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Abstract In this work, original results, concerning the

application of a discrete-time adaptive PID neural con-

troller in mobile robots for trajectory tracking control, are

reported. In this control strategy, the exact dynamical

model of the robot does not need to be known, but a neural

network is used to identify the dynamic model. To

implement this strategy, two controllers are implemented

separately: a kinematic controller and an adaptive neural

PID controller. The uncertainty and variations in the robot

dynamics are compensated by an adaptive neural PID

controller. It is efficient and robust in order to achieve a

good tracking performance. The stability of the proposed

technique, based on the discrete-time Lyapunov’s theory, is

proven. Finally, experiments on the mobile robot have been

developed to show the performance of the proposed tech-

nique, including the comparison with a classical PID.

Keywords MIMO system � Neural networks �
Nonlinear control � Adaptive control

1 Introduction

Currently, classical PID control schemes are commonly

used in the industry because the physical meaning of their

control parameters is clear and easy to interpret. But the

robotics systems are represented by nonlinear systems,

such as most of the physical processes and mechanical

systems. Generally, it is difficult to find the optimal set of

parameters for the above systems; furthermore, in some

cases they are time variant. However, the gains of these

controllers are very important for determining the behavior

of the control system. In recent years, various papers have

proposed tuning methods [1, 2]. Additionally, some

methods designed for linear systems do not have a good

performance to run on nonlinear systems.

In the field of robot control, the robot’s model and their

parameters are not easy to obtain accurately. Some of the

problems of classical PID algorithms that exist in the robot

control arise when their parameters vary with time, or

when the parameters do not vary at the same time or when

they are set to a constant value. Therefore, advanced PID

controllers have been developed quickly in the control field

of robots, including a lot of algorithms with PID tuning

parameters. Some of these methods are based on the fuzzy

technology [3, 5–7], PID controllers based on neural net-

works [8, 9], or genetic algorithms [4, 10, 11], and other

intelligent control theories combined with PID controllers

[12–16].

In papers about PID controllers based on neural networks

with applications in mobile robotics, Li et al. [17] can be

mentioned, where a hybrid control algorithm was proposed

including a PID control with a dynamic sliding mode and a

backstepping kinematics control. The algorithm was

applied to a non-holonomic mobile robot. The gain of the

sliding mode control is adjusted by a RBF-NN network with

an adaptive adjustment algorithm. The result gives two

torques based on a dynamic model. The results shown are

based on simulations and do not use any method to identify

the model to be controlled. In addition, the complete control

system is designed in the continuous domain.

In Normey-Rico [1], a PID controller applied to a non-

holonomic mobile robot for trajectory tracking, is
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proposed. In such paper, the development and imple-

mentation of an adaptive PID controller on a linear model

of the robot with experimental results of the proposed

technique, is described. In [2], the author uses a PID

controller, which is set by identifying the robot through

the recursive least squares method. The experimental and

simulation results are used to validate the proposed

technique.

This work aims at showing the design and implemen-

tation of an adaptive neural PID controller on the nonlinear

dynamics of a mobile robot. The control structure is divi-

ded into two parts: kinematic and dynamic controllers. A

control technique of inverse model, which has no param-

eter variations, is applied to the robot kinematics. There-

fore, it is not necessary to apply adaptive control

techniques. On the dynamic part, the parameters may vary

due to friction, mass loss, sliding, etc. In addition, the robot

has a nonlinear dynamics. Thus, the adaptive neural PID

controller is proposed to compensate the dynamic nonlin-

earities and their variations.

The control technique has the following advantages:

1. It can be applied to any MIMO nonlinear system, as in

the case of a mobile robot.

2. The exact model of the process or system (in this case

the robot dynamics) does not need to be known.

3. The design of a MIMO neuronal PID controller is

simple, and it is based on the topology of a dynamic

neural network which is adaptable.

4. The controller shown in this article is based on a

control action of linear and angular velocity, and not

on the torque applied to the wheels.

5. The identification of the dynamic model, the design,

analysis and implementation of the controllers were

made in discrete time, facilitating thus the program-

ming in computers and digital equipment. Besides, the

stability problems caused by direct implementation in

discrete time of a system designed in the continuous

domain are avoided.

6. A stability analysis performed in discrete time, dem-

onstrating the convergence of the direct neural model

to identify the dynamic model as well as the conver-

gence of the proposed controller, is presented.

This article is organized as follows: Sect. 2 presents an

overview of the system and shows the mathematical rep-

resentation of the unicycle robot model. The kinematic

control, nonlinear system identification and neural PID

control are studied in Sects. 3, 4 and 5, respectively. In

Sect. 6, the stability of the proposed system on a mobile

robot is shown. Experimental results are presented in Sect.

7 showing the efficiency of the controllers. Finally, the

conclusions are presented in Sect. 8.

2 Model of the mobile robot

2.1 Review of the mobile robotic system

In mobile robotics research, generally the task performed

by the robot requires high speed and many times the mass

and the friction are time-varying. Therefore, the dynamics

of the robot must be considered in these cases. Further-

more, the unicycle mobile robot is non-holonomic, since it

has two drive wheels that receive control commands from

linear and angular velocities. In practice, the presence of

non-holonomic constraints in the mechanical system pre-

vents the robot that performs some trajectories.

In this section, the model of a unicycle-type mobile

robot is introduced. Figure 1 shows the parameters and

variables of interest. Here, x1 and x2 are the linear and

angular velocities of the robot, G is the center of mass of

the robot, c is the position of the castor wheel, h is the point

of interest with coordinates rx, ry on the XY plane, w is the

robot orientation, and a is the distance between the land-

mark and the center point of the virtual axis that links the

drive wheels. The mathematical representation of the full

model [18] is given by the model: Kinematic model

_rx tð Þ
_ry tð Þ
_w tð Þ

0
@

1
A ¼

cos w tð Þ �a sin w tð Þ
sin w tð Þ a cos w tð Þ
0 1

0
@

1
A x1 tð Þ

x2 tð Þ

� �

þ
drx tð Þ
dry tð Þ
0

0
@

1
A ð1Þ

Fig. 1 Parameters of the unicycle mobile robot
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Dynamic model

_x1 tð Þ
_x2 tð Þ

� �
¼

#3

#1

x2
2 tð Þ � #4

#1

x1 tð Þ

�#5

#2

x1 tð Þx2 tð Þ � #6

#2

x2 tð Þ

0
BB@

1
CCA

þ

1

#1

0

0
1

#2

0
B@

1
CA u1ref tð Þ

u2ref tð Þ

� �
þ d1 tð Þ

d2 tð Þ

� �
ð2Þ

The uncertainties parameters associated to the mobile

robot are drx, dry, d1 and d2. The parameters drx and dry are

functions of the sliding speed and robot orientation, d1 and

d2 depend on physical parameters such as mass, momen-

tum, wheel diameters and parameters of the servos, forces

applied to the wheels, and other factors considered as

disturbances.

The robot model presented in (1) and (2) is divided into

a kinematics part and a dynamics part, respectively. Thus,

two controllers are applied, one of them based on feedback

linearization for the robot kinematics, and the other one

based on an adaptable neural network (for the robot

dynamics).

The discretization of the mobile robot model for the

purpose of digital control is: Discrete Kinematic model

rx k þ 1ð Þ
ry k þ 1ð Þ
w k þ 1ð Þ

0
@

1
A ¼ T0

cos w kð Þ �a sin w kð Þ
sin w kð Þ a cos w kð Þ
0 1

0
@

1
A x1 kð Þ

x2 kð Þ

� �

þ
rx kð Þ
ry kð Þ
w kð Þ

0
@

1
Aþ

drx

dry

0

0
@

1
A

ð3Þ

Model of discretized dynamics

x1 k þ 1ð Þ
x2 k þ 1ð Þ

� �
¼

X3

X1

x2
2 kð Þ þ X4

X1

x1 kð Þ

�X5

X2

x1 kð Þx2 kð Þ þ X6

X2

x2 kð Þ

0
B@

1
CA

þ

1

X1

0

0
1

X2

0
B@

1
CA u1ref kð Þ

u2ref kð Þ

� �
þ d1

d2

� �

ð4Þ

where the parameters are defined as:

X3

X1

¼ #3

#1

T0

� �
;

X4

X1

¼ 1� #4

#1

T0

� �
;

1

X1

¼ 1

#1

T0

� �
;

X5

X2

¼ �#5

#2

T0

� �
;

X6

X2

¼ 1� #6

#2

T0

� �
;

1

X2

¼ 1

#2

T0

� �

ð5Þ

where T0 is the sampling time and k is the discrete time.

The identified parameters for the Pioneer DX2 mobile

robot are: #1 = 0.3037; #2 = 0.2768; #3 = -0.0004018;

#4 = 0.9835; #5 = -0.003818; #6 = 1.0725 and T0 = 0.1

seg. These parameters were obtained in [18].

3 Kinematic controller

The controller design is based on a kinematic model of the

robot. The proposed kinematic controller is:

xc
1 ref kð Þ

xc
2 ref kð Þ

� �
¼

cos w kð Þ
T0

sin w kð Þ
T0

� sin w kð Þ
aT0

cos w kð Þ
aT0

0
BB@

1
CCA

�
rx ref k þ 1ð Þ þ lx tanh

kx

lx
~rx kð Þ

� �

ry ref k þ 1ð Þ þ ly tanh
ky

ly
~ry kð Þ

� �

0
BBB@

1
CCCA�

rx kð Þ
ry kð Þ

� �
2
6664

3
7775

ð6Þ

where ~rx kð Þ ~ry kð Þð ÞT¼ rxref kð Þ�rx kð Þ ryref kð Þ� ry kð Þð ÞT
are the position errors and the tanh(�) function has been

added to avoid a saturation of the control actions due to

large position errors. By replacing (6) in (3) and consid-

ering a perfect velocity tracking that is xc
1ref kð Þ�

x1 kð Þ;xc
2ref kð Þ� x2 kð Þ, the closed-loop equation is:

~rx k þ 1ð Þ
~ry k þ 1ð Þ

� �
�

lx tanh
kx

lx
~rx kð Þ

� �

ly tanh
ky

ly
~ry kð Þ

� �

0
BB@

1
CCA ¼

0

0

� �
ð7Þ

Defining the output error vector, ~h kð Þ ¼ ~rx kð Þ ~ry kð Þð ÞT

¼ rx ref k þ 1ð Þ ry ref k þ 1ð Þð ÞT� rx kð Þ ry kð Þð ÞT , (7) can

be written as:

~hðk þ 1Þ ¼ lx tanh
kx

lx

~rxðkÞ
� �

ly tanh
ky

ly

~ryðkÞ
� �� �

ð8Þ

By taking a Lyapunov candidate V kð Þ ¼ ~h kð Þ~hT
kð Þ, and

for kx, ky \ 1, kx/lx \ 1 and ky/ly \ 1, then ~h kð Þ ! 0 for

k ? ?. The assumption about perfect velocity tracking

will be relaxed when analyzing the stability of the whole

control system.

V kð Þ ¼ ~h kð Þ~hT
kð Þ; y para kx; ky\1; kx=lx\1; ky=ly\1;

entonces ~h kð Þ ! 0 for k ? ?.

4 Identification of the nonlinear dynamic model

To implement the PID control with variable gain, a back-

propagation of the output error of the mobile robot
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dynamic system to the control action, is necessary. The

model identification error is defined in the following way:

em kð Þ ¼ x kð Þ � x̂ kð Þ ¼ x1 kð Þ � x̂1 kð Þ; x2 kð Þ � x̂2 kð Þð ÞT

ð9Þ

The dynamics of the robot is nonlinear; it is defined in

(5) and can be represented by a neural network, defined by:

x k þ 1ð Þ ¼ h�f n f kð Þð Þ þ h�gu kð Þ þ h�dv t kð Þð Þ þ e ð10Þ

where h�f (j 9 m), h�g (j 9 j) and h�d (m 9 j) are the vectors

of optimal parameters of the function f(x) and g of (4). The

functions n (m 9 1) and v (m 9 1) are radial basis func-

tions related to the weights hf and hd respectively, and

e m� 1ð Þ is the lowest approximation error with respect to

the dynamic system, where j is the number of outputs, m is

the number of neurons, being:

e kð Þ ¼ f xð Þ � h�f kð Þn 1 kð Þð Þ
h i

þ g� h�g
h i

u kð Þ
þ d kð Þ � h�d kð Þv t kð Þð Þ
� �

ð11Þ

Since the optimal parameter vectors are unknown, then,

it is necessary to estimate their values. An estimate func-

tion based on (4) is defined as follows:

x̂ k þ 1ð Þ ¼ ĥf kð Þn f kð Þð Þ þ ĥgu kð Þ þ ĥd kð Þv t kð Þð Þ þ e

ð12Þ

From (9), (10) and (11), the identification error can be

described by:

em k þ 1ð Þ ¼ ~hf kð Þn f kð Þð Þ þ ~hgu kð Þ þ ~hd kð Þv t kð Þð Þ ð13Þ

where n and v are the activation functions of each neuron

in the hidden layer, and ~hf kð Þ ¼ h�f � ĥf kð Þ
� 	

;.~hg ¼

h�g � ĥg kð Þ
� 	

; and ~hd kð Þ ¼ h�d � ĥd kð Þ
� 	

n f kð Þð Þ ¼ exp � f kð Þ � cið ÞT f kð Þ � cið Þ
212

i

 !
ð14Þ

and

v t kð Þð Þ ¼ exp � t kð Þ � cið ÞT t kð Þ � cið Þ
212

i

 !
ð15Þ

where i is the ith neuron of the hidden layer, ci is the central

position of the ith neuron, and 1i is the width factor (equal

to one in this case) of the Gaussian function.

The vectors f and t are regressors of the neural model,

defined as:

f kð Þ ¼ x kð Þ; x k � 1ð Þ; x k � 2ð Þ; u kð Þ½ � ð16Þ

and

t kð Þ ¼ em kð Þ; em k � 1ð Þ; em k � 2ð Þ; u kð Þ½ � ð17Þ

Consideration 1: The optimal approximation error e is

bounded by a constant ek k� emax.

Consideration 2: The control action signal u(k) is lim-

ited to the maximum input ui(k) B uiMax to avoid possible

damage.

Theorem: Considering the nonlinear system defined by

(4), it can be approximated by the neural network (12)

using a neuronal adjustment law defined by:

Dhfi ¼ �c1emin f kð Þð Þ ð18Þ

Dhgi ¼ �c2eimui kð Þ ð19Þ

Dhdi ¼ �c3emiv t kð Þð Þ ð20Þ

Proof Defining a candidate function of Lyapunov, with

V a positive definite function given by:

V kð Þ ¼ 1

2

X2

i¼1

e2
mi kð Þþ c�1

1
~h

T

fi k� 1ð Þ~hfi k� 1ð Þ
� 	h

þ c�1
2

~h
T

gi k� 1ð Þ~hgi k� 1ð Þ
� 	

þ c�1
3

~h
T

di k� 1ð Þ~hdi k� 1ð Þ
� 	i

ð21Þ

Now, taking the difference in discrete time DV as

follows,

DV ¼
X2

i¼1

e2
mi k þ 1ð Þ � e2

mi kð Þ

 ��

þ c�1
1

~h
T

fi kð Þ~hfi kð Þ � ~h
T

fi k � 1ð Þ~hfi k � 1ð Þ
� 	

þ � � �

þ c�1
2

~h
T

gi kð Þ~hgi kð Þ � ~hT
gi k � 1ð Þ~hfi k � 1ð Þ

� 	

þ c�1
3

~h
T

di kð Þ~hdi kð Þ � ~h
T

di k � 1ð Þ~hdi k � 1ð Þ
� 	i

ð22Þ

Defining Dhfi, Dhgi and Dhdi as:

Dhfi ¼ c�1
1

~h
T

fi kð Þ~hfi kð Þ � ~h
T

fi k � 1ð Þ~hfi k � 1ð Þ
� 	

Dhgi ¼ c�1
2

~h
T

gi kð Þ~hgi kð Þ � ~h
T

gi k � 1ð Þ~hfi k � 1ð Þ
� 	

Dhdi ¼ c�1
3

~h
T

di kð Þ~hdi kð Þ � ~h
T

di k � 1ð Þ~hdi k � 1ð Þ
� 	

ð23Þ

and organizing (22), we have,

DV¼
X2

i¼1

e2
mi kþ1ð Þ�e2

mi kð Þ

 �

þDhfiþDhgiþDhdi

� �
¼���

¼
X2

i¼1

emi kð ÞþDemi kð Þð Þ2�e2
mi kð Þ

� 	
þDhfiþDhgiþDhdi

h i
¼���

¼
X2

i¼1

2emi kð ÞDemi kð ÞþDe2
mi kð Þ


 �
þDhfiþDhgiþDhdi

� �

ð24Þ
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Next, replacing (13) into (24), DV is written as:

DV ¼
X2

i¼1

2emi kð Þ emi k þ 1ð Þ � emi kð Þð Þ þ De2
mi kð Þ


 ��

þ De2
i kð Þ þ Dhfi þ Dhgi þ Dhdi

�
DV

¼
X2

i¼1

2emi kð Þ~hT

giui þ 2ei
~h

T

fin f kð Þð Þ þ 2ei
~h

T

div t kð Þð Þ
h

� e2
mi kð Þ þ De2

mi kð Þ þ Dhfi þ Dhgi þ Dhdi�
ð25Þ

From (23), and rewriting Dhfi, it yields:

Dhfi¼ c�1
1

~h
T

fi kð Þ~hfi kð Þ� ~hfi kð Þ�D~hfi kð Þ
h iT

~hfi kð Þ�D~hfi kð Þ
h i� �

¼���

¼2c�1
1

~h
T

fi kð ÞD~hfi kð Þ
� 	

� D~h
T

fi kð ÞD~hfi kð Þ
� 	

ð26Þ

Making the same analysis for Dhgi and Dhdi, such

variables can be expressed by:

Dhgi ¼ 2c�1
2

~h
T

gi kð ÞD~hgi kð Þ
� 	

� D~h
T

gi kð ÞD~hgi kð Þ
� 	

ð27Þ

Dhdi ¼ 2c�1
3

~h
T

di kð ÞD~hdi kð Þ
� 	

� D~h
T

di kð ÞD~hdi kð Þ
� 	

ð28Þ

Then, (26), (27) and (28) are replaced into (25) where

reorganizing terms, we obtain,

DV¼
X2

i¼1

�e2
mi kð ÞþDe2

mi kð Þþ2~h
T

fi kð Þ emin f kð Þð Þþ2c�1
1 D~hfi kð Þ

� 	h

�2c�1
1 D~h

T

fi kð ÞD~hfi kð Þ
� 	

þ���þ2~h
T

gi kð Þ emiui kð Þþc�1
2 D~hgi kð Þ

� 	

�2c�1
2 D~h

T

gi kð ÞD~hgi kð Þ
� 	

þ���þ2~h
T

di kð Þ emiv t kð Þð Þþc�1
3 D~hdi kð Þ

� 	

�2c�1
3 D~h

T

di kð ÞD~hdi kð Þ
� 	i

ð29Þ

Replacing the adjustment laws (18), (19) and (20) with

D~hfi, D~hgi and D~hdi, in (29), DV is represented by,

DV ¼
X2

i¼1

�e2
mi kð Þ þDe2

mi kð Þ � 2c�1
1 D~h

T

fi kð ÞD~hfi kð Þ
� 	h

� � � � � 2c�1
2 D~h

T

gi kð ÞD~hgi kð Þ
� 	

� 2c�1
3 D~h

T

di kð ÞD~hdi kð Þ
� 	i

ð30Þ

Most terms of (30) are negative, with the exception of

Demi.. This increasing of the model error can be approxi-

mated by the following equation:

Demi kð Þ ¼ oemi kð Þ
oĥfi kð Þ

 !T

Dĥfi kð Þ þ oemi kð Þ
oĥgi kð Þ

 !T

Dĥgi kð Þ

þ oemi kð Þ
oĥdi kð Þ

 !T

Dĥdi kð Þ

ð31Þ

The partial derivative of the model error depends only

on the weights of the neural network and can be rewritten

as:

Demi kð Þ ¼ � ox̂i kð Þ
oĥf kð Þ

 !T

Dĥf kð Þ � ox̂i kð Þ
oĥg kð Þ

 !T

Dĥg kð Þ

� ox̂i kð Þ
oĥd kð Þ

 !T

Dĥd kð Þ

ð32Þ

Changing the values of the weights according to (18),

(19) and (20); Eq. (32) can be written as:

Demi kð Þ ¼ ox̂i kð Þ
oĥf kð Þ

 !T

c1emin f kð Þð Þ

þ ox̂i kð Þ
oĥg kð Þ

 !T

c2eimui kð Þ

þ ox̂i kð Þ
oĥd kð Þ

 !T

c3emiv t kð Þð Þ ð33Þ

Considering the value of the partial derivatives of the

neural network (12) and replacing in (33), it yields:

Demi kð Þ ¼ c1emin
T f kð Þð Þn f kð Þð Þ þ c2eimu2

i kð Þ
þ c3emiv

T t kð Þð Þv t kð Þð Þ ð34Þ

The increase in the model error is defined as:

Demi kð Þ ¼ cemi ð35Þ

where

c ¼ max c1 n f kð Þð Þk k2þc2 ui kð Þj j2þc3 v t kð Þð Þk k2
� 	

c ¼ max c1 þ c2 uiMaxj j2þc3

� 	
\1

ð36Þ

The values c1, c2, c3, are learning factors of the neural

network (0 \ c1,2,3 \ 1), and they can be arbitrarily

defined.

Substituting the increment value of the model error in

(30), the Lyapunov discrete difference is defined as:

DV ¼
X2

i¼1

�e2
mi kð Þ 1� c2


 �
� 2c�1

1 D~h
T

fi kð ÞD~hfi kð Þ
� 	h

� � � � � 2c�1
2 D~h

T

gi kð ÞD~hgi kð Þ
� 	

� 2c�1
3 D~h

T

di kð ÞD~hdi kð Þ
� 	i

\0

ð37Þ

Equation (37) shows that the identification of the robot

dynamic model is stable and can be used as retro-propa-

gation error of the neural PID controller, which will be

described in the next section.
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5 Dynamic neural PID controller

The dynamic neural PID controller receives references of

linear and angular velocities computed by a kinematic

controller and gives as result two output velocities (linear

and angular) that are sent to the robot servos, as it is shown

in Fig. 2. Now, the error vector of output velocities is

defined as:

e kð Þ ¼ e1 kð Þ; e2 kð Þð ÞT ð38Þ

where

e1 kð Þ ¼ xc
1 ref kð Þ � x1 kð Þ e2 kð Þ ¼ xc

2 ref kð Þ � x2 kð Þ

The model of the classical PID controller in discrete

time is presented by:

oi kð Þ ¼ KPiei kð Þ þ KIi

Xk

j¼1

eiðjÞT0 þ
KDi

T0

ei kð Þ � ei k � 1ð Þð Þ

ð39Þ

where the subscript i indicates reference of linear velocity

(i = 1) or angular velocity (i = 2) of the mobile robot.

Considering the control action for the time instant (k -

1), it yields:

oi k � 1ð Þ ¼ KPiei k � 1ð Þ þ KIi

Xk�1

j¼1

eiðjÞT0

þ KDi

T0

ei k � 1ð Þ � ei k � 2ð Þð Þ ð40Þ

Next, making the difference between o(k) and o(k - 1)

from (39) and (40), respectively, the signal o(k) can be

described by:

oi kð Þ ¼ oi k � 1ð Þ þ KPi ei kð Þ � ei k � 1ð Þ½ � þ KIieiT0

þ KDi

T0

ei kð Þ � 2ei k � 1ð Þ þ ei k � 2ð Þð Þ ð41Þ

Thus, the PID controller can be obtained as a function of

the time instant (k - 1). Our goal is to get a neural network

based on the self-tuning method of a PID control system,

where the velocity outputs (linear and angular) can follow

the references generated by a kinematic controller.

Generally a modification of the PID control parameters

is made to get a more accurate control. But the classical

PID controller is limited since the parameters KDi, KIi and

KPi are constant. This means that the control output is

neither adaptable nor optimal. Then, an intelligent adaptive

control should be used in order to adapt their control

parameters for minimizing the position error. Considering

the ability to learn and adaptation of a neural network, the

proposed controller can solve these problems. The PID

parameters can be tuned and adaptively chosen to minimize

the velocity error with respect to external perturbations.

To represent a neural network with the PID controller an

activation function in the output of the network must be

added. In this work, a function tanh(�) that represents a

continuous saturation, presented in (42), is applied.

Therefore, the controller output is lower than the permitted

maximum control action, according to the consideration 2

of the previous section:

di ¼ uiMax ð42Þ

In addition, saturation in every action of the PID con-

troller is applied as well as the activation function of each

neuron while ensuring stability, as it will be proven in Sect.

6.
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Fig. 2 Control structure of the mobile robot
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Definition 1: The activation function f(�) is defined by:

f oið Þ ¼ di tan h
oi

di

� �
ð43Þ

where the controller defined in (41) is expressed in the

following way:

oi kð Þ ¼ f oi k � 1ð Þð Þ þ KPif ei kð Þ � ei k � 1ð Þð Þ
þ KIif eiT0ð Þ

þ KDif
ei kð Þ � 2ei k � 1ð Þ þ ei k � 2ð Þ

T0

� �
ð44Þ

Figure 3 shows the architecture of the neural PID

network.

To ensure the convergence and performance of the

optimization function, an index which is a function of

velocity tracking errors must be defined. Such index is

defined by,

E kð Þ ¼ 1

2
eT kð Þe kð Þ

 �

¼ 1

2

X2

i¼1

e2
i kð Þ ð45Þ

The parameters KDi, KIi and KPi for the neural PID

controller can be adjusted using the gradient descent

method, similar to the weights of a perceptron-type neural

network. The rules to update the controller parameters

are:

Khi k þ 1ð Þ ¼ Khi kð Þ þ DKhi kð Þ ¼
KPi k þ 1ð Þ
KIi k þ 1ð Þ
KDi k þ 1ð Þ

0
@

1
A

¼
KPi kð Þ
KIi kð Þ
KDi kð Þ

0
@

1
A�

gPi

oE kð Þ
oKPi

gIi

oE kð Þ
oKIi

gDi

oE kð Þ
oKDi

0
BBBBBB@

1
CCCCCCA

ð46Þ

where the values of gPi,Ii,Di are learning factors for the

neural PID controller. From (46) using the chain rule, the

following equations are obtained:

oE kð Þ
oKPi

¼ oE kð Þ
oxi kð Þ

oxi kð Þ
oui kð Þ

oui kð Þ
ooi kð Þ

ooi kð Þ
oKPi

oE kð Þ
oKIi

¼ oE kð Þ
oxi kð Þ

oxi kð Þ
oui kð Þ

oui kð Þ
ooi kð Þ

ooi kð Þ
oKIi

oE kð Þ
oKDi

¼ oE kð Þ
oxi kð Þ

oxi kð Þ
oui kð Þ

oui kð Þ
ooi kð Þ

ooi kð Þ
oKDi

ð47Þ

The values of the partial derivatives of the chain rule

are:

oE kð Þ
oxi kð Þ ¼ �ei kð Þ ð48Þ

For qxi/qui the dynamics is unknown and it must be

approximated by the dynamics identified by the neural

network from Eq. (12) obtaining ox̂i=oui

ox̂i

oui kð Þ ¼ ĥfi kð Þn f kð Þð Þ f kð Þ � cið Þ ofT kð Þ
oui kð Þ

� ��

þ ĥgi

oui

oui kð Þ þ ĥdi kð Þv t kð Þð Þ t kð Þ � cið Þ otT kð Þ
oui kð Þ

� ��

ð49Þ

From (16) and (17) where qfi
T/qui and qti

T/qui are [0, 0,

0, 1]T, respectively.

The relation qui/qoi is the derivative of the activation

function tanh(�). This partial derivative only is valid inside

the linear zone of the function, where the control action

does not produce levels that could cause damage or

breakage of the robot dynamics. Such operation is com-

puted by:

oui kð Þ
ooi kð Þ ¼

of oi kð Þð Þ
ooi kð Þ ¼ 1� f 2 oi kð Þð Þ

� �
ð50Þ

Now considering the partial derivatives with respect to

the controller gains, defined as:

ooi kð Þ
oKPi

¼ f ei kð Þ � ei k � 1ð Þð Þ
ooi kð Þ
oKIi

¼ f ei kð ÞT0ð Þ
ooi kð Þ
oKDi

¼ f
ei kð Þ � 2ei k � 1ð Þ þ ei k � 2ð Þ

T0

� �

8>>>>>><
>>>>>>:

ð51Þ

Next, the expressions obtained from (46) are described

as follows,

KPi kþ 1ð Þ ¼KPi kð Þ� gPiei kð Þ ox̂i

oui kð Þ

� �
f 0 oi kð Þð Þ: f ei kð Þ� ei k� 1ð Þð Þ½ �

KIi kþ 1ð Þ ¼KIi kð Þ� gIiei kð Þ ox̂i

oui kð Þ

� �
f 0 oi kð Þð Þ: f ei kð ÞT0ð Þ½ �

KDi kþ 1ð Þ ¼KDi kð Þ� gDiei kð Þ ox̂i

oui kð Þ

� �
f 0 oi kð Þð Þ

: f
ei kð Þ� 2ei k� 1ð Þþ ei k� 2ð Þ

T0

� �� �

ð52Þ
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Fig. 3 Architecture of the neural PID network
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The analysis of this control technique is shown in the

next section.

6 Stability analysis of the neural PID controller

First, a positive definite function for discrete time is

defined,

V kð Þ ¼ 1

2

X2

i¼1

e2
i kð Þ ð53Þ

The discrete difference of the candidate function is

computed by,

DV kð Þ ¼ V k þ 1ð Þ � V kð Þ ¼ 1

2

X2

i¼1

e2
i k þ 1ð Þ � e2

i kð Þ
� �

¼ DV1 kð Þ þ DV2 kð Þ ¼ � � � ¼ 1

2
e2

1 k þ 1ð Þ � e2
1 kð Þ

� �

þ 1

2
e2

2 k þ 1ð Þ � e2
2 kð Þ

� �

ð54Þ

The value of e(k ? 1) can be calculated by the follow-

ing equation:

ei k þ 1ð Þ ¼ ei kð Þ þ Dei kð Þ ð55Þ

where the difference of the error De(k) in the learning

process, is expressed by:

Dei kð Þ ¼ oei kð Þ
oxi kð Þ

oxi kð Þ
oKhi

DKT
hi ð56Þ

Considering (56), being DKhi = [DKPi, DKDi, DKIi] the

matrix parameters PID neural networks for the output

variable xi (linear or angular). Now, considering (55) and

(56), it yields

DVi kð Þ ¼ ei kð ÞDei kð Þ þ 1

2
De2

i kð Þ

¼ ei kð Þ oei kð Þ
oxi kð Þ

oxi kð Þ
oKhi

DKT
hi

þ 1

2

oei kð Þ
oxi kð Þ

oxi kð Þ
oKhi

DKT
hi

� �2

ð57Þ

Replacing the value of DKhi in (57), we have:

DVi kð Þ ¼ ei kð Þ oei kð Þ
oxi kð Þ

oxi kð Þ
oKhi

ghiei kð Þ oei kð Þ
oKhi

� �T

þ 1

2

oei kð Þ
oxi kð Þ

oxi kð Þ
oKhi

ghiei kð Þ oei kð Þ
oKhi

� �T
 !2 ð58Þ

Re-arranging (58), it yields:

DVi kð Þ ¼ �ghie
2
i kð Þ oei kð Þ

oxi kð Þ

� �2
oxi kð Þ
oKhi

oxi kð Þ
oKhi

� �T

þ 1

2
g2

hie
2
i kð Þ oei kð Þ

oxi kð Þ

� �4
oxi kð Þ
oKhi

oxi kð Þ
oKhi

� �T
 !4 ð59Þ

If (59) is analyzed to assure DVi(k) lower than zero, we

get,

DVi kð Þ ¼ �1þ 1

2
ghi

oei kð Þ
oxi kð Þ

� �2
oxi kð Þ
oKhi

����
����

2
" #

� ghie
2
i kð Þ oei kð Þ

oxi kð Þ

� �2
oxi kð Þ
oKhi

����
����

2

� 0

ð60Þ

From (60), the following condition must be satisfied:

1

2
ghij j

oei kð Þ
oxi kð Þ

� �









2

oxi kð Þ
oKhi

����
����

2

\1 ð61Þ

where gPi,Ii,Di \ 1 and

oei kð Þ
oxi kð Þ

� �2

¼ 1

oxi kð Þ
oKhi

����
����

2

¼ oxi kð Þ
oui











2

oui kð Þ
ooi kð Þ











2

ooi kð Þ
oKhi

����
����

2

8>>><
>>>:

ð62Þ

Being

oxi kð Þ
oui











2

¼ ox̂i

oui kð Þ











2

� di



 

2

oui kð Þ
ooi kð Þ











2

¼ f 0 oi kð Þð Þj j2� 1

ooi kð Þ
oKhi

����
����

2

¼ f ei kð Þ � ei k � 1ð Þð Þð Þ2þ f ei kð ÞT0ð Þð Þ2

þ f
ei kð Þ � 2ei k � 1ð Þ þ ei k � 2ð Þ

T0

� �� �2

� 3 dij j2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð63Þ

According to (62) and (63),

ghi3 diMaxj j4\1

1

3 diMaxj j4
[ ghi [ 0

ð64Þ

Now, the error obtained by the difference between the

trajectory followed by the robot and the desired trajectory
~h kð Þ is considered. If a perfect speed tracking is not con-

sidered (see Sect. 3), (7) can be written as,

~rx k þ 1ð Þ
~ry k þ 1ð Þ

� �
� lx 0

0 ly

� � tanh
kx

lx
~rx kð Þ

� �

tanh
ky

ly
~ry kð Þ

� �

0
BB@

1
CCA

¼ e1 kð Þ
e2 kð Þ

� �
ð65Þ
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where the error vector e kð Þ ¼ e1 kð Þ e2 kð Þ½ �T depends on

the tracking error of velocity defined as He(k), being:

e kð Þ ¼ e1 kð Þ
e2 kð Þ

� �
¼ T0

cos w kð Þ �a sin w kð Þ
sin w kð Þ a cos w kð Þ

� �
e1 kð Þ
e2 kð Þ

� �

¼ He kð Þ
ð66Þ

Rewriting (66), for small control errors L ~h kð Þ

 �

	
Kxy

~h kð Þ, being Kxy ¼ diag kx; ky


 �
.

~h k þ 1ð Þ �Kxy
~h kð Þ ¼ e kð Þ ð67Þ

Considering the Lyapunov candidate function:

V kð Þ ¼ 1

2
~h

T
kð Þ~h kð Þ[ 0 ð68Þ

The discrete difference is established by:

DV kð Þ ¼ V k þ 1ð Þ � V kð Þ
¼ ~h

T
k þ 1ð Þ~h k þ 1ð Þ � ~h

T
kð Þ~h kð Þ ¼ � � �

¼ eT kð ÞHT He kð Þ � 2eT kð ÞHT Kxy
~h kð Þ

þ ~h
T

kð ÞKT
xyKxy

~h kð Þ � ~h
T

kð Þ~h kð Þ ð69Þ

The sufficient condition for DV B 0 is the following one:

I�K2
xy

���
��� ~h kð Þ
�� ��2
 Hk k2 e kð Þk k2þ2 Hk k Kxy

�� �� e kð Þk k ~h kð Þ
�� ��
ð70Þ

Calculating the roots of (70)

~h
�� ��[

�2 Hk k Kxy

�� �� e kð Þk k
2 I�K2

xy

���
���

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Hk k2 Kxy

�� ��2
e kð Þk k2þ4 I�K2

xy

���
��� e kð Þk k2 Hk k2

r

2 I�K2
xy

���
���

¼ � � � ¼
�2 Hk k Kxy

�� �� e kð Þk k � 2 Hk k e kð Þk k
2 I�K2

xy

���
���

ð71Þ
Fig. 4 Pioneer 2DX mobile robot
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A sufficient condition for asymptotic stability reaching

DV B 0 can be expressed as,

~h
�� ��
 1� Kxy

�� ��
 �
Hk k e kð Þk k


 �.
I�K2

xy

���
��� ð72Þ

This implies that DV B 0, which assures that ~h! Bd.

Besides, the result obtained allows affirming that the

position error is bounded ultimately depending on the

approximation error of the neural PID controller.

Making the analysis for big errors, we have,

L ~h kð Þ

 �

¼
lx tanh

kx

lx

~rx kð Þ
� �

ly tanh
ky

ly

~ry kð Þ
� �

0
BB@

1
CCA ¼

lx

ly

� �
ð73Þ

Now considering (73) and (69), the discrete difference

can be expressed as:

DV kð Þ ¼ V k þ 1ð Þ � V kð Þ
¼ ~h

T
k þ 1ð Þ~h k þ 1ð Þ � ~h

T
kð Þ~h kð Þ ¼ � � �

¼ eT kð ÞHT He kð Þ � 2eT kð ÞHT Lþ LT L

� ~h
T

kð Þ~h kð Þ ð74Þ

The sufficient condition for DV B 0 is

~h kð Þ
�� ��2
 Hk k2 e kð Þk k2þ2 Hk k Lk k e kð Þk k þ Lk k2 ð75Þ

From (75), the following condition is obtained:

~h kð Þ
�� ��
 Hk k e kð Þk k þ Lk k ð76Þ

Last equation determines the size of the error vector

about the position control ~h kð Þ. The errors of (72) and (76)

allow establishing that the errors are bounded by the

approximation error of the adaptable neural PID controller.

7 Experimental results

The Pioneer 2DX mobile robot has a PC Pentium III on

board, running at a frequency of 800 MHz with 512 Mb of
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RAM memory (Fig. 4). The proposed control algorithm is

applied to the robot that accepts linear and angular veloc-

ities as the reference input signal.

For the experiment, the PID-NN controller was started

up with gains obtained from previous experiments using

other trajectories. In the experiment shown in this paper,

the gain parameters are adjusted on-line by the learning

algorithm, evaluating its evolution as a function of time.

During the experiment, the robot should follow a square

path of 1.75 m per side. Figure 5 shows the control actions

applied to the robot. In the first moments, it is possible to

appreciate variations since the gain parameters of the PID

controller are being adjusted.

In Fig. 6, the rx and ry references, and the path followed

by the mobile robot are shown.

Figure 7 shows the trajectory followed by the mobile

robot on the X–Y plane. At the beginning of the trajectory,

the error is greater due to the lack of adjustment of the PID

controller parameters, but it is equal to the error of the

classical PID controller without auto-tuning. Throughout

the experiment, the trajectory followed by the robot is very

close to the reference trajectory. Figure 8 shows the evo-

lution of the tracking error of the trajectory. In the first

moments, the error is similar to the one caused by a con-

ventional classical PID controller, but during the next few

seconds the error decreases significantly with respect to the

classical PID controller, even tending the error to zero. In

addition, the evolution of the tuning gains of the PID-NN

controller is shown in Fig. 9. In last figure, a comparison of

the output velocities between the network identified by the

dynamic neural model and the real dynamic of the mobile

robot is made.

The adaptable neural PID controller is robust with

respect to the modeling errors. In addition, it is effective in

the rejection of disturbances without producing any con-

stant error caused by the parameter uncertainties or exter-

nal disturbances. On the other hand, the classical PID

controller is vulnerable to changes in the dynamics and

uncertainties of the model, since the classic PID controller
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is designed for a linearized dynamic model of the robot.

The control law developed in this paper for a nonlinear

system does not need the dynamic model of the robot. It is

well known that the mathematical representation of a

dynamic model is not concerned with perfect accuracy, but

the response of the adaptive neural PID controller in front

of these uncertainties and nonlinearities of the model as

well as possible variations in the robot dynamics, increases

the system robustness. The overall stability of the closed-

loop system was demonstrated analytically through the

Lyapunov stability theory (Sect. 6). This control approach

can be considered as a general solution for the control of

nonlinear systems, and in particular for robotic systems,

when the dynamics is variable or there are uncertainties in

the model (Fig. 10).

This area of research is very large, and the issues of

modeling, stability, convergence and robustness analysis of

learning systems remain open to further investigation to

design controllers increasingly accurate.

8 Conclusions

In this paper, an adaptive neural PID controller for tra-

jectory tracking of a unicycle-type mobile robot has been

proposed. The controller generates velocity commands

with minimal error for the nonlinear dynamics of the robot.

In addition, it is important to remark that the nonlinear

dynamics does not need to be known a priori, but it must be

approximated (or identified), feeding back the errors in

order to set the controller gain parameters. It was proven

that the tracking errors are bounded and that their limits are

calculated depending on the approximation error of the

neural PID controller.

The adaptive neural PID controller can adjust their

parameters to reduce the error caused by differences in the

dynamics of the robot.

Experimental results have shown a good performance of

the proposed neural PID controller and its adaptation to the

dynamics of real robots. Besides, the proposed controller

can be applied to any process with nonlinear dynamics.
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