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Abstract Context of data points, which is usually defined as the other data
points in a data set, has been found to paly important roles in data represen-
tation and classification. In this paper, we study the problem of using context
of a data point for its classification problem. Our work is inspired by the ob-
servation that actually only very few data points are critical in the context of
a data point for its representation and classification. We propose to represent
a data point as the sparse linear combination of its context, and learn the
sparse context in a supervised way to increase its discriminative ability. To
this end, we proposed a novel formulation for context learning, by modeling
the learning of context parameter and classifier in a unified objective, and
optimizing it with an alternative strategy in an iterative algorithm. Experi-
ments on three benchmark data set show its advantage over state-of-the-art
context-based data representation and classification methods.
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1 Introduction

Pattern classification is a major problem in machine learning research [45,50,
13,14,44,30,35]. This problem is defined as a problem of predicting a binary
class label of a given data point. There are many examples of this problem
in real-world applications. For example, in computer vision area, given an
image of face, we may want to predict whose face it is [7,49,41,24,51,22,46].
In natural language processing applications, given a text, we also want to
predict which topic it is about [28,26,1,19,21,10]. Moreover, in applications
of wireless sensor network, it is important to detect if one node is normal or
at fault. To solve this problem, we usually first represent the data point as a
feature vector, and then learn a classifier function to predict the class label
from its feature vector. The two most important topics of pattern classification
are data representation and classifier learning. Most data representation and
classification methods are based on single data point. When one data point
is considered for representation and classification, all other data points are
ignored. For example, in the most popular data representation method, feature
selection scheme, when we have a feature vector a one data point, we simply
reduce the abandoned features, and re-organize the remaining feature to a
new feature vector to obtain the representation of the data point [5,17]. In
this procedure, no other data points are considered beside the data point to
represent. Another example is the most classification method, support vector
machine (SVM). When we have a test, a linear function is applied to its feature
vector to predict its class label [20,18]. In this procedure, no other data points
are considered. However, the other data points other than the data point under
consideration may play important roles in its representation and classification.
These data points are called “context” of the considered data point. A data
point may have different true nature in different context. Thus it is necessary to
explore the contexts of data points when they are represented and/or classified.
To this end, some methods have been proposed to use the context of a data
point for its representation and classification. In this paper, we investigate the
problem of learning effective representation of a data point from its context
guided by its class label, and proposed a novel supervised context learning
method using sparse regularization and linear classifier learning formulation.

1.1 Related works

This paper is to explore the context information for data representation and
classification, thus we give some brief review of existing context-based data
representation and classification methods.

– The most popular context-based data classification is k nearest neighbor
classification (KNN). Given a test data point and a training set, we first
search the training set to find the k nearest neighbors of the test data point
to present its context, and then we determine its class label by a majority
vote of the the labels of the context [2,3]. All the data points of the context
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contribute equally to the final classification result, and no representation
procedure is needed.

– Wright et al. [48] proposed sparse representation based classification (SRBC),
to use the data points of one class as a context of a test data point, and
reconstruct it by its context. The reconstruction coefficients are imposed
to be sparse. Moreover, the class with the minimum reconstruction error is
assigned to the test data point. This method does not require to learn an
explicate classifier to predict the class label. Thus it cannot take advantages
of the classifier learning technologies.

– Melacci and Belkin [25] proposed Laplacian support vector machine (LSVM),
to use the k nearest neighbors of a training data point to present its con-
text, and learn a linear classifier to respect the context. Specifically, the
classification result of a training data point is imposed to be similar to its
contextual data points. However, after the classifier is trained, and used to
classify a test data point, the context of the test data point is ignored.

– Gao et al. [9] proposed Laplacian sparse coding (LSC) to represent the
context of a data point by using its k nearest neighbors, and represent the
data points with regard to the contexts. Each data point is reconstructed
as a linear combination of the codewords of a dictionary, and the combi-
nation coefficients are imposed to be sparse. Moreover, the combination
coefficients of a data point are impose to be similar to these of its contex-
tual data points. This method is unsupervised simply a data representation
method, and the class label information is ignored.

1.2 Contributions

We propose a novel method to explore the context of a data point, and use it
to represent it. Moreover, a linear classifier function is learned to predict its
class label from its representation based on its context. We use its k nearest
neighbors as its context, and try to reconstruct it by the data points in its
context. The reconstruction errors are imposed to be spares, and we measure
the sparsity by a ℓ1 norm regularization, similar to sparse coding [40,23,39,
29,38]. Moreover, the reconstruction result is used as the new representation
of this data point. We apply a linear function to predict its class label. To
learn the reconstruction coefficient vectors of the data points and the classi-
fier parameter vector, we build a unified objective function. In this function,
the reconstruction error are measured by a squared ℓ2 norm distance, and
the classification error is measured by the hinge loss. Moreover, the ℓ1 norm
regularization is applied to the reconstruction coefficient vectors to encourage
their sparsity, and the squared ℓ2 norm regularization is applied to the classi-
fier parameter vector to reduce the complexity of the classifier. By optimizing
the objective function with regard to both the reconstruction coefficient vec-
tors and the classifier parameter vector, the context based representation and
classier are learned simultaneously. In this way, the context and the classifier
can regularize the learning of each other. To minimize the proposed objec-
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tive function, we use the Lagrange multiplier and an alternate optimization
method, and develop an iterative algorithm based on the optimization results.
The contributions of this paper are of two folds:

1. We propose a novel context representation formulation. A data point is
represented by its sparse reconstruction of its context. The motivation of
this contribution is that for each data point, only a few data points in
its context is of the same class as itself. However, it is critical to find
which data points plays the most important roles in its context for the
classification of the data point itself. To find the critical contextual data
points, we proposed to learn the classifier together with the sparse context.
The classifier can be used to regularize the learning of the reconstruction
coefficient vector, and thus find the critical data points in the context.
We mode this problem as a minimization problem. In this problem, the
context reconstruction error, reconstruction sparsity, classification error,
and classifier complexity are minimized simultaneously.

2. We also problem a novel iterative algorithm to solve this minimization
problem. We first reformulate it as its Lagrange formula, and the use an
alterative optimization method to solve it. In each iteration, we first fix the
classifier parameter vector to update the reconstruction vectors, and then
fix the reconstruction vectors to update the classifier parameter vector.

1.3 Paper organization

This paper is organized as follows. In section 2, we introduce the proposed
method. In section 3, we evaluate the proposed method experimentally. In
section 4, this paper is concluded with future works.

2 Proposed method

In this section, we introduce the proposed classification method which explores
the context information. The learning problem is firstly formulated by model-
ing an objective function, and then it is optimized in an iterative algorithm.

2.1 Problem formulation

We consider a binary classification problem, and a training set of n data points
are given as {xi}

n
i=1, where xi ∈ R

d is a d-dimensional feature vector of the
i-th data point. The binary class labels of the training points are given as
{yi}

n
i=1 and yi ∈ {+1,−1} is the class label of the i-th point. To learn from

the context of the i-th data point, we find its k nearest neighbors and denote
them as {xij}

k
j=1, where xij is the j-th nearest neighbor of the i-th point.

They are further organized as a d × k matrix Xi = [xi1, · · · ,xik] ∈ Rd×k,
where the j-th column is xij . The k nearest neighbors of the i-th point is used
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to represent its context information. We represent xi by linearly reconstructing
it from its contextual points as

xi ≈ x̂i =

k∑

j=1

xijvij = Xivi (1)

where x̂i is its reconstruction, and vij is the reconstruction coefficient of the
j-th nearest neighbor. vi = [vi1, · · · , vik]

⊤ ∈ R
k is the reconstruction coef-

ficient vector of the i-th data point. The reconstruction coefficient vectors
of all the training points are organized in reconstruction coefficient matrix
V = [v1, · · · ,vn] ∈ R

k×n, with its i-th column as vi. The key idea of this
method is an assumption the for both the reconstruction and classification of
xi, only a few of its nearest neighbors play important role, while the remain-
ing neighbors could be discarded, resulting a sparse context. To encourage
the sparsity of the context, we impose a ℓ1 norm penalty to the contextual
reconstruction coefficient vector vi. Moreover, to learn the contextual recon-
struction coefficient vectors, we also propose to minimized the reconstruction
error measured by a squared ℓ2 norm penalty between xi and Xivi, and the
following optimization problem is obtained,

min
V

{
β

n∑

i=1

‖xi −Xivi‖
2
2 + γ

n∑

i=1

‖vi‖1

}
, (2)

where β and γ are trade-off parameters.

To classify xi, instead of applying a classifier to xi itself, we apply a linear
classifier to its contextual reconstruction x̂i. The classifier is defined as

f(x̂i) = w⊤x̂i = w⊤Xivi (3)

where w ∈ R
d is the classifier parameter vector. To learn the classifier, we

consider the hinge-loss function and the squared ℓ2 norm regularization simul-
taneously. The following optimization problem is obtained with regard to the
classifier learning,

min
w,V,ξ

{
1

2
‖w‖22 + α

n∑

i=1

ξi

}

s.t. 1− yi
(
w⊤Xiv

)
≤ ξi, ξi ≥ 0, i = 1, · · · , n,

(4)

where 1

2
‖w‖22 is the the squared ℓ2 norm regularization term to reduce the

complexity of the classifier, ξi is the slack variable for the hinge loss of the i-th
training point, ξ = [ξ1, · · · , ξn]

⊤ and α is a tradeoff parameter.

The overall optimization problem is obtained by combining the problems
in both (2) and (4) as
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min
w,V,ξ

{
1

2
‖w‖22 + α

n∑

i=1

ξi + β

n∑

i=1

‖xi −Xivi‖
2
2 + γ

n∑

i=1

‖vi‖1

}

s.t. 1− yi
(
w⊤Xiv

)
≤ ξi, ξi ≥ 0, i = 1, · · · , n.

(5)

From the above problem, we can see that by encouraging the sparsity of vi,
we learn a sparse context for both the reconstruction and classification of xi.

2.2 Optimization

To optimize the constrained problem in (5), we write the Lagrange function
of this problem as

L(w, V, ξ,γ, δ) =
1

2
‖w‖22 + α

n∑

i=1

ξi + β

n∑

i=1

‖xi −Xivi‖
2
2 + γ

n∑

i=1

‖vi‖1

+

n∑

i=1

δi
(
1− yi

(
w⊤Xivi

)
− ξi

)
−

n∑

i=1

ǫiξi,

(6)

where δi is the Lagrange multiplier for the constrain of 1 − yi
(
w⊤Xiv

)
≤ ξi,

and ǫi is the Lagrange multiplier for the constrain of ξi ≥ 0. According to
the dual theory of optimization, the following dual optimization problem is
obtained,

max
δ,ǫ

min
w,V,ξ

L(w,v, ξ, δ, ǫ)

s.t. δ ≥ 0, ǫ ≥ 0,
(7)

where δ = [δ1, · · · , δn]
⊤, and ǫ = [ǫ1, · · · , ǫn]

⊤. By setting the partial deriva-
tive of L with regard to w to zero, we have

∂L

∂w
= 0 ⇒ w =

n∑

i=1

δiyiXivi. (8)

By setting the partial derivative of L with regard to ξi to zero, we have

∂L

∂ξi
= 0 ⇒ α− δi − ǫi = 0

⇒ α− δi = ǫi

ǫi ≥ 0 ⇒ α ≥ δi.

(9)

Substituting (8) and (9) to (7), we eliminate w and δ
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max
δ

min
V



−

1

2

n∑

i,j=1

δiδjyiyjv
⊤
i X

⊤
i Xjvj + β

n∑

i=1

‖xi −Xivi‖
2
2

+γ

n∑

i=1

‖vi‖1 +

n∑

i=1

δi

}

s.t. α ≥ δ ≥ 0.

(10)

where α = [α, · · · , α]⊤ is a n dimensional vector of all α elements. It is difficult
to solve this dual problem with a close form solution. We try to solve it with
the alternate optimization strategy. In each iteration of an iterative algorithm,
we fix δ first to solve V , and then fix V to solve δ.

2.2.1 Solving V while fixing δ

When δ is fixed and only V is considered, the problem in (10) is reduced to

min
V



−

1

2

n∑

i,j=1

δiδjyiyjv
⊤
i X

⊤
i Xjvj + β

n∑

i=1

‖xi −Xivi‖
2
2 + γ

n∑

i=1

‖vi‖1



 .

(11)
Instead of solving V at one time, we solve vi|

n
i=1 one by one. When the con-

textual reconstruction vector of the i-th point vi is considered, we fix that of
all other points vi|j 6=i. (11) is further reduced to

min
vi



−

1

2

n∑

i,j=1

δiδjyiyjv
⊤
i X

⊤
i Xjvj + β‖xi −Xivi‖

2
2 + γ‖vi‖1



 . (12)

This problem could be solved efficiently by the modified feature-sign search
algorithm proposed by Gao et al. [8].

2.2.2 Solving δ while fixing V

When V is fixed and only δ is considered, the problem in (10) is reduced to

max
δ



−

1

2

n∑

i,j=1

δiδjyiyjv
⊤
i X

⊤
i Xjvj +

n∑

i=1

δi





s.t. α ≥ δ ≥ 0.

(13)

This problem is a typical constrained quadratic programming (QP) problem,
and it can be solved efficiently by the active set algorithm.
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2.3 Iterative algorithm

The iterative algorithm to learn both the classifier parameter w and the con-
textual reconstruction coefficient vectors in V is given in Algorithm 1. As we
can see from the algorithm, the iterations are repeated T times and then the
updated V and δ are outputs. Please note that the variables of this algorithm
are initialized randomly.

Algorithm 1: Iterative Learning algorithm.

Input Training point set {xi}
n
i=1 and label set {yi}

n
i=1;

Input Nearest neighbor size parameter k;
Input Tradeoff parameters α, β and γ;
Input Maximum iteration number T .
Initialization Find nearest neighbors {xij}

k
j=1 for each data point xi, i =

1, · · · , n.
Initialization Initialize δ0 randomly;
For t = 1, · · ·T

1. Fix δt−1 and update the contextual reconstruction coefficient vec-
tors vt

i|
n
i=1 one by one by solving the problem in (12);

2. Fix vt
i|
n
i=1 and update the classifier parameter vector wt by solving

δt as in (13).

Endfor
Output classifier parameter vector w =

∑n

i δ
T
i yiXiv

T
i .

2.4 Classifying a test point

When a new test point x ∈ R
d comes, to represent its context, we also find its k

nearest neighbors from the training set and put them in a d×k matrixX . Given
a classifier parameter vector w, and a candidate class label y ∈ {+1,−1}, we
seek its class conditional context reconstruction coefficient vector, by solving
the following minimization problem,

vy = argmin
v

{
−yw⊤(Xv) + β‖x−Xv‖22 + γ‖v‖1

}
. (14)

This problem can also be solved by the modified feature-sign search algorithm
proposed by Gao et al. [8]. The final class label y∗ of the test data point is
obtained as the candidate label minimizing the following objective,

y∗ = min
y∈{+1,−1}

{
−yw⊤(Xvy)

}
. (15)

3 Experiments

In this section, we evaluate the proposed supervised sparse context learning
(SSCL) algorithm on several benchmark data sets.
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3.1 Data sets

In the experiments, we used three date sets, which are introduced as follows:

– MANET loss data set: The packet losses of the receiver in mobile Ad
hoc networks (MANET) can be classified into three types, which are wire-
less random errors caused losses, the route change losses induced by node
mobility and network congestion. It is very important to recognize which
class a packet loss belongs in research and application of mobile Ad hoc
networks. The first data set used in our experiments is a MANET loss data
set. To construct this data set, we simulate a MANET scenario by using
a network simulator NS-2 [12,27]. We put 30 nodes in a 400m × 800m
area, select a TFRC flow as the observation stream, and a TCP flow as
the background traffic between two randomly selected nodes. The random
error rate is confided from 1% to 10%. We collect 381 data points for the
congestion loss, 458 for the route change loss, and 516 data points for the
wireless error loss. Thus in the data set, there are 1355 data points in total.
To extract the feature vector each data point, we calculate 12 features from
each data point as in [4], and concatenate them to form a vector.

– Twitter data set: The second data set is a Twitter data set. The target
of this data set is to predict the gender of the twitter user, male or female,
given one of his/her Twitter massage. To construct this data set, we down-
loaded Twitter massages of 50 male users and 50 female users of 100 days.
We collected 53,971 twitter massages in total, and among them there are
28,012 messages sent by male users, and 25,959 messages sent by female
users. To extract features from each Twitter message, we extract Term fea-
tures, linguistic features, and medium diversity features as gender-specific
features as in [15].

– Arrhythmia data set: The third data set is publicly available at http://arc
hive.ics.uci.edu/ml/datasets/Arrhythmia. In this data set, there are 452
data points, and they belongs to 16 different classes. Each data point has
a feature vector of 279 features.

3.2 Experiment setup

To conduct the experiments, we used the 10-fold cross validation. A entire
data set is split into 10 folds, and each of them was used as a test set in turn.
The remaining 9 folds are combined and used as a training set. The learning
algorithm was applied to the training set to learn the classifier parameter.
The algorithm is adjusted by using a 9-fold cross validation on the training
set. The learned classifier was then applied to the test set to predict the class
labels of the testing data points. The prediction performance is evaluated by
the prediction accuracy, which is defined as,

http://arc
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Prediction accuracy =
Number of correctly predicted testing data points

T otal number of testing data points
.

(16)

3.3 Results

In the experiments, we first compare the proposed context-based data rep-
resentation and classification algorithm, SSCL, to several context-based data
representation and/or classification methods. Then we study the sensitivity
of the proposed algorithm to its parameters experimentally. Finally, we study
the convergency of the proposed iterative algorithm.

3.3.1 Comparison to context-based representation and classification methods

Since the proposed algorithm is a context-based classification and sparse rep-
resentation method, we compared the proposed algorithm to three popular
context-based classifiers, and one context-based sparse representation method.
The three context-based classifiers are traditional KNN, Wright et al.’s SRBC
[48], and Melacci and Belkin’s LSVM [25]. The context-based sparse repre-
sentation method is Gao et al.’s LSC [9]. The boxplots of the 10-fold cross
validation of the compared algorithms are given in figure 1. From the figures,
we can see that the proposed method SSCL outperforms all the other methods
on all three data sets. Among median values of the boxplots of prediction ac-
curacies over three data sets, SSCL are always the highest one. In most cases,
the 25-th percentiles of SSCL is even higher than the median values of other
algorithms. The second best method is SRBC, which also uses sparse context
to represent the data point. However, compared to SSCL, it doesn’t learn any
explicit classifier for the classification problem. Thus it cannot take advantage
of the classifier design tricks. This is the mean reason that SRBC inferior to
SSCL. KNN also uses context to classify a data point without using a explicit
classifier. However, unlike SRBC whose context is class-conditional, KNN uses
a general context and treats all contextual data points equally, and obtains the
worst classification results. This is a strong evidence that learning a supervised
sparse context is critical for classification problem. LSVM also uses context
information to regularize the learning of classifier. However, once the classifier
is learned, the context is ignored in the classification procedure, thus its per-
formance is inferior to SSCL. LSC is an unsupervised learning algorithm, and
it is not surprising that its performance is not good.

3.3.2 Sensitivity to parameters

In the proposed formulation, there are three tradeoff parameters, α, β, and γ.
Moreover, we have one more parameter, which is the size of the neighborhood,
k. It is interesting to investigate how these parameters effects the performance
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Fig. 1 Boxplots of prediction accuracy of different context-based algorithms.

of the proposed algorithm. We plot the curve of mean prediction accuracies
against different values of parameters, and show them in figure 2. From figure
2(a) and 2(b), we can see the accuracy is stable to the parameter α and β.
More specifically, in figure 2(a), it seems that the performances are a little
better with a median value of α. α is the weight of the hinge loss function,
and when it makes sense the classifier has a better performance with a median
value, since a too large values leads to over-fitting, while a too small value leads
to training error over the training set. It is also interesting to note that β also
achieves the best performance with a median value, 10. β is the weight of the
reconstruction error term. A small weight of this term makes the representation
of a data point irrelevant to itself, while a large weight does not grantee its
discriminative ability. From figure 2(c) and 2(d), we can see a larger γ or
k leads to better classification performances. γ is the weight of the sparsity
term, a larger γ achieves a higher prediction accuracy means prediction result
benefits from a sparsity representation. This is because that in the context
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Fig. 2 Parameter sensitivity curves.

of a data point, only a few data points plays important roles. Sparsity of the
context forces the model to select those important contextual data points. k
is the size of the context, and a larger k provides more candidate contextual
data points, and helps the model to find the critical contextual data points.

3.3.3 Algorithm convergency

We are also interested in the convergency of the proposed iterative algorithm
SSCL. We plot the objective function of the formulation in (5) in different
iterations, and show the convergency curve in figure 3. From this figure, it is
clear that the algorithm converge after the 50-th iteration.

3.3.4 Running time analysis

We also provide an analysis of the running time of the compared algorithms
over the MANET loss data set. The running time of the algorithms is given in
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Fig. 3 Convergency curve of the proposed SSCL algorithm.

figure 4. The unit of the running time is second. From the figure, we can see
that the least time consuming algorithm is KNN, however, its classification
performance is poor. Our algorithm, SSCL, is the second least time consum-
ing algorithm. It takes no more than 250 seconds, while all other algorithms
take more than that. Moreover, SSCL achieves the best classification results.
It leads to the conclusion that the proposed algorithm can achieve the best
classification performance with a reasonable running time.
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Fig. 4 Running time of different algorithms over MANET loss data set.
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4 Conclusion and future works

In this paper, we study the problem of using context to represent and classify
data points. Our motivation is that although data points in context of a data
point plays important roles in its classification, only a few of them is critical.
Thus it is necessary to learn a sparse context. To this end, we propose to use
a sparse linear combination of the data points in the context of a data point
to represent itself. Moreover, to increase the discriminative ability of the new
representation, we develop an supervised method to learn the sparse context
by learning it and a classifier together in an unified optimization framework.
Experiments on three benchmark data sets show its advantage over state-of-
the-art context-based data representation and classification methods.

Although the proposed method works well for small data sets, it cannot
scale up to large data set. The reason is that in each iteration, it solves a QP
problem with regard to the number of data points in (13). This procedure
works with small number of data points, however, when it is large, it is too
consuming to solve such a QP problem with so many variables. In the future,
we will investigate to release this QP problem to a linear problem, by using
the expectation-maximization (EM) framework to release the hinge loss to a
linear function. Moreover, we also plan to extend the proposed algorithm to
different applications, e.g., bioinformatics [43,34,36,47], computer vision [32,
37,6,31], and information retrieval [42,16,11,33].
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