
Spiking Neural P Systems with Structural
Plasticity

Francis George C. Cabarle1, Henry N. Adorna1, Mario J. Pérez-Jiménez2, Tao
Song3

1Algorithms & Complexity Lab, Department of Computer Science
University of the Philippines Diliman

Diliman 1101 Quezon City, Philippines;
2Department of Computer Science and AI

University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain;

3School of Automation
Huazhong University of Science and Technology

Wuhan 430074, Hubei, China
email: fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph, marper@us.es,

taosong@hust.edu.cn

Abstract. Spiking neural P (SNP) systems are a class of parallel, dis-
tributed, and nondeterministic computing models inspired by the spiking
of biological neurons. In this work, the biological feature known as struc-
tural plasticity is introduced in the framework of SNP systems. Struc-
tural plasticity refers to synapse creation and deletion, thus changing the
synapse graph. The “programming” therefore of a brain-like model, the
SNP system with structural plasticity (SNPSP system), is based on how
neurons connect to each other. SNPSP systems are also a partial answer
to an open question on SNP systems with dynamism only for synapses.
For both the accepting and generative modes, we prove that SNPSP
systems are universal. Modifying SNPSP systems semantics, we intro-
duce the spike saving mode and prove that universality is maintained.
In saving mode however, a deadlock state can arise, and we prove that
reaching such a state is undecidable. Lastly, we provide one technique
in order to use structural plasticity to solve a hard problem: a constant
time, nondeterministic, and semi-uniform solution to the NP-complete
problem Subset Sum.

Key words: Membrane computing, Spiking neural P systems, Structural plas-
ticity, Computational universality, Deadlock, Undecidability, Subset sum

1 Introduction

Membrane computing is a branch of natural computing, aiming to abstract and
obtain ideas (e.g. data structures, control operations, models) from the structure

mailto:fccabarle@up.edu.ph
mailto:hnadorna@dcs.upd.edu.ph
mailto:marper@us.es
mailto:taosong@hust.edu.cn

2 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez, T. Song

and functioning of biological cells [18]. The idea of spiking in biological neurons
have been introduced in the framework of membrane computing as spiking neu-
ral P systems (SNP systems in short) [9]. In spiking neurons and in SNP systems,
the indistinct signals known as spikes do not encode the information. Instead,
information is derived from the time difference between two spikes, or the number
of spikes sent (received) during the computation. Time therefore is an informa-
tion support in spiking neurons, and not simply a background for performing
computations.

An SNP system can be thought of as a network of spike processors, processing
spike objects and sending them to other neurons. Essentially, SNP systems can be
represented by directed graphs where nodes are neurons (often drawn as ovals)
and edges between neurons are synapses. Spikes (represented as a multiset of
the symbol a) are sent from one neuron to another using their synapses. In SNP
system literatures, many biologically inspired features have been introduced for
computing use, producing many SNP system variants: see e.g. [5][7][14][16][17]
[20][22][24][25][27] and references therein.

In this work we are interested in the biological feature known as neural plas-
ticity which is concerned with synapse modifications. Related to this feature
are works in SNP systems with some forms of neural plasticity: Hebbian SNP
(HSNP) systems [7] and SNP systems with neuron division and budding [16][27].
In HSNP systems, given two neurons σi and σj , and a synapse (i, j) between
them, if spikes from neuron σi arrive repeatedly and shortly before neuron σj
sends its own spikes, the synapse weight (strength) of (i, j) increases. If however
the spikes from neuron σi arrive after the spikes of σj are sent, synapse weight
of (i, j) decreases. HSNP systems were introduced for possible machine learning
use in the framework of SNP systems.

In [16][27], other than spiking rules (rules that allow a neuron to send spike
to other neurons), two new rules are introduced: neuron division and neuron
budding rules. Both new rules involve creation of novel synapses (synaptogenesis)
due to creation of novel neurons (neurogenesis). The initial synapse graph of
the system is thus changed due to the application of the new rules, creating
exponential workspace (in terms of neurons) in linear time. The SAT problem
was then efficiently solved in [16][27] but by using the exponential workspace
created.

The particular type of neural plasticity we introduce in the framework of SNP
systems in this work is structural plasticity. Structural plasticity is concerned
with any change in connectivity between neurons, with two mechanisms: (1)
synaptogenesis and synapse deletion, (2) synaptic rewiring [2]. Unlike Hebbian
(also known as functional) plasticity which concerns itself with only two neurons
(for synapse strength modification), synaptic rewiring involves at least three
neurons: if we have three neurons σi, σj , σk and only one synapse (i, j), in order to
create a synapse (i, k) then synapse (i, j) must be deleted first1. Synaptogenesis is
present during neuron division and budding due to neurogenesis, while synapse

1 This is inspired by synaptic homeostasis in biological neurons, where total synapse
number in the system is left unchanged [2].

https://www.researchgate.net/publication/221563647_Spiking_Neural_P_Systems_with_Neuron_Division?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/221563647_Spiking_Neural_P_Systems_with_Neuron_Division?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/221563647_Spiking_Neural_P_Systems_with_Neuron_Division?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/221563647_Spiking_Neural_P_Systems_with_Neuron_Division?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/23931240_Activity-dependent_structural_plasticity?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/225970721_Spiking_neural_P_systems_with_neuron_division_and_budding?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/225970721_Spiking_neural_P_systems_with_neuron_division_and_budding?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/225970721_Spiking_neural_P_systems_with_neuron_division_and_budding?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/221563725_Hebbian_Learning_from_Spiking_Neural_P_Systems_View?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==

Spiking Neural P Systems with Structural Plasticity 3

rewiring is not included, and synapse deletion is implied. In [16][27] a linear
number of neurons forms the initial synapse graph of the SNP system. From the
initial synapse graph, an exponential number of neurons can be created after
some linear amount of time.

Biological neurons in adult human brains can reach more than billions in
numbers, and each neuron can wire to thousands of other neurons. This phe-
nomenon is another biological motivation in this work. In this work we can have
a collection of (possibly exponential number of) neurons. The initial synapse
graph can still be composed of a linear number of neurons wired or connected
using synapses. However, we are only concerned with the creation and dele-
tion of synapses over this collection for computing use. The synapse graph will
then change: it is possible the system will connect an exponential number of
neurons together at certain time steps (due to synapse creation) and make use
of additional workspace; at other time steps the system can connect a linear or
polynomial number of neurons (due to synapse deletion) and “release” additional
workspace (in terms of neurons or synapses) from the system which are no longer
needed. The introduction of spiking neural P systems with structural plasticity
(SNPSP systems for short) is also a partial response to the open problem D in
[22] where “dynamism” only for synapses is to be considered.

Furthermore, the standard SNP system originally from [9] included neurons
with spiking rules that can have complex regular expressions, delays (in applying
rules), and forgetting rules (rules that remove spikes from the system). A series of
papers which proved computational universality (or simply universality, if there
is no confusion) while simplifying the regular expressions of rules, removing
delays or forgetting rules followed, e.g. [6][8], with the most recent being [15]. In
[8] for example, SNP systems can be universal with the following being true: rules
are without delays; without using forgetting rules; regular expressions are simple.
In [6] it was shown that universality is achieved with more restrictions: without
delays and forgetting rules; without delays and simple regular expressions. In
order to maintain universality while further simplifying the system, we look for
using other biological motivations.

In [17], universality in SNP systems was achieved with the following features:
rules are without delays, and all neurons only have exactly one and the same
simple rule. The way to control or “program” the SNP systems in [17] was using
additional structures from neuroscience called astrocytes. Astrocytes introduce
nondeterminism in the system, allowing the system to have simple neurons (that
is, neurons in [17] contain only the rule a→ a).

In this work we use the biological feature of structural plasticity to achieve
universality with the following restrictions: (a) only a “small” number of neurons
have plasticity rules (details to follow shortly), (b) neurons without plasticity
rules are simple (they only contain the rule a → a), and (c) without the use of
delays and forgetting rules. We do not include additional neuroscience structures
other than neurons and their synapses. The introduction of the structural plas-
ticity feature, in order to “program” the system, allows the system to maintain
universality even with restrictions (a) to (c). Note that the idea of programming

https://www.researchgate.net/publication/221563647_Spiking_Neural_P_Systems_with_Neuron_Division?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/225970721_Spiking_neural_P_systems_with_neuron_division_and_budding?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/51809006_Spiking_Neural_P_Systems_with_Astrocytes?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/51809006_Spiking_Neural_P_Systems_with_Astrocytes?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/51809006_Spiking_Neural_P_Systems_with_Astrocytes?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/220475114_Spiking_Neural_P_Systems_Stronger_Normal_Forms?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/220475114_Spiking_Neural_P_Systems_Stronger_Normal_Forms?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==

4 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez, T. Song

how a network of neurons connect in order to perform tasks is an old one in
computer science, see for example [26].

We then modify the semantics of SNPSP systems, introducing a spike saving
mode. For SNPSP systems operating in such a mode, we prove that their comput-
ing power is not diminished. However, an interesting property called a deadlock
state, can occur in an SNPSP system in saving mode. We then prove that reach-
ing such a state in saving mode is undecidable for an arbitrary SNPSP system.
Lastly, we provide a constant time solution to the numerical NP-complete prob-
lem Subset Sum, using only nondeterminism in synapses (using plasticity rules),
and without still using forgetting rules and delays. The solution is semi-uniform,
and not surprisingly, can require an exponential number of neurons. Our pre-
liminary solution provides one possibility of using synaptic plasticity for solving
hard problems.

This work is organized in the usual way as follows: preliminaries used in the
rest of this work are given in Section 2; Section 3 introduces the syntax and
semantics of SNPSP systems, and an example is given in Section 4; universality
of SNPSP systems is given in Section 5; a modification of the semantics of
SNPSP systems, the spike saving mode, is introduced in Section 6, including
the deadlock property and its undecidability; a solution to Subset Sum is given
in Section 7; a brief summary followed by final discussions and further research
interests are given in Section 8.

2 Preliminaries

It is assumed that the readers are familiar with the basics of membrane com-
puting (a good introduction is [19] with recent results and information in the
P systems webpage2 and a recent handbook [23]) and formal language theory
(available in many monographs). We only briefly mention notions and notations
which will be useful throughout the paper.

We denote the set of natural (counting) numbers as N = {1, 2, . . .}. Let
V be an alphabet, V ∗ is the set of all finite strings over V with respect to
concatenation and the identity element λ (the empty string). The set of all
non-empty strings over V is denoted as V + so V + = V ∗ − {λ}. We call V a
singleton if V = {a} and simply write a∗ and a+ instead of {a}∗ and {a}+. If a
is a symbol in V , we write a0 = λ. A regular expression over an alphabet V is
constructed starting from λ and the symbols of V using the operations union,
concatenation, and +. Specifically, (i) λ and each a ∈ V are regular expressions,
(ii) if E1 and E2 are regular expressions over V then (E1 ∪ E2), E1E2, and
E+

1 are regular expressions over V , and (iii) nothing else is a regular expression
over V . With each expression E we associate a language L(E) defined in the
following way: (i) L(λ) = {λ} and L(a) = {a} for all a ∈ V , (ii) L(E1 ∪ E2) =
L(E1) ∪ L(E2), L(E1E2) = L(E1)L(E2), and L(E+

1) = L(E1)+, for all regular
expressions E1, E2 over V . Unnecessary parentheses are omitted when writing
regular expressions, and E+ ∪ {λ} is written as E∗.

2 http://ppage.psystems.eu/

http://ppage.psystems.eu/

Spiking Neural P Systems with Structural Plasticity 5

By NRE we denote the family of Turing computable sets of numbers, that is,
NRE is the family of length sets of recursively enumerable languages recognized
by Turing machines. In proving computational universality, we use the notion of
register machines. A register machine is a construct M = (m, I, l0, lh, R), where
m is the number of registers, I is the set of instruction labels, l0 is the start
label, lh is the halt label, and R is the set of instructions. Every label li ∈ I
uniquely labels only one instruction in R. Register machine instructions have
the following forms:

– li : (ADD(r), lj , lk), where the value in register r is increased by 1 then non-
deterministically go to either instruction label lj or lk;

– li : (SUB(r), lj , lk), where if the value in register r is nonzero, then subtract
1 from it and go to instruction label lj , otherwise go to instruction label lk;

– lh : HALT, the halt instruction.

Given a register machine M , we say M computes or generates a number
n as follows: M starts with all its registers empty. The register machine then
applies its instructions starting with the instruction labeled l0. Without loss of
generality, we assume that l0 labels an ADD instruction, and that the content of
the output register is never decremented, only added to during computation, i.e.
no SUB instruction is applied to it. If M reaches the halt instruction lh, then
the number n stored during this time in the first register is said to be computed
by M . We denote the set of all numbers computed by M as N(M). It was
proven that register machines compute all sets of number computed by a Turing
machine, therefore characterizing NRE [13].

Register machines can also work in an accepting mode. A number n is stored
in the first register of register machine M , with all other registers being empty. If
the computation of M starting with this initial configuration halts, then n is said
to be accepted or computed by M . In the accepting mode and even with M being
deterministic, i.e. given an ADD instruction li : (ADD(r), lj , lk) with lj = lk written
simply as li : (ADD(r), lj), register machine M can still characterize NRE.

As a convention in membrane computing, when comparing the power of two
number generating or accepting devices D1 and D2, the number zero is ignored,
i.e. N(D1) = N(D2) if and only if N(D1)−{0} = N(D2)−{0}. This convention
corresponds to the common practice in language and automata theory to ignore
the empty string.

3 Spiking Neural P Systems with Structural Plasticity

In this section we introduce the variant of SNP systems with structural plasticity.
The reader is invited to consult with the original SNP systems paper in [9] for
initial motivations and preliminary results.

Formally, a spiking neural P system with structural plasticity (SNPSP sys-
tem) of degree m ≥ 1 is a construct of the form Π = (O, σ1, . . . , σm, syn, in, out),
where:

https://www.researchgate.net/publication/234807858_Computation_Finite_and_Infinite_Machines?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==

6 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez, T. Song

– O = {a} is the singleton alphabet (a is called spike)
– σ1, . . . , σm are neurons of the form (ni, Ri), 1 ≤ i ≤ m, with ni ≥ 0 indicating

the initial number of spikes in σi, and Ri is a finite rule set of σi with the
following forms:
1. Spiking rule: E/ac → a, where E is a regular expression over O, with
c ≥ 1;

2. Plasticity rule: E/ac → αk(i,Nj), where c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1,
1 ≤ j ≤ |Ri|, and Nj ⊆ {1, . . . ,m}

– syn ⊆ {1, . . . ,m}× {1, . . . ,m}, with (i, i) /∈ syn for 1 ≤ i ≤ m, are synapses
between neurons;

– in, out ∈ {1, . . . ,m} indicate the input and output neurons, respectively.

Given neuron σi (we can also say neuron i or simply σi if there is no confusion)
we denote the set of neuron labels which has σi as their presynaptic neuron as
pres(i), i.e. pres(i) = {j|(i, j) ∈ syn}. Similarly, we denote the set of neuron
labels which has σi as their postsynaptic neuron as pos(i) = {j|(j, i) ∈ syn}.

Spiking rule semantics in SNPSP systems are similar with SNP systems in
[9]. However, we do not use forgetting rules and spiking rules with delays in this
work. Spiking rules are applied as follows: If neuron σi contains b spikes and
ab ∈ L(E), b ≥ c, then a rule E/ac → a ∈ Ri can be applied. Applying such
a rule means consuming c spikes from σi, thus only b − c spikes remain in σi.
Neuron i sends one spike to every neuron in pres(i). If a rule E/ac → a has
E = ac, we simply write this as ac → a.

Plasticity rules are applied as follows. If at time t we have that σi has b ≥ c
spikes and ab ∈ L(E), a rule E/ac → αk(i,N) ∈ Ri can be applied. The set
N is a collection of neurons to which σi can connect to (synapse creation) or
disconnect from (synapse deletion) using the applied plasticity rule. The rule
consumes c spikes and performs one of the following, depending on α:

If α = + and N − pres(i) = ∅, or if α = − and pres(i) = ∅, then there
is nothing more to do, i.e. c spikes are consumed but no synapse is created or
removed. For α = + : If |N − pres(i)| ≤ k, deterministically create a synapse to
every σl, l ∈ Nj−pres(i). If however |N−pres(i)| > k, then nondeterministically
select k neurons in N − pres(i), and create one synapse to each selected neuron.

For α = − : If |pres(i)| ≤ k, deterministically delete all synapses in pres(i).
If however |pres(i)| > k, then nondeterministically select k neurons in pres(i),
and delete each synapse to the selected neurons.

If α ∈ {±,∓} : create (respectively, delete) synapses at time t and then delete
(respectively, create) synapses at time t + 1. Only the priority of application
of synapse creation or deletion is changed, but the application is similar to
α ∈ {+,−}. The neuron is always open from time t until t + 1, i.e. the neuron
can continue receiving spikes. However, the neuron can only apply another rule
at time t+ 2.

An important note is that for σi applying a rule with α ∈ {+,±,∓}, creating
a synapse always involves an embedded sending of one spike when σi connects to
a neuron. This single spike is sent at the time the synapse creation is applied.
Whenever σi attaches to σj using a synapse during synapse creation, we have
σi immediately transferring one spike to σj .

Spiking Neural P Systems with Structural Plasticity 7

If two rules with regular expressions E1 and E2 can be applied at the same
time, that is, L(E1) ∩ L(E2) 6= ∅, then only one of them is nondeterministically
chosen and applied. All neurons therefore apply at most one rule in one time step
(locally sequential) but all neurons that can apply a rule must do so (globally
parallel). Note that the application of rules in neurons are synchronized, that is,
a global clock is assumed.

A system state or configuration of an SNPSP system is based on (a) distri-
bution of spikes in neurons, and (b) neuron connections based on the synapse
graph syn. We can represent (a) as 〈s1, . . . , sm〉 where si, 1 ≤ i ≤ m, is the
number of spikes contained in σi. For (b) we can derive pres(i) and pos(i) from
syn, for a given σi. The initial configuration therefore is represented as 〈n1, . . . ,
nm〉, with the possibility of a disconnected graph, i.e. syn = ∅. A computation is
defined as a sequence of configuration transitions from an initial configuration.
A computation halts if the system reaches a halting configuration, that is, a
configuration where no rules can be applied and all neurons are open. Whether
a computation is halting or not, we associate natural numbers 1 ≤ t1 < t2 < . . .
corresponding to the time instances when the neuron out sends a spike out to
(or when in receives a spike from) the system.

A result of a computation can be defined in several ways in SNP systems
literature, but in this work we use the following as in [9]: we only consider the
first two time instances t1 and t2 that σout spikes. Their difference, i.e. the
number t2 − t1, is said to be computed by Π. We denote the set of all numbers
computed in this manner by Π as N2(Π). The subscript indicates that we only
consider the time difference between the first two spikes of σout. Also note that
0 cannot be computed as mentioned in section 2.

InN2(Π) the neuron in is ignored, and we refer to this as the generative mode.
SNPSP systems in the accepting mode ignore σout and work as follows: The
system begins with an initial configuration, and exactly two spikes are introduced
in the system (using σin) at times t1 and t2. The number t2 − t1 is accepted by
Π if the computation halts. The set of numbers accepted by Π is denoted as
Nacc(Π). The families of all sets of Nα(Π), with α ∈ {2, acc}, is denoted as
NαSNPSP .

4 An Example of an SNPSP System

In this section, we provide an example to illustrate the definition and semantics
of an SNPSP system. Consider an SNPSP system Πex shown in figure 1. Neurons
2, out = 3, A1, and A2 contain only the rule a→ a and we omit this from writing.
In the initial configuration, at some time t, is where only σ1 has two spikes and
σ3 has only one spike. Neuron 1 is the only neuron with plasticity rules, where
α ∈ {+,−}, and we have syn = {(2, A1), (2, A2), (A1, 1), (A2, 1)}.

Πex operates as follows: The application of the two rules in σ1 are determin-
istic. Nondeterminism in Πex exists only in selecting which synapses to create
to or delete from.3 Neuron 3 has n3 = 1, so it sends a spike out to the environ-

3 We refer to this later as synapse level nondeterminism

8 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez, T. Song

'

&

$

%
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

6

@
@
@

@
@
@I

-

-

-

1
a2

a2/a→ +1(1, {2, 3})

a→ −1(1, {2, 3})

2 3
a

A1

A2

Fig. 1. An SNPSP system Πex.

ment, and we label this event as time t1. Since n1 = 2, the rule with α = + is
applied, so σ1 nondeterministically selects one (since k = 1) of σ2 or σ3 to create
a synapse to.

If the synapse (1, 3) is created, then σ1 sends one spike to σ3 also at time
t1. The rule with α = + consumes one spike, so σ1 now has one spike. At time
t2 the rule with α = − is applied, and synapse (1, 3) is deleted. The spike that
σ3 received from σ1 is sent to the environment at time t2 also. Two spikes are
sent out to the environment by Πex before it halts. The computed number in
this case is then t2 − t1 = 1. The computation of {1} by Πex is shown in table
1, where (!) means that the output neuron spikes to the environment.

time σ1 σ2 σ3 σA1 σA2 syn
t 2 0 1 0 0 syn
t1 1 0 1(!) 0 0 syn ∪ {(1, 3)}
t2 0 0 0(!) 0 0 syn

Table 1. Computation of Πex computing {1}.

If however the synapse (1, 2) is created, σ1 sends a spike to σ2 at time t1
during synapse creation. Neuron 2 then sends one spike each to auxiliary neurons
A1 and A2 at time t2. Also at time t2 is when the rule with α = − is applied, and
(1, 2) is deleted. A1 and A2 send one spike each to σ1, so that σ1 has two spikes
again at time t3, as in the initial configuration. As long as σ1 creates synapse
(1, 2) instead of (1, 3) then Πex keeps receiving two spikes in a loop.

Notice that if at some time m > 1 the synapse (1, 2) is created, it will take
σ1 three time steps for the possibility of creating (1, 3) again. Once (1, 3) is
created, one more step is required for σ3 to spike to the environment for the
second and final time. The computation of {4} for example, is shown in table 2.
Therefore, from the operation of Πex we then have N2(Πex) = {1, 4, 7, 10, . . .} =
{3m + 1|m ≥ 0}. Also notice that for Πex, its two plasticity rules in σ1 can be
replaced by a single plasticity rule: a2 → ±1(1, {2, 3}).

Spiking Neural P Systems with Structural Plasticity 9

time σ1 σ2 σ3 σA1 σA2 syn
t 2 0 1 0 0 syn
t1 1 1 0(!) 0 0 syn ∪ {(1, 2)}
t2 0 0 0 1 1 syn
t3 2 0 0 0 0 syn
t4 1 0 1 0 0 syn ∪ {(1, 3)}
t5 0 0 0(!) 0 0 syn

Table 2. Computation of Πex computing {4}.

5 Universality of SNPSP Systems

In this section we show that SNPSP systems are computationally universal, i.e.
they characterize NRE, both in the accepting and generative modes. In SNPSP
systems there are two types of nondeterminism: (1) in selecting which rule to ap-
ply in a neuron (rule level nondeterminism), and (2) in selecting which synapses
to create to or delete from (synapse level nondeterminism). However, we prove
that synapse level nondeterminism is sufficient for universality. Therefore, the
SNPSP systems we construct in this work do not involve rule level nondetermin-
ism.

We start with SNPSP systems working in the generative mode, followed by
the accepting mode. As in Πex and unless mentioned otherwise, we omit from
writing the rules for simple neurons with a → a as the only rule. A network of
these simple neurons (first referred to in [17]) with rules of a simple form, together
with fewer neurons that have plasticity rules, are computationally powerful: they
can perform tasks that Turing machines can perform.

SNPSP systems working in the generative mode

Theorem 1 NRE = N2SNPSP.

Proof. To prove theorem 1 we only need to prove NRE ⊆ N2SNPSP by sim-
ulating a register machine M in generative mode with an SNPSP system. The
converse, i.e. N2SNPSP ⊆ NRE, is straightforward or the Turing-Church the-
sis can be invoked. Without loss of generality we may assume for register machine
M = (m, I, l0, lh, R) to have: (a) all registers except register 1 are empty at halt-
ing; (b) the output register is never decremented during any computation; and
(c) the initial instruction of M is an ADD instruction.

The SNPSP system Π simulating M has three modules: the ADD, SUB and
FIN modules shown in figures 2, 3, and 4 respectively. All three modules consist
of simple neurons and some neurons that have plasticity rules. The ADD and
SUB modules simulate the ADD and SUB instructions of M , respectively. The
FIN module is used to output the computation of Π in the generative mode
mentioned in section 3.

Given a register r of M we have an associated neuron σr in Π. In any com-
putation, if r stores the value n, then σr will contain 2n spikes. For every label

https://www.researchgate.net/publication/51809006_Spiking_Neural_P_Systems_with_Astrocytes?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==

10 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez, T. Song

li in M we have σli in Π. The initial configuration of Π is where only σl0 has
one spike, indicating that instruction l0 in M is to be executed. Simulating a
rule li : (OP(r) : lj , lk) in M means σli has one spike and is activated. Then,
depending on the operation OP ∈ {ADD, SUB}, an operation is performed on σr.
Either σlj or σlk receives a spike and becomes activated. When M executes lh
(the label for the halting instruction of M), Π completely simulates the compu-
tation of M . Π then activates σlh , and σout sends two spikes to the environment
with a time difference equal to the stored value in register 1.

Module ADD shown in figure 2 simulating li : (ADD(r) : lj , lk): The initial
instruction of M is labeled l0, and it is an ADD instruction. Assume that instruc-
tion li : (ADD(r) : lj , lk) is to be simulated at time t. Therefore σli contains one
spike while all other neurons are empty except neurons associated with registers.
Neuron li uses its rule a→ a and sends one spike each to neurons l1i and l2i . At
time t + 1 both neurons l1i and l2i send one spike to σr so that σr receives two
spikes corresponding to the value one in register r of M . Also at time t + 1 is
when neuron l2i sends one spike to σp, which is the only neuron in module ADD
with plasticity rules.

Once σp receives a spike, σp consumes one spike and at time t + 2, σp non-
deterministically creates one synapse (since α = ±, k = 1) to either neuron lj or
lk. Also at time t+ 2, σp sends a spike to either neuron lj or lk; If synapse (p, lj)
was created then σp removes (p, lj) afterwards, otherwise σp removes (p, lk), at
time t+ 3.

At time t + 3 either neuron lj or lk is activated, i.e. receives one spike from
σp, and can therefore perform the associated instruction. From firing neuron li
the module ADD increments the spikes contained in σr by two and nondeter-
ministically activates either neuron lj or lk. We therefore correctly simulate an
ADD instruction. �

�
�
��

�
�
�
�
�
�
��

�
�
� ��

�
��

�
�
�
�
�
�
�

�
��	

@
@@R

��	

����������) ?

li

a→ ±1(p, {lj , lk})

l1i l2i

r p

lj lk

Fig. 2. Module ADD simulating li : (ADD(r) : lj , lk).

Module SUB shown in figure 3 simulating li : (SUB(r) : lj , lk): We simulate
a SUB instruction with the SUB module as follows: Initially only σli has one spike
and all other neurons are empty except those associated with registers. Let t be

Spiking Neural P Systems with Structural Plasticity 11

the time when neuron li fires, using its rule a → a to send one spike to σr and
σl1i . As with the SUB instruction in M , the two cases are when register r stores
a nonzero value (execute instruction lj) or when r stores zero (execute lk). For
the moment let us set Nj = {l2i } and Nk = {l3i } so that |Nj | = |Nk| = 1. The
case for a general Nj and Nk will be explained shortly.

If σr contains a nonzero number of spikes at time t, then it contains 2n (even
numbered) spikes corresponding to n stored in register r. At time t + 1 neuron
r has 2n + 1 (odd numbered) spikes, the additional one spike will come from
neuron li at time t. The rule with regular expression a(a2)+ is enabled at t+ 1
since σr has an odd number of spikes. At time t + 1 the rule consumes three
spikes and deterministically creates (for the moment) |Nj | = 1 synapse (r, l2i),
and sends one spike to σl2i . At time t+2, synapse (r, l2i) is deleted (since α = ±).

At time t + 2 therefore, neuron l2i contains two spikes: one each from neurons
l1i and r. We then have neuron l2i creating at time t + 2 a synapse, as well as
sending one spike, to neuron lj . Neuron lj is therefore activated.

Removing three spikes from 2n+ 1 spikes in σr makes the number of spikes
contained in σr even again. In particular, after rule application, σr will contain
2(n − 1) spikes corresponding to n − 1 in r. Module SUB correctly simulates
decreasing the value stored in r by one if r stored a nonzero value, and then
executing lj . �

�
�
���

�
�

�
�
�
��

�
�
�
�
�

�
��

�
�
�
�
�
�
�

�
���

H
HHj

?

XXXXXXXXz

li

lj lk

l1i

l2i a→ −1(l2i , {lj})
a2 → ±1(l2i , {lj})

l3i a→ −1(l3i , {lk})
a2 → ±1(l3i , {lk})

r

a(a2)+/a3 → ±|Nj |(r,Nj)

a→ ±|Nk|(r,Nk)

Fig. 3. Module SUB simulating li : (SUB(r) : lj , lk).

If σr contains no spikes at time t corresponding to a stored value of zero in
r, then σr contains one spike at time t+ 1 and applies the rule a→ ±1(r, {l3i }).
This rule consumes one spike, reducing the spikes contained in σr back to zero.
The rule also creates synapse (r, l3i) and sends one spike to neuron l3i at time
t+ 1. At t+ 2, synapse (r, l3i) is deleted. Neuron l3i contains 2 spikes at t+ 1, one
each from neurons r and l1i . At t+2, neuron l3i creates synapse (l3i , lk) and sends
one spike to σlk , activating σlk . Module SUB correctly simulated maintaining
the zero stored in r if r initially stored zero, and then executing lk.

For the general case where there are at least two SUB instructions oper-
ating on register r, this means we have at least two SUB modules operating

12 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez, T. Song

on the same σr: to simulate lx : (SUB(r) : lx1
, lx2

) and ly : (SUB(r) : ly1 , ly2),
we have to be certain that simulating lx (ly, respectively) only activates ei-
ther neuron lx1 or lx2 (ly1 or ly2 respectively). The set Nj (Nk, respectively)
is defined as Nj = {j|j is the second element of the triple in a SUB instruction}
(Nk = {k|k is the third element of the triple in a SUB instruction}, respectively).

The possibility of at least two SUB modules interfering with each other is
removed since each l2i and l3i , i ∈ {x, y}, is only activated when a spike from the
corresponding l1i is received. Only the specific SUB instruction to be simulated
has its corresponding neuron l2i (otherwise l3i , depending on the stored value in
r) in a SUB module receive two spikes. The other SUB modules only have their
neuron l2i (otherwise, l3i) receive only one spike. Either neuron l2i or l3i therefore
activate the correct neuron: whenever α = ± (when containing two spikes), or
α = − (when containing one spike). If α = − then only synapse removal is
performed. Therefore, the SUB instruction is correctly simulated by the SUB
module.

Module FIN shown in figure 4 once lh is reached in M : We assume at
time t that the computation in M halts, so that instruction with label lh is
reached. Also at time t we have σ1 containing 2n spikes corresponding to the
value n stored in register 1 of M . Neuron lh sends one spike each to σ1 and σout.
At time t + 1 neuron out sends the first of two spikes that it will send to the
environment before computation halts. Also at time t+ 1 we have σ1 containing
2n+ 1 spikes. Neuron 1 continuously applies its rule a3(a2)+/a2 → +1(1, {out})
if σ1 initially contained four or more spikes. The rule performs the following
every time it is applied: two spikes are consumed and the synapse (1, out) is
deleted (since α = −, k = 1).

Notice that synapse (1, out) does not exist, so the two spikes consumed are
simply removed from the system and no synapse is actually removed. Also notice
that applying this rule leaves σ1 with an odd number of spikes afterwards. The
value of k in the rule can actually be any positive integer but in this case it is
simply set to one. Once the number of spikes in σ1 is reduced to three, the rule
a3 → ±1(1, {out}) is applied. This rule is applied after n applications of the
previous rule. At time t+n the rule removes three spikes and leaves no spikes in
σ1, creates a synapse and sends a spike to σout, and deletes the synapse. Neuron
out receives one spike from σ1 and spikes for the second and final time to the
environment at time t+ n+ 1. The time difference between the first and second
spiking of σout is (t+ n+ 1)− (t+ 1) = n, exactly the number stored in register
1 of M when the computation of M halted.

From the description of the operations of modules ADD, SUB, and FIN, Π
clearly simulates the computation of M . Therefore we have N2(Π) = N(M) and
this completes the proof. ut

SNPSP systems working in the accepting mode

SNPSP systems in the accepting mode ignore the out neuron and use an in
neuron to take in exactly two spikes. The time difference between the two input
spikes is the number computed by the system, if the computation halts. Recall

Spiking Neural P Systems with Structural Plasticity 13

'
&

$
%�

�
�
�

�
�
�
�-@
@
@
@@R

-
out

lh 1

a3(a2)+/a2 → −1(1, {out})
a3 → ±1(1, {out})

Fig. 4. Module FIN.

that a register machine M is computationally universal even for the deterministic
accepting case. The resulting SNPSP system simulating M is therefore simpler
compared to the system simulating the generative case as in theorem 1.

Theorem 2 NRE = NaccSNPSP.

Proof. The proof for theorem 2 is a consequence of the proof of theorem 1. Given
a deterministic register machine M = (m, I, l0, lh, R) we construct an SNPSP
system Π as in the proof of theorem 1. Since M is deterministic in this case, we
modify Π so that addition is deterministic and we use an INPUT module instead
of a FIN module. As with the proof of theorem 1, the modules will contain simple
neurons having only a→ a as their rule, and some neurons with plasticity rules.

The new module INPUT is shown in figure 5 and functions as follows: All
neurons are initially empty and we let the time that the first spike enters the
module be t. The second and final spike input will arrive at time t + n so that
(t + n) − t = n is the value stored in register 1 of M . Neuron in uses its rule
a→ a at time t+ 1 to send one spike each to neurons A1, A2, and A3.

�
�
�
��
�
�
�
�
�
�
��

�
�
�

�
�
�
�

�
�

�
�

?

�
�
�	

H
HHH

HHj?
-
�

@
@R

�
�	

in

A1

a2 → ±1(A1, {l0}) A2 A3

1l0

Fig. 5. Module INPUT.

Neurons A2 and A3 exchange spikes every step from t + 2 until t + n + 1.
During every exchange, neurons A2 and A3 increase the spikes inside σ1 by two.

14 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez, T. Song

Once the second and the final spikes arrive, σin spikes at t+n+1 so that A2 and
A3 now each have two spikes, and therefore cannot apply their only rule a→ a.
At time t+n+ 1 neuron A1 collects two spikes so it can apply its plasticity rule
to activate neuron l0. The activation of neuron l0 corresponds to the start of the
simulation of instruction l0 in M . Note that from time t+ 2 until t+ n+ 1, σ1
collects a total of 2n spikes, corresponding to the value n stored in register 1.�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
��	

@
@
@@R

? ?

PPPPPPPPPPq

li
l1i l2i

lj r

Fig. 6. Module ADD simulating li : (ADD(r) : lj).

Since for the accepting case M can be computationally universal even with a
deterministic ADD instruction, we have the deterministic ADD module in figure
6. The functioning of the deterministic ADD module is clear and is simpler than
the nondeterministic ADD module. The SUB module remains the same as in the
proof of theorem 1. Module FIN is not used, while σlh remains in the system
except that pres(lh) = ∅.

Once σlh receives a spike indicating that the computation of M has halted,
the neuron applies its rule a → a but does not send its spike to any neuron.
Therefore, the computation in Π halts only if the computation in M halts, and
we have Nacc(Π) = N(M) completing the proof. ut

6 Spike Saving Mode Universality and Deadlock

In this section we consider a modification of how plasticity rules are applied: if
there is nothing more to do in terms of synapse creation or deletion, we do not
consume a spike. We prove that given this modification, SNPSP systems are still
universal. Additionally, an interesting property, the deadlock, can occur.

Let us consider again the definition and semantics of plasticity rules in section
3: If σi contains b spikes and a rule E/ac → αk : (i,Nj), if ab ∈ L(E), then the
plasticity rule can be applied. Applying the rule means consuming c spikes, and
then performing plasticity operations depending on the value of α and k. If
however pres(i) = ∅, there is nothing more to do for α = − : This is because
there is no synapse to delete, since σi is not a presynaptic neuron of any other

Spiking Neural P Systems with Structural Plasticity 15

neuron. Such a case is seen with the module FIN in figure 4. Note that c spikes
are still consumed, even if we later realize that there is nothing more to do. Such
a case also exists for α = +.

An interesting modification of this plasticity rule mode of operation is as
follows: during the “nothing more to do” case, i.e. whenever α ∈ {+,−} and
Nj − pres(i) = ∅ or pres(i) = ∅, we save spikes so that they are not consumed.
As an analogy, if we pay a certain money or currency4 to perform a task, then this
saving mode means our money is returned if we discover that the task has been
performed already. In contrast, the nonsaving mode in section 3 is analogous to
paying money to perform a task, regardless if the task is actually performed or
not.

A natural inquiry from modifying SNPSP systems from nonsaving to saving
mode is: are SNPSP systems in the saving mode still universal? The answer
is affirmative, and requires a modification of the FIN module in figure 4. The
modification is the basis for the next result. We denote by SNPSP s the family
of sets computed by an SNPSP system in saving mode.

Theorem 3 NRE = N2SNPSPs

Proof. The SUB and FIN modules make use of the nonsaving mode in theorem 1.
We only need to modify the two modules, while the ADD module remains intact.
We denote the modified SUB and FIN modules as SUB′ and FIN′, respectively.
Module FIN′ is shown in figure 7. For FIN′, we add one new neuron σp and
a new synapse (1, p). Neuron p does not have any rules and pres(p) = ∅. We
also remove the plasticity rule a3(a2)+/a2 → −1(1, {out}) and replace it with a
spiking rule a3(a2)+/a2 → a.

'
&

$
%�

�
�
�

�
�
�
�

�
�
�
�-

@
@
@
@@R

-

-

out

lh p1

a3(a2)+/a2 → a

a3 → ±1(1, {out})

Fig. 7. Module FIN′.

Note that we still do not use forgetting rules. The purpose of the new rule
in σ1 is to reduce the number of spikes each time step by 2 in σ1 until only 3
remain. Once there are 3 spikes in σ1, then the remaining rule a3 → ±1(1, {out})
is applied. The new σp functions as a trap or repository for the spikes removed
from σ1. We then have FIN′ functioning as it should be: delaying the second
spike of σout for n steps, as required, and as was performed by FIN also.

4 Or in the case of neurons, the quanta of energy which is the spike.

16 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez, T. Song

�
�
�
���

�
�

�
�
�
��

�
�
�

�
�

�
��

�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

����
HHHj

?

XXXXXXXXXXz

- -

li

lj lk

l1i

p1 p2l2i a→ a

a2 → ±1(l2i , {lj})
l3i a→ a

a2 → ±1(l3i , {lk})

r

a(a2)+/a3 → ±|Nj |(r,Nj)

a→ ±|Nk|(r,Nk)

Fig. 8. Module SUB′ simulating li : (SUB(r) : lj , lk).

Module SUB′ is shown in figure 8. For SUB′, we add trap neurons σp1 and
σp2 for every neuron l2i and l3i in a SUB module, respectively. We also add for
each SUB module, the synapses (l2i , p1) and (l3i , p2). We then replace the rule
a → −1(l2i , {lj}) in neuron l2i (rule a → −1(l3i , {lk}) in neuron l3i , respectively)
with a spiking rule a→ a. Similar to the trap neuron in FIN′, the trap neurons
in SUB′ receive the unwanted spikes from neuron l2i (or l3i) so that interference
does not occur. Therefore, SUB′ functions similarly to SUB, and as required. ut

Corollary 1 NRE = NaccSNPSPs

Corollary 1 follows from theorem 3, since in the accepting mode from theorem
2, the saving or nonsaving mode is of no consequence. An interesting property
that arises when using the saving mode is the existence of a deadlock. During
the saving mode, deadlock occurs when a plasticity rule is applied because the
regular expression is satisfied, but no actual work is performed by the neuron.
The result is a state where no further computation can continue, and the system
is stuck or trapped in the current configuration, even if a rule can always be
applied. More formally, a deadlock state (or configuration) occurs if a σi can
apply at least one plasticity rule and we have the following sequence of events
during the same time step: ac spikes are consumed, however the applied plasticity
rule either has α = + and N − pres(i) = ∅, or α = − and pres(i) = ∅; since
there is nothing more to do in such a case, ac spikes are returned to σi.

Lemma 1 A deadlock can exist in an arbitrary SNPSP system in saving mode
having at least two neurons, with α ∈ {+,−}.

Proof. Let us first consider when α = +, and we define a Π(+) as follows.

Π(+) = ({a}, σi, σj , syn(+))

where σi = (1, Ri), Ri = {a → +1(i, {j})}, σj = (0, ∅), and syn(+) = {(i, j)}.
Figure 9 provides an illustration for Π(+). We have that Π(+) has exactly one

Spiking Neural P Systems with Structural Plasticity 17

synapse between σi and σj , and exactly one rule (a plasticity rule) in σi. Once
the plasticity rule is applied, the saving mode requires us to consume one spike
first. The plasticity rule has α = + and k = 1 = |pres(i)|. Therefore we must
create a new synapse from σi to σj . However, the synapse (i, j) already exists
and we return the consumed spike, as dictated by the saving mode. Therefore
Π(+) is stuck in the current and only configuration: the regular expression of the
only rule is satisfied, however, we cannot perform further computations.

�
�

�
�

�
�
�
���
j i

a→ +1(1, {j})
a

Fig. 9. The SNPSP system Π(+) with a deadlock from the proof of lemma 1.

Now let us consider a similar SNPSP system Π(−) defined as follows.

Π(−) = ({a}, σi, σj , syn(−))

where σi = (1, Ri), Ri = {a → −1(i, {j})}, σj = (0, ∅), and syn(−) = ∅. In a
similar way, the one and only rule of Π(−) is always applied, since the regular
expression is satisfied. However, there is no synapse between σi and σj , since
syn(−) = pres(i) = ∅, so there is nothing to do. The saving mode dictates that
the consumed spike must be returned and the system remains in a deadlock. ut

An important problem (e.g. see [10]) is whether it is decidable to have an
arbitrary SNPSP system in saving mode arrives at a state of deadlock or not.
Not surprisingly, the answer to this problem is a negative one, as given by the
next result.

Theorem 4 It is undecidable whether an arbitrary SNPSP system Π′ in saving
mode, with at least two neurons, reaches a deadlock.

Proof. We consider an arbitrary recursively enumerable set of natural numbers
which we denote D. We can have a register machine, an SNP system, or an
SNPSP system generate the elements of D. For simplicity, we then choose to
construct an SNPSP system Π similar to section 5 such that D = N2(Π). The
system Π produces two spikes (using its output neuron) if and only if D is
non-empty, and this task is undecidable. Furthermore, we construct an SNPSP
system Π′ using Π as a submodule. We refer to figure 10 for a graphical repre-
sentation for Π′ instead of a formal definition.

If D is nonempty (this means σout of Π spikes twice), then σi receives two
spikes and it can apply its rule. However, from lemma 1 we know that the
application of the rule in σi results in a state of deadlock. The problem of
realizing if D is nonempty is undecidable. Therefore, a deadlock is reached if
and only if the set D is nonempty, which happens to be undecidable. ut

18 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez, T. Song

�
�

�
�

�
�
�
�

�
�
�
�
'

&

$

%
� �
j out

Π

i

a2 → +1(1, {j})

Fig. 10. The SNPSP system Π′ for the proof in theorem 4.

7 Solving Subset Sum

In this section we provide a solution to the numerical NP-complete problem
Subset sum. The solution provided here is nondeterministic and semi-uniform.
By uniform solution we mean that we construct only one solution (in this case,
an SNPSP system) for any instance of the problem. The construction of a semi-
uniform solution depends on specific instances of a problem, and semi-uniform
if the construction is done in polynomial time. We refer to [11][12][16][23][27] for
details of uniformity in solutions.

In [11] for example, the Subset sum problem was also solved in a semi-uniform
way using SNP systems with extended rules. Additionally, their solution used
modules that have neurons operating in deterministic or nondeterministic ways,
and applying rules in sequential or maximally parallel manner. A follow-up and
improved solution was then given in [12]. For the solution we present here, unless
otherwise mentioned, the SNPSP systems work in nonsaving mode as in section
3. The problem Subset sum can be defined as follows:
Problem: Subset Sum.

– Instance: S, and a (multi)set V = {v1, v2, . . . , vn}, with S, vi ∈ N and 1 ≤
i ≤ n;

– Question: Is there a sub(multi)set B ⊆ V such that
∑
b∈B

b = S?

We can now have the following last result.

Theorem 5 There exists a semi-uniform SNPSP system solving any instance
W = (S, V = {v1, . . . , vn}) of Subset Sum, with the following parameters:

– synapse level nondeterminism only,
– without forgetting rules and rules with delays,
– computes in constant time.

Proof. First, we formally describe the SNPSP system Πss(W) that solves in-
stance W of the problem.

Πss = ({a}, σ1, . . . , σn, σ1(1) , . . . , σ1(2v1) , . . . , σn(1) , . . . , σn(2vn) , σout, syn, out)
where:

(1) For 1 ≤ i ≤ n, σi = (vi, Ri), with Ri = {avi → +vi(vi, {i(1), . . . , i(2vi)})};

https://www.researchgate.net/publication/221563647_Spiking_Neural_P_Systems_with_Neuron_Division?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/221563811_Solving_Numerical_NP-Complete_Problems_with_Spiking_Neural_P_Systems?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==

Spiking Neural P Systems with Structural Plasticity 19

(2) For 1 ≤ j ≤ vn, σi(j) = (0, {a→ a});
(3) For vn + 1 ≤ k ≤ 2vn, σi(k) = (0, ∅);

and

– σout = (0, {aS → a});
– syn = {(1(1), out), . . . , (1(vn), out), . . . , (n(1), out), . . . , (n(vn), out)};

We refer to figure 11 for a graphical representation of Πss. In figure 11, for
simple neurons that only have the rule a→ a, we omit the writing of the rule as
in section 5. Note however that in the definition of Πss, some neurons actually
do not have rules in them. The distinction between these empty neurons and
the simple neurons will be explained shortly. Next, we provide the functioning
of Πss, which we divide into three stages for clarity:

Stage 1: This stage consists of operations performed by neurons σ1 to σn,
where σi initially contains vi spikes. These are the neurons from (1). Each σi
consumes all the initial vi spikes, to create vi number of synapses. Notice that
each σi has α = + and k = vi, but can nondeterministically select among 2vi
number of neurons to create a synapse to. Once every σi has finished selecting
and creating synapses to vi number of neurons, we move to the next stage.

#
"

!

#
"

!

�
�	�
�	�
�	�
�	
�
�	�
�	�
�	�
�	

�
 �	
XXXXXXXXz

-

�
��*

�
�
���

-
1

av1

av1 → +v1(1, {1(1), 1(2), . . . , 1(2v1)})

...

...

...
...

...

n
avn

avn → +vn(n, {n(1), n(2), . . . , n(2vn)})

out

aS → a

1(1)

1(v1)

1(v1+1)

1(2v1)

n(1)

n(vn)

n(vn+1)

n(2vn)

Fig. 11. The SNPSP system Πss solving Subset Sum.

Stage 2: This stage consists of operations performed by neurons σ1(1) up to
σ1(2v1) associated with σ1 (from stage 1), up to the neurons σn(1) up to σn(2vn)

associated with σn (from stage 1). These are the neurons from (2) and (3).
Note in the definition that given the 2vi neurons in this stage associated with
σi in stage 1, the first half of these neurons (i.e. σi(1) up to σi(vi)) are simple
neurons with the rule a→ a. The second half (i.e. σi(vi+1) up to σi(2vi)) are empty
neurons, without initial spikes or rules. Also note that neurons in the first half
each have a synapse to σout, while the second half do not have synapses, i.e. they
are all traps, where each of their presynaptic sets is empty.

20 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez, T. Song

Since the nondeterminism in stage 1 is synapse level, in some computations
some (or all) simple neurons will each receive a spike, while in other computations
some (or all) empty neurons each receive a spike. For the computations that
send a spike to the empty neurons, these neurons function as trap or repository
neurons. Consequently, the spikes in these trap neurons can also be removed
using forgetting or plasticity rules. The computations that have some (or all)
simple neurons in this stage then send one spike each to σout, leading us to the
next stage.

Stage 3: This final stage checks the existence of an S number of spikes from
stage 2. If there are S spikes in σout this means the answer to this instance of the
Subset Sum is affirmative, and one spike is sent to the environment. This spike,
affirming the answer to the problem instance, is sent out to the environment
3 time steps since stage 1. If however the spikes sent to σout from stage 2 do
not add up to S, this means the answer to the problem instance is negative.
Therefore, at time step 3 no spike is sent to the environment. ut

8 Final Remarks

Before we provide the final discussion, we briefly recall the contributions of
this work: Section 3 introduced the structural plasticity feature in the SNP
systems framework, providing a partial answer to an open problem in [22] about
dynamism only for synapses. The “programming” of the system is dependent on
the way neurons (dis)connect to each other using synapses.

In section 5 and 6 we proved that SNPSP systems in the generative and
accepting cases are universal, for both the saving and nonsaving modes. The
universality results hold even if we impose the following restrictions on SNPSP
systems: only 5 among the 17 total neurons for all modules5 use plasticity rules,
only synapse level nondeterminism exist, neurons without plasticity rules are
simple (having only the rule a→ a), and without using forgetting rules or delays.
Additionally, a state known as deadlock can arise during saving mode. Reaching
such a state for an arbitrary SNPSP system in saving mode is undecidable. In
section 7 we provided a nondeterministic and semi-uniform solution to Subset

Sum, computing in 3 time steps.

The deadlock state does not seem to exist in nonsaving mode. Does this
mean that saving mode is “better” than nonsaving mode? Both modes have
the same expressiveness, but perhaps the (non)existence of a deadlock is useful
for more practical purposes, e.g. modeling or analysis of systems. For example,
reaching a deadlock can be interpreted as reaching an unwanted state or fault
in a network or system. This is an interesting theoretical and practical question.
Deadlocks and other state types, as applied to modeling and analysis, have an
extensive body of research in many graphical formalisms such as Petri nets [10].
Several works have related Petri nets, SNP systems, and other P systems. See

5 ADD, SUB, and FIN module neurons in the saving and generative case, since the
accepting case requires a lesser number of neurons with plasticity rules.

Spiking Neural P Systems with Structural Plasticity 21

for example [3] and references therein. A state of undecidable deadlock can also
occur in systems in [20].

The solution provided in section 7 is a preliminary one: it is of course inter-
esting to ask other ways to encode instances of other NP-complete problems for
(non)deterministic synapse selection. What about (non)deterministic, uniform
solutions? In computer science we work to have efficient solutions, seeking min-
imal parameters. However, and as we mentioned in section 1, biology is usually
not space efficient: there are billions of cells in the human body, and billions
of neurons each with thousands of synapses in our brains. So the solution in
section 7 may not immediately appeal to our search for minimal parameters,
but it seems biologically appealing. Depending on the instance to be solved, the
number of neurons for example (and possibly the spikes and synapses) in Πss

can be exponential with respect to the instance size.

Other parameter modifications of computational interest abound: what about
parallel synapse creation-deletion? The semantics in section 3 for α ∈ {±,∓} is
sequential, requiring 2 time steps to perform such rules with such values for α.
We only list here a few other complexity parameters that can be used: the size
of syn during a computation, e.g. the number of synapses created (deleted), or
a bound on the size of syn (related to synaptic homeostasis); in the universality
proofs we had α ∈ {+,−,±}, so can we have universality with α having at most
2 values only? Normal forms for SNPSP systems are interesting as well.

SNPSP systems and the proofs in section 5 are reminiscent of the more gen-
eralized extended SNP systems and their universality proofs in [1]. Investigating
the relation of ESNP and SNPSP systems seems interesting. More recently, SNP
systems with rules on synapses were shown to be universal [25]. In these sys-
tems, neurons are only spike repositories, and the spike processing (including
nondeterminism) are done in the synapses. Investigating theoretical or practical
usefulness of such systems, together with structural plasticty, is also interesting.

Lastly, SNPSP systems can be equipped with one input and one output neu-
rons, providing us with a transducer. Such transducers can be used to compute
(in)finite strings as in [21]. Furthermore, SNPSP systems with multiple inputs
or outputs are also interesting, for computing strings or vectors of numbers as
in [1] again.

Acknowledgements

F.G.C. Cabarle is supported by a scholarship from the DOST-ERDT Philippines.
T. Song is supported by the China Postdoctoral Science Foundation Project (No.
2014M550389). H.N. Adorna is funded by a DOST-ERDT research grant and the
Semirara Mining Corporation professorial chair of the College of Engineering, UP
Diliman. M.J. Pérez-Jiménez acknowledges the support of the Project TIN2012-
37434 of the ”Ministerio de Economı́a y Competitividad” of Spain, co-financed
by FEDER funds. The authors are also grateful to three anonymous referees for
their useful comments.

https://www.researchgate.net/publication/225124055_Extended_Spiking_Neural_P_Systems?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/225124055_Extended_Spiking_Neural_P_Systems?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/229086646_On_Structures_and_Behaviors_of_Spiking_Neural_P_systems_and_Petri_nets?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==

22 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez, T. Song

References

1. Alhazov, A., Freund, R., Oswald, M., Slavkovik, M.: Extended Spiking Neural P
Systems. H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 123-134 (2006)

2. Butz, M., Wörgötter, F., van Ooyen, A.: Activity-dependent structural plasticity.
Brain Research Reviews 60, pp. 287-305 (2009)

3. Cabarle, F.G.C., Adorna, H..: On Structures and Behaviors of Spiking Neural P
Systems and Petri Nets. E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp.
145-160 (2013)

4. Cabarle, F.G.C, Adorna, H., Ibo, N.: Spiking neural P systems with structural
plasticity. ACMC2013, Chengdu, China, 4-7 November (2013)

5. Cavaliere, M., Ibarra, O., Păun, G., Egecioglu, O., Ionescu, M., Woodworth, S.:
Asynchronous spiking neural P systems. Theoretical Computer Science, 410, pp.
2352-2364 (2009)

6. Garćıa-Amau, M., Pérez, D., Rodŕıguez-Patón, A., Sośık, P.: Spiking Neural P Sys-
tems: Stronger Normal Forms. International journal of unconventional computing,
vol 5(5), pp. 411-425 (2009)

7. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Hebbian Learning from Spiking Neu-
ral P Systems View. D. Corne et al. (Eds.) WMC9, LNCS 5391, pp. 217-230 (2009)

8. Ibarra, O., Păun, A., Păun, G., Rodŕıguez-Patón, A., Sośık, P., Woodworth, S.:
Normal forms for spiking neural P systems. Theoretical Computer Science vol 372(2-
3) pp. 196-217 (2007)

9. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking Neural P Systems. Fundamenta
Informaticae, vol. 71(2,3), pp. 279-308 (2006)

10. Iordache, M., Antsaklis, P.: Deadlock and Liveness Properties of Petri Nets. Su-
pervisory Control of Concurrent Systems: A Petri Net Structural Approach. pp.
125-151. Birkhäuser Boston (2006)

11. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: Solving Numerical NP-Complete
Problems with Spiking Neural P Systems. Eleftherakis et al. (Eds.): WMC8 2007,
LNCS 4860, pp. 336-352 (2007)

12. Leporati, G., Mauri, G., Zandron, C., Păun, G., Pérez-Jiménez, M.: Uniform so-
lutions to SAT and Subset Sum by spiking neural P systems. Natural Computing
vol. 8, pp. 681-702 (2009)

13. Minsky, M.: Computation: Finite and infinite machines. Englewood Cliffs, NJ:
Prentice Hall, (1967)

14. Pan, L., Păun, G.: Spiking neural P systems with anti-spikes. J. of Computers,
Communication, & Control. vol IV(3), pp. 273-282 (2009)

15. Pan, L., Păun, G.: Spiking Neural P Systems: An improved normal form. Theo-
retical Computer Science vol 411(6), pp. 906-918 (2010)

16. Pan, L., Păun, Gh., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron
division and budding. Science China Information Sciences. vol. 54(8) pp. 1596-1607
(2011)

17. Pan, L., Wang, J., Hoogeboom, J.H.: Spiking Neural P Systems with Astrocytes.
Neural Computation 24, pp. 805-825 (2012)

18. Păun, Gh.: Computing with membranes. Journal of Computer and System Science,
vol. 61(1), pp. 108-143 (1999)

19. Păun, Gh.: Membrane Computing: An Introduction. Springer (2002)

20. Păun, Gh.: Spiking Neural P Systems with Astrocyte-like Control. J. Universal
Computer Science. vol. 13(11), pp. 1707-1721 (2007)

https://www.researchgate.net/publication/225124055_Extended_Spiking_Neural_P_Systems?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/225124055_Extended_Spiking_Neural_P_Systems?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/229086646_On_Structures_and_Behaviors_of_Spiking_Neural_P_systems_and_Petri_nets?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/229086646_On_Structures_and_Behaviors_of_Spiking_Neural_P_systems_and_Petri_nets?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/229086646_On_Structures_and_Behaviors_of_Spiking_Neural_P_systems_and_Petri_nets?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/234807858_Computation_Finite_and_Infinite_Machines?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/234807858_Computation_Finite_and_Infinite_Machines?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/23931240_Activity-dependent_structural_plasticity?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/23931240_Activity-dependent_structural_plasticity?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/225970721_Spiking_neural_P_systems_with_neuron_division_and_budding?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/225970721_Spiking_neural_P_systems_with_neuron_division_and_budding?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/225970721_Spiking_neural_P_systems_with_neuron_division_and_budding?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/51809006_Spiking_Neural_P_Systems_with_Astrocytes?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/51809006_Spiking_Neural_P_Systems_with_Astrocytes?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/221563725_Hebbian_Learning_from_Spiking_Neural_P_Systems_View?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/221563725_Hebbian_Learning_from_Spiking_Neural_P_Systems_View?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/221563811_Solving_Numerical_NP-Complete_Problems_with_Spiking_Neural_P_Systems?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/221563811_Solving_Numerical_NP-Complete_Problems_with_Spiking_Neural_P_Systems?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/221563811_Solving_Numerical_NP-Complete_Problems_with_Spiking_Neural_P_Systems?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/220475114_Spiking_Neural_P_Systems_Stronger_Normal_Forms?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/220475114_Spiking_Neural_P_Systems_Stronger_Normal_Forms?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/220475114_Spiking_Neural_P_Systems_Stronger_Normal_Forms?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==

Spiking Neural P Systems with Structural Plasticity 23

21. Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms by Spiking
Neural P Systems. International Journal of Foundations of Computer Science. vol.
8(6) pp. 1371-1382 (2007)

22. Păun, Gh., Pérez-Jiménez, M.J.: Spiking Neural P Systems. Recent Results, Re-
search Topics. A. Condon et al. (eds.), Algorithmic Bioprocesses, Springer (2009)

23. Păun, Gh., Rozenberg, G., Salomaa, A. (Eds) The Oxford Handbook of Membrane
Computing, OUP (2010)

24. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local
synchronization. Information Sciences, 219, pp.197-207 (2013)

25. Song, T., Pan, L., Păun, G.: Spiking neural P systems with rules on synapses.
Theoretical Computer Science vol. 529(10) pp. 82-95 (2014)

26. Turing, A. Intelligent Machinery. in Essential Turing: Seminal Writings in Comput-
ing, Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus The Secrets
of Enigma. Copeland, B. (Ed.). OUP (2004)

27. Wang, J., Hoogeboom, H.J., Pan, L.: Spiking Neural P Systems with Neuron Di-
vision. M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 361-376 (2010)

https://www.researchgate.net/publication/221563647_Spiking_Neural_P_Systems_with_Neuron_Division?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==
https://www.researchgate.net/publication/221563647_Spiking_Neural_P_Systems_with_Neuron_Division?el=1_x_8&enrichId=rgreq-fe0a4250d3e6f7edb8ff2f4587940d76-XXX&enrichSource=Y292ZXJQYWdlOzI3NjgzMDc1OTtBUzoyMzI1NTgxNTU3OTIzODRAMTQzMjQ1NzU5MzQ5MQ==

