is to minimize the value of the fitness function.  
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where: 

- m is the number of time steps for which exists a targeted 

behaviour 

- n is the number of species in the system 

- si(t) represents the concentration of species i at time step t 

and 

- targeti(t) denotes the target concentration of species i at 

time step t. 

Other aggregation methods may be considered instead of 

simple summation of differences for each concentration, in 

order to ensure the model does not converge to a local 

optimum (most concentrations are fitted closely and the errors 

are only for a small number of species). 

The fitness function given in equation (5) further includes a 

penalty function which adds a corrective value if the model 

does not generate certain species for which the target 

behaviour is given as input or generates species for which 

there is no given target behaviour. Thus, the fitness formula is 

modified as in equation (6). By adding this penalty function, 

the check for validity of the chromosome, when created, is no 

longer required. 
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 (6) 

where: 

- X represents the set difference between target species set 

and current species set 

- Y represents the set difference between current species set 

and target species set 

- penalty_missing is a constant representing penalty for 

missing species from the current species set 

- penalty_extra is a constant representing penalty for extra 

species in the current species set 

- m, n, si(t) and targeti(t) are same notations as in equation 

(5) 

Raf1*

r1

RKIP

r2

r3 r4

ERK-
PP

r9 r11

r6 r7 r9 r10r5

MEK-
PP

ERK
RKIP-

P
RP

Raf1*_RKIP

MEK_PP-ERK
Raf1*_RKIP_ERK-

PP
RKIP-P_RP

Input species set Output species set Kinetic rates 

{Raf1*, RKIP} {Raf1*_RKIP} r1 kinetic rate 

{Raf1*_RKIP} {Raf1*, RKIP} r2 kinetic rate 

{ERK-PP, Raf1*_RKIP} {Raf1*_RKIP_ERK-PP} r3 kinetic rate 

{Raf1*_RKIP_ERK-PP} {ERK-PP, Raf1*_RKIP} r4 kinetic rate 

{Raf1*_RKIP_ERK-PP} {Raf1*, RKIP-PP, ERK} r5 kinetic rate 

{MEK-PP, ERK} {MEK-PP_ERK} r6 kinetic rate 

{MEK-PP_ERK} {MEK-PP, ERK} r7 kinetic rate 

{MEK-PP_ERK} {MEK-PP, ERK-PP} r8 kinetic rate 

{RP, RKIP-P} {RKIP-P_RP} r9 kinetic rate 

{RKIP-P_RP} {RP, RKIP-P} r10 kinetic rate 

{RKIP-P_RP} {RP, RKIP} r11 kinetic rate 
 

s1 s2

s3

s4

s5 s6 s11

s10

s7

s8

s9

Fig. 4. Translation of a Petri net representation into a GP chromosome. 

 

c) Selection operators 

The role of selection operators in an evolutionary computation 

algorithm is to select the parents for crossover and/or mutation 

and to select the chromosomes which will survive as solutions 

of the next generation. In our biochemical network inference 

work, we employ binary tournament selection, roulette wheel 

selection, and elitism. 

In order to preserve a greater diversity in the population a 

composed selection operator for the survivors of the next 

generation has been designed. This operator will select the 

individuals in the following way: 

- 5% elitism 

- 45% binary tournament selection 



- 50% roulette wheel selection. 

 

 

d) Mutation operators 

We designed four mutation operators for our specific GP 

chromosome representation. The algorithm can use all of them 

at once or only some of them. Each operator affects only one 

gene of the chromosome, i.e. a reaction of the model. 

Consequently, the description of the first two operators and 

their associated images below refer to a single reaction in the 

biochemical network (which is the entire chromosome) while 

the last two are visualized in the context of the whole 

chromosome. 

 

Alteration of one kinetic rate. This mutation is translated in 

mutation of a real representation. Thus, another real number 

within the specified range is generated to replace the current 

one as shown in Figure 5. 

 

{Raf1*, RKIP} {Raf1*_RKIP} 0.53

{Raf1*, RKIP} {Raf1*_RKIP} 0.27
 

Fig. 5. Kinetic rate mutation in GP chromosome representation. 

 

Replacement of a species. A species in the reaction is 

replaced randomly with another species (as seen in Figure 6). 

However, the choice for the replacement species is 

constrained in order not to make the chromosome contain 

duplicate reactions or lose the only reaction that generates a 

certain species. 

{Raf1*, RKIP} {Raf1*_RKIP} 0.53

{Raf1*, ERK} {Raf1*_ERK} 0.53
 

Fig. 6. Species replacement as a form of mutation in a GP chromosome. 

 

Insertion of a reaction. This operator entails adding a new 

reaction to the chromosome (see Figure 7). The reaction is 

picked randomly. The validity of the chromosome must be 

enforced to ensure that the new reaction does not already exist 

(in this case the mutation will simply be discarded). 

 
Fig. 7. Inserion of a new reaction in a GP chromosome. 

 

Deletion of a reaction. This operator entails removing a 

reaction from the chromosome (see Figure 8). The reaction is 

chosen randomly. The validity of the chromosome should be 

checked in order not to eliminate the only reaction that 

produces certain species. 

 
Fig. 8. Deletion of a reaction in a GP chromosome. 

e) Crossover operators 

Two crossover operators have been implemented in order to 

increase the pallet for solution generation of the algorithm. 

We use cut-and-splice and pick-and-replace crossover 

operators and each of them is described below. 

 

Cut-and-splice. This crossover operator works in two steps. 

First, the genes common to both parents are copied into the 

children. Afterwards, the remaining genes are assigned 

randomly and almost equally to the children. The order of the 

genes in the children does not matter as the chromosome is 

seen as a set of reactions. Figure 9 emphasizes how cut-and-

splice crossover operator is employed. 

Pick-and-replace. This operator, applied unidirectional, 

generates only one child; if applied twice on the same parents, 

two children may be generated. From the second parent, a 

reaction is chosen to replace a reaction in the first parent; the 

two chosen reaction from the parents must differ by one 

species, at most. For an exemplification of this operator see 

Figure 10. 

 

R_11 R_12 R_13 R_14 R_15 R_16 R_17

R_22R_21 R_23 R_24 R_28R_25 R_26 R_27

R_14
[R_28]

R_11
[R_22}

R_21 R_23 R_24R_12 R_13

R_14
[R_28]

R_25 R_26 R_27
R_11

[R_22]
R_15 R_16 R_17

crossover

Parent 1

Parent 2

Offspring 2

Offspring 1

 
Fig. 9. Cut-and-splice crossover operator. 

{Raf1*, RKIP} {Raf1*_RKIP} 0.53

{Raf1*, ERK} {Raf1*_ERK} 0.21

0.53{Raf1*, ERK} {Raf1*_ERK}

0.21{Raf1*, RKIP} {Raf1*_RKIP}

crossover

Parent 2

Parent 1

Offspring 1

Offspring 2

 
Fig. 10. Pick-and-replace crossover operator. 

 

2) SA Implementation 

Simulated annealing is a well-known optimisation method. 

Since the mutation of the kinetic rates alone on the GP 

chromosome is not a powerful optimization method, 

additional measures should be taken in order to obtain good 

kinetic rate values. Thus, we decided to incorporate a 

dedicated optimization heuristic within the evolutionary 

process simulated by GP. The role of SA is to minimize the 

fitness of the chromosome defined as a genetic programming 

component; therefore the actual function to be optimized by 

the SA algorithm employed is the one encoded in the 



chromosome and its cost is equivalent to the fitness formula in 

equation (6).  

The chromosome generated by the GP algorithm and received 

as input by the SA algorithm is not entirely used for 

optimization; there is only one small part which is available 

for SA, more exactly the kinetic rates attached to each reaction 

(gene of the chromosome). The reasoning behind this decision 

consists of the rather limited capabilities of the SA in terms of 

computational complexity and of the speed SA has when the 

set of parameters to be optimized is small. The complex 

mutation and crossover operators have already a great power 

to generate new chromosomes, while the selection operators 

keep the population diverse enough; therefore the SA is not 

supposed to handle these operations again because it will 

make the algorithm heavier and out of its scope. Indeed, the 

mutation operators employed for GP contain the possibility of 

altering the kinetic rates, but this process may occur less often 

than desired and in concurrency with other operators; thus SA 

is allowed to concentrate only on a small part of the 

chromosome.  

The SA algorithm will not modify too much the structure at 

one step.  At each iteration, SA will affect only one gene by 

modifying the corresponding kinetic rate with a random value 

within a specific range. 

SA efficiency is directly proportional with the problem-

specific settings of the algorithm parameters, temperatures, 

cycles per temperature, uphill probability. Although not 

favoured by theoreticians, the method trial-and-error works 

when establishing SA parameters. 

The temperature updates have been made according to the 

recommendation in [7]. Thus the temperature updates are 

based on the equation (7): 
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where: 

- T is the current temperature 

- minT is a constant representing the end temperature of the 

algorithm 

- maxT is a constant representing the start temperature of 

the algorithm 

- cycles represents the number of annealing cycles through 

which the algorithm has passed. 

The probability of accepting an uphill move should be 

proportional with the number of cycles which already ran in 

order to have at the beginning of the algorithm more uphill 

moves allowed and towards the end a transformation of the 

algorithm in a greedy-like approach. The function for 

probability of accepting an uphill move once with the number 

of runs was implemented to respect the inequality (8): 

 

T

bestcandidate

erandom




                 (8) 

where: 

- random is a uniformly distributed random number 

- candidate is the candidate for uphill move 

- best denotes the best solution so far and 

- T is the current temperature.  

B. Output 

The output of the application is intended to be as close as 

possible to the visual form of a biochemical network, either as 

a Petri net, or as a directed annotated graph. The rough output 

of the GP algorithmic thread will be a solution in the 

representation established as a GP particular component; 

therefore post-processing is required to bring the solution in a 

visualizer-simulation tool. The construction of the system will 

be based on Petri nets. In the recent years, a markup language 

for system biology has been developed. The language is called 

intuitively Systems Biology Markup Language (SBML). The 

SBML format will be used to be the actual output of the 

application. This type of file is supported as import file type 

by many Petri net simulation tools, in this way having 

recognized the applicability, scalability, and importance of it 

in the systems biology field. The basic output of the 

application consists of a set of reactions, each of them having 

attached a kinetic rate (as specified in problem statement). 

Taking into account the minimum requirements of the SBML 

format, the following sets must be constructed: species, 

parameters, and reactions. The species expected in SBML are 

mapped to the set of reactants in the solution system provided 

by the GP algorithm. The parameters are in fact the kinetic 

rates attached to the reactions. Finally, the list of reactions 

corresponds in meaning within the inner-application meaning; 

however, a more precise specification is required: separate 

reactants from products (in a wide-meaning) add assign them 

to the corresponding lists and write the kinetic law which in 

fact is the specification, by Id of the parameter/kinetic rate 

used for the reaction. 

Finally, when the SBML mappings are made and the file in 

the corresponding format is generated, the execution of the 

application ceases. In order to use the generated output, the 

actual end-user must perform a couple of steps in order to 

visualize the biochemical system. There are many Petri nets 

tools, but for testing Snoopy tool [23] was used. The steps for 

using the system are: 

1. Import SBML file to Snoopy as a continuous Petri 

net. 

2. Change concentrations of reactants (marking of 

places). 

3. Simulate. 

V. NUMERICAL EXPERIMENTS 

In order to test out approach we consider four examples. One 

is artificial and is generated by the authors and the others are 

well known signaling pathways.  

Signaling pathways play a pivotal role in many key cellular 

processes [5]. The abnormality of cell signaling can cause 

uncontrollable division of cells, which may lead to cancer.  

A. Test cases 

1) An artificial network 

The first experiment is a simple artificially created network as 

depicted in Figure 11. We used this first example to test and 



improve the model before moving the more complex real 

ones.  

 
Figure 11. The artificially created biochemical network. 

 

2) RKIP Pathway 

The RKIP pathway is one of the most important and 

intensively studied signaling pathways: ERK pathway (the 

Ras/Raf-1/MEK/ERK signaling pathway) which transfers the 

mitogenic signals from the cell membrane to the nucleus [19]. 

The ERK pathway is de-regulated in various diseases, ranging 

from cancer to immunological, inflammatory and degenerative 

syndromes and thus represents an important drug target. 

A brief illustration of regulations among proteins and complex 

based on signaling transduction in the ERK pathway is given 

as follows. Ras is activated by an external stimulus, via one of 

many growth factor receptors; it then binds to and activates 

Raf-1 to become Raf-1*, or activated Raf, which in turn 

activates MAPK/ERK Kinase (MEK) which in turn activates 

Extracellular signal Regulated Kinase (ERK). Cell 

differentiation is controlled by following cascade of protein 

interactions: Raf-1 →Raf-1* →MEK →ERK. 

The effect of regulation is dependent upon the activity of 

ERK. The Raf-1 kinase inhibitor protein (RKIP) inhibits the 

activation of Raf-1 by binding to it, disrupting the interaction 

between Raf-1 and MEK, thus playing a part in regulating the 

activity of the ERK pathway [20]. A number of computational 

models have been developed in order to understand the role of 

RKIP in the pathway and ultimately to develop new therapies 

[3][4]. 

The RKIP pathway is used in the previous sections for the 

explanations of the proposed method where a simplified Petri 

net version of it is displayed. 

3) Noisy RKIP Pathway 

This test is similar to standard RKIP Pathway, the difference 

being that the input for the repository 

of reactions the reverse reactions of the original reactions have 

been included as well. This approach doubles the number of 

reactions and tests the ability of the algorithm to adjust to 

noisy data. 

4) JAK-STAT Pathway 

(JAK)–signal transducer and activator of transcription (STAT) 

signaling pathway (also known as JAK-STAT) is another 

important and studied pathway [11]. It is involved in signaling 

through multiple cell surface receptors such as receptor 

tyrosine kinases, Gprotein-coupled receptors, and 

erythropoietin receptor (EpoR). Binding of the hormone Epo 

to the receptor activates the receptor-bound tyrosine kinase 

JAK2 and it further conducts to the tyrosine phosphorylation 

of the EpoR cytoplasmic domain. The core module of the 

JAK-STAT pathway is represented in Figure 11 (the image is 

taken from [18]). 

 
Figure 12. JAK-STAT pathway (taken from [18]). 

 

B. Parameter setting 

Table I contains the parameters used by the proposed method 

in order to simulate the biochemical systems (network and 

kinetic rates) for the models.  

The parameters employed in the experiments have been tested 

individually as well as in various combinations. It appeared 

that a combination of all of them gives the best results. 

All the experiments have been performed for 10 independent 

runs and the results have been statistically analyzed.  

C. Results and discussions 

Figures 13-16 and Table II display the results of the 

simulations. Those results are analysed in terms of fitness 

value (lover values are preferable) and number of reactions 

matched with the initial model (the known biological model). 

They represent 10 independent simulations of the model 

implemented in Java and run on a Windows machine 2.33 

GHz QC CPU and 8GB of RAM. 

 

 

 

 



TABLE I.  PARAMETRS USED IN EXPERIMENTS 

Parameters 
Test cases 

Artificial example RKIP Noisy RKIP JAK-STAT 

No of 

independent 

runs 

10 10 10 10 

No of 

generations 
1,000 1,000 1,200 1,000 

Population 
size 

500 500 500 500 

Mutation 

probability 
0.3 0.9 0.3 0.9 

Mutation 

operators 

Combination (with a 
random proportion) of 

alteration, replacement, 
insertion, deletion 

Combination (with a random 
proportion) of alteration, 

replacement, insertion, 
deletion 

Combination (with a 
random proportion) of 

alteration, replacement, 
insertion, deletion 

Combination (with a 
random proportion) of 

alteration, replacement, 
insertion, deletion 

Crossover 

probability 
0.1 0.5 0.1 0.5 

Crossover 

operators 

Combination of cut and 
splice and pick and 

replace 

Combination of cut and splice 

and pick and replace 

Combination of cut and 

splice and pick and replace 

Combination of cut and 

splice and pick and replace 

Elitism 

5% elitism 
45% binary tournament 

50% roulette wheel 

selection 

5% elitism 

45% binary tournament 
50% roulette wheel selection 

5% elitism 
45% binary tournament 

50% roulette wheel 

selection 

5% elitism 
45% binary tournament 

50% roulette wheel 

selection 
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Fig. 13. Statistical analysis for the artificial network. 
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Fig. 14. Statistical analysis for the RKIP Pathway. 
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Fig. 15. Statistical analysis for the Noisy RKIP Pathway. 
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Fig. 16. Statistical analysis for the JAK-STAT system. 



 

TABLE II.  STATISTICAL ANALYSIS 

Statistical analysis 
Test cases 

Artificial example RKIP Noisy RKIP JAK-STAT 

Best fitness 0.00593 0.07414 0.07177 1.35E-4 

Average fitness 0.00611 0.07418 0.07204 1.97E-4 

No of reactions (best solution) 6 10 10 8 

Average no of reactions 5.21 9.18 9.84 7.73 

Average stdev fitness 9.62E-5 1.41E-5 7.4E-5 1.66E-5 

Average stdev no of reactions 0.49 1.11 1.14 0.48 

 

From the above analysis it can be observed that the 
proposed method is able to find approximate solutions for the 
studied models. The artificial example is the simplest one and 
the method obtains best results for this. The value of the fitness 
function is significantly lower as compared to that of the fitness 
for the real experiments. JAK-STAT has a lower complexity 
while compared with RKIP and, in this case, all the reactions 
existing in the initial model are evolved. Kinetic rates are close 
to the real values as well. 

For the RKIP test case, the best individual found in all 10 
runs contains 10 of the original reactions (there are 11 original 
reactions). However, from the graphs in Figure 13 it can be 
observed that in some of the runs the maximum number of 
reactions is 12 and 13. This, in fact, means that we find more 
reactions, but not all of them are contained in the original 
model. This is also reflected in the fitness value (the best 
individual, although containing only 10 reactions, has a lower 
fitness than the model containing 12 or 13 reactions).  

In the case of Noisy RKIP biochemical system, the model 

obtained by our simulation respects the same topology and 

the difference of output comes from the kinetic rates flaw of 

approximation. We have also noticed that the number of 

required iterations for the fitness value to drop was greater in 

comparison with the simple case in previous section, still the 

algorithm has proven that it is able to adapt to noisy data. 

 
The results obtained show that the proposed method could 

be used for approximating topology and kinetic rates for 
complex biochemical systems. Its construction allows 
improvements and modifications which make it easy to adapt 
to similar (but not identical) biological problems (i.e. finding 
missing reactions in a network for instance). 

VI. CONCLUSIONS 

The method proposed in this work targets both the topology 

and the kinetic rates design of a biological system. Genetic 

programming is suitable for generating network like 

topologies while simulated annealing is suitable for 

optimization. The proposed approach is able to generate the 

required topology (for small cases) or a good approximation 

for more difficult ones and a sufficient approximation of the 

kinetic rates. The algorithm was tested against fully specified 

networks. A next step, for bringing more generality to the 

system, would be to test it for networks in which some 

reaction components, rules and/or reactions are missing (or 

unknown even for biologists). Another extension could be the 

investigation of other type of biochemical networks, more 

complex (such as cascades), not the signalling networks alone. 
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