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Abstract Sparse coding (Sc) has been studied very well as a powerful data
representation method. It attempts to represent the feature vector of a data
sample by reconstructing it as the sparse linear combination of some basic
elements, and a L2 norm distance function is usually used as the loss function
for the reconstruction error. In this paper, we investigate using Sc as the rep-
resentation method within multi-instance learning framework, where a sample
is given as a bag of instances, and further represented as a histogram of the
quantized instances. We argue that for the data type of histogram, using L2

norm distance is not suitable, and propose to use the earth mover’s distance
(EMD) instead of L2 norm distance as a measure of the reconstruction er-
ror. By minimizing the EMD between the histogram of a sample and the its
reconstruction from some basic histograms, a novel sparse coding method is
developed, which is refereed as SC-EMD. We evaluate its performances as a
histogram representation method in tow multi-instance learning problems —
abnormal image detection in wireless capsule endoscopy videos, and protein
binding site retrieval. The encouraging results demonstrate the advantages of
the new method over the traditional method using L2 norm distance.
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1 Introduction

Sparse Coding (SC) has been recently proposed and studied well as an effective
data representation method in machine learning community [43,74,51,73,2,
68]. Given a set of basic elements and a data sample, SC tries to represent the
sample by reconstructing it as a linear combination of these basic elements. The
linear combination coefficient vector could be used as the new representation
of the sample. To this end, the basic elements and the coefficient vector (also
called coding vector) are learned by minimizing the reconstruction error. At the
same time, we also hope that the coding vector could be as sparse as possible.
To measure the reconstruction error, a squared L2 norm distance is usually
applied to compare the original feature vector and its sparse linear combination
as a loss function. At the same time, a L1 norm regularization term is also
imposed to the coding vector to seek its sparsity. The advantage of using the
L2 norm distance to as the loss function and using L1 norm regularization for
sparsity purpose lies on that it is easy to optimize and interpret. The feature-
sign search method had been proposed to solve the SC problem by Lee et al.
in [43]. Some different SC versions had also be proposed since then, by adding
different bias terms to the original SC loss function based on L2 norm distance
[28,77,27].

In the multi-instance learning framework, each sample is given as a bag of
multiple instances, instead of one single instance in the traditional machine
learning problem [79,78,80,16]. For example, in image classification and re-
trieval problems, an image could be split into many small image patches, and
each patch is an instance. In this case, we usually first learn a set of instance
prototypes by clustering the instances of the training samples, and then rep-
resent a sample by quantizing its instances into the instance prototypes, and
obtain a quantization histogram [66,50,40]. The normalized histogram is used
as the feature vector of the sample for further classification or retrieval task.
When we try to apply the SC to represent the histogram data samples under
the multi-instance learning framework, directly using L2 norm distance may
not be suitable anymore. Other distance functions which is especially suitable
for histogram data is desired. In fact, many distance functions have been stud-
ied for histogram data comparison, such as Kullback — Leibler divergence [62,
58,33], χ2 distance [35,18,75], Earth Mover’s Distance (EMD) [44,47,59], etc.
Among these distance functions, the EMD metric has been known to quantify
the errors in histogram comparison better than other distance metrics.

In this paper, we propose the first SC method with EMD metric for the
representation of histogram data. Instead of using L2 norm distance, we model
the sparse coding problem by using the EMD to constructed the loss function.
The newly proposed method, SC-EMD is especially suitable for the represen-
tation of histogram data under the multi-instance learning framework.

This rest parts of this paper continue as follows: the formal objective func-
tion of SC-EMD, the linear programming-based optimization, and an iterative
learning algorithm, are presented in section 2; experiments with three actual



Title Suppressed Due to Excessive Length 3

multi-instance learning tasks are presented in section 3; and conclusions are
given in section 4.

2 Sparse Coding with Earth Mover’s Distance

In this section, we will introduce the novel sparse coding method using EMD
as the distance metric, instead of the traditional squared L2 norm distance,
for the representation of histogram data.

2.1 Objective function

Assuming that we have a training set of N data samples. We represent each
data sample as a bag of multiple instances under the framework of multi-
instance learning. To extract the feature vector from the n-th sample, we
quantize the instances of the n-th sample into a set of instance prototypes,
and use the quantization histogram as the feature vector. We assume that the
number of instance prototypes is D, thus the feature vector of the n-th sample
is a normalized D-dimensional histogram, denoted as xn = [xn1, · · ·xnD]⊤ ∈
R

D
+ , where xni is the i-th bin of the histogram. Note that xn is normalized as

∑D

i=1
xni = 1, so that it is a distribution. The set of the histograms of all the

training samples is denoted as X = {x1, · · · ,xN}, where xn is the histogram
of the n-th sample.

Under the framework of sparse coding, we try to represent each histogram
in X as a sparse linear combination of a set of basic histograms. We denote the
set of basic histograms as U = {u1, · · · ,uM}, where um = [um1, · · ·umD]⊤ ∈
R

D
+ is the m-th basic histogram, and M is the number of basic histograms.

Similar to xn, um is also normalized as
∑D

i=1
hmi = 1. The basic histograms

are further organized as a basic matrix U = [u1, · · · ,uM ] ∈ R
D×M
+ . With

the basic histograms, we try to reconstruct each xn as the weighted linear
combination of these basic histograms, as

xn ≈
∑

m

umvnm = Uvn, (1)

where vn = [vn1, · · · , vnM ]⊤ ∈ R
M is the reconstruction coefficient vector,

which is also called coding vector of xn. vnm is the coefficient of the m-th basic
histogram for the reconstruction of the histogram of the n-th sample. Similarly,
the sparse coding vectors for all the samples in X could also be organized as
a coding matrix as V = [v1, · · · ,vN ] ∈ R

M×N , with the n-th column as the
coding vector of the n-th sample. Given the histogram xn of n-th sample, the
target of sparse coding problem is to learn a basic histogram matrix U , and
a sparse coding vector vn, so that the original xn and its reconstruction Uvn

should be as close to each other as possible, and the reconstruction error can
be minimized. At the same time, we also expect the coding vector vn to be
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as sparse as possible. To this end, we discuss the following two issues to build
the objective function for the learning of U and V .

Reconstruction Error To measure the reconstruction error between xn and
Uvn, traditional sparse coding methods have used the squared L2 norm
distance, as

L2(xn, Uvn) = ‖xn − Uvn‖
2

2
, (2)

for the learning of U and V . The objective function is built by applying
the squared L2 norm distance to all samples in the training set. However,
as we discussed in the introduction section, L2 norm distance is unsuitable
for the histogram data. In this work, we try to apply the EMD as a dis-
tance measure between xn and Uvn, which has been a popular metric for
histogram data. To define the EMD between two histograms xn and Uvn,
we treat each bin of xn as a supply, while each bin of Uvn as a demand.
We also denote dij as the ground distance from the i-th supply to j-th de-
mand. The EMD between xn and Uvn is defined as the minimum amount
of work needed to fill all the demands with all the supplies,

EMD(xn, Uvn) =min
Fn

∑

i,j

fn
ijdij

s.t.fn
ij ≥ 0,

∑

j

fn
ij ≤ xni,

∑

i

fn
ij ≤

∑

m

umjvnm,
(3)

where variable fn
ij denotes the amount transported from the i-th supply

to the j-th demand for the n-th sample, and Fn = [fn
ij ]

D×D
+ is the matrix

of the transported amounts. The constrain fn
ij ≥ 0 prevents the negative

transportation. The constrain
∑

j f
n
ij ≤ xni means that the mess moved

out from the i-th supply should not be larger than xni, while
∑

i f
n
ij ≤

∑

m umjvnm means that the mess moved into the j-th demand should not
be larger than

∑

m umjvnm. The problem in (3) could be solved as a Linear
Programming (LP) problem [48,4,6].

Sparsity Regularization To encourage the sparsity of each coding vector vn,
traditional sparse coding approaches have been imposing a L1 norm based
sparsity penalty to vn as

min
vn

{

L1(vn) = ||vn||1 =

M
∑

m=1

|vnm|

}

(4)

Using the L1 norm sparsity penalty, we can impose most of the the elements
of vn to zeros, and only a few of them will be kept for the reconstruction
of xn.
Direct optimization of this regularization term is difficulty, because it is
non-convex and non-smooth. We follow the works of Fan et al. [19,20,
21,22,23] which are proposed to improve the lower bounds for Bayesian



Title Suppressed Due to Excessive Length 5

network structure learning, and propose to optimize the upper bound of
the L1 norm regularization. Fan et al. [23] proposed a method to tighten the
upper and lower bounds of the learning problem of the Bayesian network
structure. In the work of Fan et al. [23], more informed variable groupings
are used to create the pattern databases for the tightening of the lower
bounds, and an anytime learning algorithm is used for the tightening of the
upper bounds. Moreover, Fan et al. [22] proposed a new partition method
to use the information extracted from the potential optimal parent sets to
improve the lower bound for Bayesian network structure learning. Inspired
by the works of Fan et al. [23,22], to solve the problem together with the
LP problem of EMD, instead of minimizing the L1 norm of the code vector
vn directly, we introduce a slack vector the upper bound of its L1 norm,
and minimize its L1 norm. We first introduce a nonnegative slack vector
ξn ∈ R

M
+ for each code vector as the upper bound of the absolute vector

of the code vector, ξn ≥ |vn| ≥ 0, where |vn| = [|vn1|, · · · , |vnM |] ∈ R
M
+ ,

and then minimize the L1 norm of the slack vector to seek the sparsity
of vn indirectly. Because ξn is a nonnegative vector, its L1 norm could be

computed simply as the summation of its elements as L1(ξn) =
∑M

m=1
ξnm.

To seek the sparsity of vn, we have the following optimization problem,

min
ξ
n
,vn

{

L1(ξn) =
M
∑

m=1

ξnm

}

s.t.− ξn ≤ vn ≤ ξn, ξn ≥ 0.

(5)

We also organize the upper bound vectors for the spare codes as a upper
bound matrix Ξ = [ξ1, · · · , ξN ] ∈ R

M×N
+ , where the n-th column ξn is

the upper bound vector of the n-th sparse code vector. By using the slack
vectors, we make the sparsity regularization term a smooth function, which
could be integrated to the optimization problem of EMD naturally, and
could solved as LP problem easily.

By applying both the EMD based reconstruction error term in (3) and the
sparsity regularization term in (5) to each training sample in X , and summing
them up, we have the following objective function for the EMD based sparse
coding problem,

min
U,V,Ξ

∑

n

(EMD(xn, Uvn) + γL1(ξn))

s.t.umj ≥ 0,
∑

j

umj = 1,

− ξn ≤ vn ≤ ξn, ξn ≥ 0,

(6)

where γ is a trade-off parameter, and the constrains umj ≥ 0 and
∑

j umj = 1
are introduced to the basic histograms to guarantee that the learned basic his-
tograms are normalized distributions. Please note that the EMD(xn, Uvn)
itself is also obtained by solving a minimizing problem with regarding to
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F 1, · · · , FM . We substitute (3) and (5) to (6), so that the optimization problem
in (6) is extended into the parameter-enlarged optimization with additional
parameters of transported amount matrices as,

min
U,V,Ξ,Fn|N

n=1

∑

n





∑

i,j

fn
ijdij + γ

∑

m

ξnm





s.t.umj ≥ 0,
∑

j

umj = 1,

fn
ij ≥ 0,

∑

j

fn
ij ≤ xni,

∑

i

fn
ij ≤

∑

m

umjvnm,

− ξnm ≤ vnm ≤ ξnm, ξnm ≥ 0.

(7)

This problem is a parameter-enlarged LP problem.

2.2 Optimization

Directly optimizing the object of (7) is difficult and time-consuming. Similar
to the original L2 norm-based sparse coding method, we adopt an alternate
optimization strategy for the learning of U and (V,Ξ) in an iterative algorithm.
In each iteration, one of U and (V,Ξ) will be optimized while the other one
is fixed, and then their roles will be switched. The iteration will be repeated
until a maximum iteration number is reached.

2.2.1 Optimizing (V,Ξ) while fixing U

By fixing U , we could optimize the coding vectors in V together with the
other additional variables. Similar to the traditional sparse coding methods,
we update each sparse coding vector individually. When the coding vector vn

of the n-th sample and its slack vector ξn are being optimized, the other ones
vn′(n′ 6= n) with their corresponding additional variables (Fn′

and ξn′) are
fixed. Thus, the optimization problem in (7) will be turned to

min
vn,ξn

,Fn





∑

i,j

fn
ijdij + γ

∑

m

ξnm





s.t.fn
ij ≥ 0,

∑

j

fn
ij ≤ xni,

∑

i

fn
ij ≤

∑

m

umjvnm,

− ξnm ≤ vnm ≤ ξnm, ξnm ≥ 0,

(8)

which could be solved as a LP problem. The LP problem is solve by using a
active set algorithm. Please notice that LP solves a problem for a given vector
of unknown variables. Here we substitute the vector of variables in Fn (the
original variables of the EMD problem) with a longer vector, which contains
the entries in Fn, vn, and ξn. We did not reformulate the EMD objective, but
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we changed its constraints to take care of the additional variables related to
the the problem solved. In this way, the new LP problem is different from that
of the original EMD, and the result contains entries of Fn, vn and ξn.

2.2.2 Optimizing U while fixing (V,Ξ)

By fixing V and Ξ, the optimization problem in (7) can be turned to

min
U,Fn|N

n=1

∑

n

∑

i,j

fn
ijdij

s.t.
∑

j

umj = 1, umj ≥ 0,

fn
ij ≥ 0,

∑

j

fn
ij ≤ xni,

∑

i

fn
ij ≤

∑

m

umjvnm.

(9)

which could also be solved as a LP problem using active set algorithm.
An important limitation of both the optimization problems in (8) and (9) is

the large number of additional variables for the LP problem. For each sample
xn, a D × D transported amount matrix Fn is solved in both (8) and (9),
thus there are totally N ×D ×D transportation amount variables in the LP
problem for the N training samples. When the dimension of the histogram D,
or the training sample N is large, there would be a large number of variables,
which could cause serious computation problem. To overcome this shortage,
we reduce the number of variables in Fn by allowing moving the earth from
the i-th supply only to its K nearest demands instead of all the D demands.
The K nearest demands of i-th supply is found by using the ground distances.
In this way, we reduce the transported mass variables for each supply of each
sample from D to K. Usually K ≪ D, thus the total transported amount is
reduced significantly from N ×D ×D to N ×D ×K.

2.3 Algorithm

We summarize the iterative basic histograms and coding vectors learning al-
gorithm in Algorithm 1. In each iteration, the sparse coding vector for each
sample is first learned sequentially, and the basic histograms are then updated
based on the learned sparse coding vectors. The iterations will be repeated T

times. When a novel sample comes with its histogram in the test procedure,
we simply solve (8) to obtain its sparse coding vector.

2.4 Relation to nonnegative matrix factorization with earth mover’s distance

Sandler and Lindenbaum [60] proposed nonnegative matrix factorization with
earth mover’s distance (NMFEMD), which factorize a nonnegative matrix by
minimizing the EMD between the original data matrix and the product of two
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Algorithm 1 SC-EMD Algorithm.
Input: Histograms of training samples X = {xi, · · · ,xN};
Input: Number of basic histograms M ;
Input: Maximum number of iterations T .
Initialize the basic histogram matrix U0 = u0

i
, · · · ,u0

M
;

for t = 1, · · · , T do

for n = 1, · · · , N do

Update the sparse coding vector vt
n for the n-th sample by solving (8) while fixing

U t−1;
end for

Update the basic histogram matrix U t by solving (9) while fixing V t;
end for

Output: The basic histogram matrix UT and the sparse coding matrix V T .

factorization matrices. Our work SC-EMD has close relation to it. We discuss
the relations of the two methods as following:

– Both SC-EMD and NMFEMD use earth mover’s distance to measure the
reconstruction error of the data, which is a suitable distance measure for
multi-instance quantization histogram.

– NMFEMD dose impose the sparsity of the factorization matrices, while
SC-EMD impose the reconstruction coefficients to be sparse. The sparsity
of the reconstruction coefficients is measure by a L1 norm. Thus the objec-
tive function of SC-EMD is different compared to NMFEMD, because the
objective of NMFEMD is only a EMD term, while the object of SC-EMD
is composed of a EMD term and a L1 term. The optimization of SC-EMD
is more difficult than NMFEMD due to this additional term.

– NMFEMD imposes the reconstruction matrices to be nonnegative, while
SC-EMD doesn’t have such constraints. However, these constraints do not
change the optimization of the objective. The NMFEMD is optimized as
a linear constrained LP problem. Adding the nonnegative constraint only
adds some more linear constraints to the problem. But SC-EMD adds a L1

norm regularization term to the objective, and changes the optimization
problem.

3 Experiments

In this section, we evaluated the proposed method on three multi-instance
learning problems, where each feature vector is a histogram for each sample.

3.1 Experiment I: Abnormal Image Detection in Wireless Capsule Endoscopy
Videos

Wireless Capsule Endoscopy (WCE) has been used to detect the mucosal
abnormalities in the gastrointestinal tract, including blood, ulcer, polyp, etc
[37,17,52,36]. However, usually only a few frames from a large number of
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WCE videos contain abnormalities, thus a medical clinician spends long time
to find the abnormal frames from a WCE video. In this situation, it is very
necessary to develop a system to automatically discriminate abnormal frames
from the normal ones. In this experiment, we evaluated the proposed method
as image representation method for the task of abnormal image detection in
WCE videos.

3.1.1 Dataset and Setup

We constructed the data set for the experiment by collecting 170 images of
WCE videos belonging to three abnormal classes and one normal class. The
data set contains 50 normal images, 40 polyp images, 40 ulcer images, and
40 blood images. Given an image of WCE video, the task of abnormal image
detection is to classify it to one of the four classes. To this end, each image
was split into many 8 × 8 small patches, and each patch was treated as an
instance, thus the image was represented as a bag of instances under the
framework of multi-instance learning. We extract color and texture features
from each patch and concatenate them as visual features of each instance.
Then the instances were quantized into a pool of instance prototypes and the
quantization histogram was normalized and used as the feature vector of the
image. The histograms were further represented using the proposed SC-EMD
algorithm as the sparse coding vectors, and the coding vectors were used to
train a Support Vector Machine (SVM) [8,61,39,67] to classify the images into
one of the four image types.

To conduct the experiment, we employed the 10-fold cross-validation pro-
tocol [26,12,1]. The entire data set was split into 10 non-overlapping folds
randomly. In each fold, there were 5 normal images, 4 polyp images, 4 ulcer
images, and 4 blood images respectively. Each fold was used as the test set in
turn, and the remaining 9 folds are combined and used as the training set. After
the images in the training set were represented as histograms under the multi-
instance learning framework, we performed the SC-EMD algorithm to them
and obtain the basic histograms and the sparse coding vectors for the train-
ing images. Then we train a SVM classifier from these sparse coding vectors
for each class. To handle the multi-class problem, we used the one-against-all
protocol to train classifiers [41,49,57]. A SVM classifier was trained for each
class, using the images of this class as positive samples, while all other images
as negative samples. Based on the basic histograms learned from training his-
tograms, we represented the test images and obtain the sparse coding vectors,
and finally input them into the learned SVM classifiers to have the final clas-
sification results. Please note that the parameters were turned using only the
training set while excluding the test set.

The classification results are measured by the recall-precision curve [29,30,
34], Receiver Operating Characteristic (ROC) curve [11,14,31] and the Area
Under the ROC Curve (AUC) value [55,14,31] for each class.
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3.1.2 Results

In the experiments, we compared our SC-EMD algorithm as a data representa-
tion method against the traditional sparse coding method using the L2 norm
distance (denoted as SC-L2 norm), and also against the original histogram
as representation (denoted as Histogram). The recall-precision curves for four
different classes are given in Fig. 1 (a) - (d). In these figures, it is clearly shown
that with the proposed SC-EMD, the classification performances for all four
classes are improved significantly, even more so for the last three classes. The
performance improvement is particularly dramatic for the Polyp and Normal
classes. SC-L2 norm could improve the original histogram features somehow,
however, due to the reason that it employs the L2 norm distance as loss func-
tion, which is not suitable for the histogram data, the improvement is limited.
In particular, Fig. 1 (a) shows that an increase in classification performance is
obtained by SC-L2 norm against both original histogram and SC-EMD. The
results validate the importance of performing sparse coding with appropriate
loss function to the histogram data.

The ROC curves of different classes are shown in Fig. 2. Moreover, the
AUC values are given in Fig. 3. As shown in Fig. 2 and Fig. 3, our SC-EMD
algorithm clearly outperforms the original histogram feature and SC-L2 norm-
based method in all four classes again. The advantage is particularly significant
on the more challenging normal class. This result highlights the importance of
using the EMD measure for histograms rather than L2-norm distance.

3.2 Experiment II: Protein binding site retrieval

Searching geometrically similar protein binding sites is significantly important
to understand the functions of protein and also to drug discovery [54,5,53,
42]. Pang et al. [54] presented the protein binding sites as a histogram using
the multi-instance learning framework for the protein binding site retrieval
problem. In this experiment, we evaluated the proposed algorithm for the
representation of histograms of protein binding sites.

3.2.1 Dataset and Setup

In this experiment, we used a protein binding site data set reported by Pang et
al. [54]. In this non-redundant data set, there are totally 2,819 protein binding
sites, belonging to 501 different classes. The number of sites in each class
varies from 2 to 58. To conduct the 4-fold cross-validation, we had selected
2,226 binding sites randomly to construct our data set. The selected data set
contained sites of 249 classes, and the number of sites for each class was from
4 to 58, so that we could guarantee that when the 4-fold cross-validation was
performed, in each fold there were at least one site from every class. The
numbers of sites for all the selected classes are shown in Fig. 4.
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Fig. 1 The recall-precession curves of different classes using different histogram represen-
tation methods on the WCE images database.

Given a query binding site and a protein binding site database, the pro-
tein binding site retrieval problem is to rank the database sites according to
their similarity to the query in a descending order, so that the database sites
belonging to the same class as the query can be ranked at the top positions of
the returned list. To this end, we first represented each binding site as a bag
of feature points selected from the binding site surface, and for each point the
geometric features were extracted [54]. In the multi-instance learning frame-
work, a binding site was refereed as a bag, and each feature point was refereed
as a instance. Then all the feature points were quantized into a set of pro-
totype points, and a histogram was generated as the bag-level feature of the
binding site [54]. Using the proposed SC-EMD algorithm, the histograms are
represented as sparse codes for the final ranking. The ranking performances
were evaluated by the recall-precision and the ROC curves. AUC values of the
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Fig. 2 The ROC curves of different classes using different histogram representation methods
on the WCE images database.
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Fig. 3 The AUC valuse of different classes using different histogram representation methods
on the WCE images database.

ROC curve were also reported as a single performance measure of the ranking
results.
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Fig. 4 The numbers of sites in different classes of the protein binding site dataset.

3.2.2 Results

The recall-precision and ROC curves of different histogram representation
methods are given in Fig. 5. From the results in Fig. 5, we can find that
the SC-EMD method performs the best in terms of both recall-precision and
ROC curves. It proves that the EMD based method could discover the best
distance measure for histogram comparison and coding. The AUC values of
the ROC curves are also given in Fig. 6. These protein binding site retrieval
system with SC-EMD representation method achieves an AUC value of 0.9466,
compared to an AUC value of 0.9282 using SC-L2 norm and 0.9114 using the
original histogram.
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Fig. 5 The recall-precision and ROC curves of different histogram representation methods
on the protein binding site database.
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Fig. 6 The AUC values of ROC curves of different histogram representation methods on
the protein binding site database.

3.3 Experiment III: Object Recognition

In this section, we compared the proposed method to some other feature ex-
traction and classification methods on an publicly accessed image database.

3.3.1 Dataset and Protocol

In this experiment, we used the COREL-2000 image database which is popular
in the computer vision community for the problem of object recognition [65,
7]. In this data set, there were 2,000 images of 20 objects. For each object, the
number of images was 100. The target of image recognition was to assign a
given image to a class of object correctly.

To conduct the experiment, we also used the 10-fold cross-validation. Each
images was regarded as a sample, and we extracted the Regions Of Interest
(ROI) as the instances [10,32]. We extracted multiple ROIs for each image,
thus each image was represented as a bag of multiple instances. Moreover, the
instances of the training images were clustered to generate a set of instance
prototypes using a clustering algorithm [25,72,71,38], and then the instances
of each image were quantized into it to present each image as a histogram. The
histograms were firstly normalized and then the proposed SC-EMD algorithm
was applied to represent the histograms to sparse codes. The histogram of
the training samples were used to learn the basic histograms and their sparse
codes first, and then a SVM classifier was learned in the sparse code space for
each class. To classify a test sample, we also represented its histogram to a
sparse code vector using the basic histograms learned from the training set,
and then classified the sparse code vector using the SVM classifier learned from
the training set. To evaluate the classification performances of the proposed
algorithm, we used the classification accuracy as the performance measure [46,
3,24], which is computed as,

accuracy =
Number of correctly classified test images

Number of test images
. (10)
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3.3.2 Results

In this experiment, we compared the proposed histogram representation algo-
rithm against several visual feature extraction methods, including the Learning
Locality-Constrained Collaborative Representation (LCCR) method proposed
by Peng et al. [56], SC-L2, Histogram of Oriented Gradients (HOG) [64,81,
13], and Scale-Invariant Feature Transform (SIFT) [45,63,9]. The experiment
results are given in Fig. 7 (a). As we can see from this figure, the proposed
method outperforms all the other methods significantly besides LCCR. SIFT
and HOG both represent the images as histograms, however, they ignore the
structure of the data set by representing each images individually, thus the
performances are inferior to others. SC-L2 explorers the training set by learn-
ing a set of basic histograms to represent all the image histograms, and it
achieves some minor improvements. But it uses the L2 norm distance to com-
pare the histograms, which is not suitable. It is very interesting to notice that
LCCR, which improves the robustness and discrimination of data representa-
tion by introducing the local consistency, has archived similar performances
to SC-EMD and outperformed other methods too. Although it also uses the
L2 norm as loss function which is unsuitable for histograms, it considers the
local consistency of the data samples, and seek the smoothness of the code in-
stead of the sparsity. These are the main reasons for the good performances of
LCCR. It also encourages us to develop novel methods to combine EMD and
locality-constrained collaborative representation, which may even improve the
performance more significantly. Moreover, we also compare our method to two
popular classification methods, including Sparse Representation-based Clas-
sification (SRC) [70], Nearest Neighbor classification (NN) [76,69,15]. The
results is given in Fig. 7 (b). As we can see from the figure, the proposed algo-
rithm based on EMD outperforms both the two classification using L2 norm
distance as distance metric for histograms. This is another evidence that EMD
is essential for histogram data analysis and classification.

4 Conclusion and Future Works

A new type of sparse coding method, sparse coding with EMD metric, is
proposed in this paper for the representation of histogram data. The objective
function is composed of an EMD term between the original histogram and
the reconstruction result from a pool of basic histograms, and a L1 term for
the regularization of the coding vector. The optimization problem is solved
as a LP problem in an iterative algorithm. Algorithms based on the proposed
SC-EMD outperformed previous L2-norm based sparse coding algorithms in
three challenging multi-instance learning tasks.
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Fig. 7 Experiment results on the COREL-2000 image data set.
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