
Northumbria Research Link

Citation: He, Tao, Mao, Hua and Yi, Zhang (2017) Moving object recognition using multi-
view  three-dimensional  convolutional  neural  networks.  Neural  Computing  and
Applications, 28 (12). pp. 3827-3835. ISSN 0941-0643 

Published by: Springer

URL:  http://dx.doi.org/10.1007/s00521-016-2277-9  <http://dx.doi.org/10.1007/s00521-
016-2277-9>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/39673/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


Moving object recognition using multi-view three-dimensional
convolutional neural networks

Tao He1 • Hua Mao1 • Zhang Yi1

Abstract Moving object recognition (MOR) is an

important but challenging problem in the field of computer

vision. The aim of MOR is to recognize moving objects in

a given video dataset. Convolutional neural networks

(CNNs) have been extensively used for image recognition

and video analysis problems. Recently, a 3D-CNN, which

contains 3D convolution layers, was proposed to address

MOR problems by successfully extracting spatiotemporal

features. In this paper, a multi-view (MV) 3D-CNN is

proposed for MOR. This model combines 3D-CNNs with a

well-known MV learning technique. Because multi-view

learning techniques have the ability to obtain more view-

related features from videos captured by different cameras,

the proposed model can extract more representative fea-

tures. Moreover, the model contains a special view-pooling

layer that can fuse the feature information from previous

layers. The proposed MV3D-CNN is applied to both real-

world moving vehicle recognition and sign language

recognition tasks. The experimental results show that the

proposed model possesses good performance.

Keywords Moving object recognition � Multi-view

learning � 3D convolutional neural networks � Feature
extraction � Deep learning

1 Introduction

One of the fundamental challenges in computer vision

concerns moving object recognition (MOR), which

attempts to recognize moving objects within video data.

Typical MOR tasks include human motion recognition [1,

2], action recognition [3, 4], and object tracking [5]. Most

MOR methods are based on the analysis of images cap-

tured from a given video dataset. The basic method of

solving MOR problems is to recognize moving objects

using machine learning classifiers. As spliced image frames

captured from the video cannot be directly used as the input

to these classifiers, the general solutions of MOR problems

start with certain preprocessing methods. These methods,

which are performed on the spliced image frames, extract

features to represent each image frame. In [6], the bag of

words (BoW) and SIFT-based methods are used to extract

features from soccer videos.

Convolutional neural networks (CNNs), which are typ-

ical deep learning models, have been widely used for

image recognition problems such as CIFAR, ImageNet,

and large-scale visual classification missions [7, 8]. CNNs

contain a hierarchy of convolution and pooling layers and

can automatically learn potential features from a training

dataset to achieve better performance than hand-crafted

features. Another advantage is that CNNs have fewer

connections, which means the training stage is faster than

in some other neural networks [9]. Because of their feature

learning ability, CNNs are also used to solve MOR tasks

[4, 10, 11]. In [4], authors tried to learn the spatiotemporal

features of videos by a parallel CNN architecture which is

based on both spatial and temporal streams. The previous

one focuses on recognizing objects from continuous video

frames, and the later one is used to recognize action from

motion in the form of the dense optimal flow stream. Two
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streams are independent of each other and combined by

late fusion. In [10], a multi-resolution CNN architecture is

proposed to train on large-scale datasets. In [11], a series of

fusion strategies are applied in general CNN models to

solve MOR problems.

However, general CNNs are limited to learning spatial

features from a single image. As a variant of CNNs, 3D-

CNNs are designed for learning the features of a video

directly. The 3D-CNN [12] treats the temporal axis in the

same manner as other spatial axes to extend the ability of

convolution layers to extract spatiotemporal features. In

[3], 3D convolution layers are applied over video clips to

learn object features from image frames, respectively, and

then fuse recognition results at the video level. The 3D-

CNNs applied in human action recognition tasks have

demonstrated good performance.

In MOR tasks, the video data usually consist of videos

captured from cameras with different views. For example, in

many video surveillance systems, there are a number of

cameras placed at different shooting angles to prevent the

control space from being exposed. The view information of a

moving object is considered an important factor in MOR

tasks. Multi-view learning [13] is an interesting visual feature

learning domain in which datasets consist of diverse feature

subsets called multiple views. Recently, there has been an

attempt to combinemulti-view learning and CNNs in the field

of static object recognition [14]. The authors employed mul-

tiple CNNs to compile information from multiple views of

static objects into a compact shape descriptor of the static

object, offering better recognition performance than single-

viewmethods. Thismethod regards different shapes extracted

from static objects as distinctive views.

Further extending the idea of 3D-CNNs and multi-view

learning, we propose a multi-view 3D convolutional neural

network (MV3D-CNN) architecture for addressing MOR

problems. We consider using 3D-CNNs as a single video

view descriptor. Our model aims to extract enough view

information from videos using different 3D-CNN descrip-

tors. The main contributions can be summarized as follows:

– A set of parallel 3D-CNN streams are used to deal with

different view image sequences. For each view image

sequence captured from a camera, a 3D-CNN is used to

extract the spatial-temporal information for the moving

object.

– A novel view-pooling method named weighted average

view-pooling (WAVP) is designed to fuse the multiple

view information and learn view-related features.

– The MV3D-CNN model is evaluated using the

ASLLVD corpus for sign language recognition and

applied to a real-world moving vehicle recognition

task. The experimental results indicate that the model

offers significant improvements over baseline methods.

The remainder of this paper is structured as follows. Sec-

tion 2 provides a thorough literature review on the details

of 3D-CNNs. Section 3 describes our proposed MV3D-

CNN model. In Sect. 4, the results of two multi-view MOR

experiments are presented, enabling us to evaluate the

model performance. Section 5 draws together some con-

clusions from this study.

2 Preliminaries

2.1 Notation

– The training dataset consists of multi-view videos

captured from different cameras. For a dataset S, the

mth sample in S is denoted as fðxð1ÞðmÞ, xð2ÞðmÞ, ...,
xðvÞðmÞÞ, dðmÞg, where xðvÞðmÞ is the input of view v,

and d(m) is the corresponding label.

– We use xijk to denote the input to the 3D convolution

layer, and zijk to denote the input to the 3D pooling

layer at position (i, j, k). zijk is also the output from the

3D convolution layer.

– g denotes the output of the 3D pooling layer. a is the

output from the view-pooling layer and the input to a

fully connected neural network (FNN).

– y is the output from the softmax classifier.

– wopq denotes the weight at position (o, p, q) of the

kernel, and b is the bias parameter. b is the mutiplica-

tive bias of the pooling layer. h represents the

parameters of the softmax layer, and a indexes the

weights of the view-pooling layer.

– f ð�Þ denotes the activation function, which is the tanh

function in the 3D convolution layer and ReLU

function in the FNN. downð�Þ represents a subsampling

function. Typically, this function aggregates values

over each distinct n-by-n-by-n block in the input image,

so that the output of this operation is n-times smaller in

both the temporal and spatial dimensions.

– O, P, Q denotes the size of the 3D kernel along the

temporal dimension and the image’s width and height,

respectively.

– k is the weight decay parameter, 1f�g is the character-

istic function, and l is the index of lth layer.

2.2 3D convolutional neural networks

Before introducing the proposed model, we present a short

overview of 3D-CNNs. The 3D-CNN model is a variant of

CNNs developed for sequence learning tasks. 3D-CNNs

have been broadly applied in video classification and

motion recognition tasks [3, 10]. Most 3D-CNNs treat the

data sequence as a fixed-frame sequence and apply 3D
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convolution layers for feature learning. 3D convolution

kernels can learn more complicated spatial and temporal

features together. The corresponding 3D pooling neural

layers are utilized to reduce the number of parameters in

the spatiotemporal lever. 3D-CNNs usually have two dif-

ferent layers: the 3D convolution layer and 3D pooling

layer. The function of the 3D convolution layer is to apply

several convolutional filters over the input volumes. The

3D pooling layer selects the best feature extracted by the

3D convolution layer.

2.2.1 The 3D convolution layer

In a 3D convolutional neural layer, there are many 3D

convolution kernels, each of which is replicated over the

image frame sequence. The 3D convolution layers play an

important role in extracting spatiotemporal features,

because they can encode temporal visual information from

the video clips. The 3D convolution layer can be computed

as follows:

zijk ¼ f
XO�1

o¼0

XP�1

p¼0

XQ�1

q¼0

wopq � xðiþoÞðjþpÞðkþqÞ þ b

!
: ð1Þ

2.2.2 The pooling layer

To reduce the feature dimension, the max or average value

of a special feature is calculated by pooling layers over all

the pixels of the image. Pooling methods include Max

pooling and Average pooling. The pooling layers are useful

in reducing the number of parameters in the network by

reducing the spatial size of the vector representation. 3D

pooling layers are usually connected to 3D convolution

layers. The 3D pooling layer is computed as:

g ¼ f b � downðzÞ þ bð Þ: ð2Þ

In deep 3D-CNNs, the 3D pooling layer is usually

applied after the 3D convolution layer. Thus, in this paper,

the output of the 3D convolution layer is considered the

input of the 3D pooling layer.

3 Multi-view 3D convolutional neural networks

The focus of this paper is exploiting the ability of 3D-CNNs

and combining multi-view learning for MOR tasks. Refer to

[13], the basic approach for multi-view learning is to dis-

tribute all visual views into several single-view descriptors,

and then concatenate those descriptors to obtain final

recognition results of the learning tasks. The success of

multi-view learning approaches mostly depends on the

consensus and complementary principles. The first principle

aims to balance the view information of different views,

whereas the latter ensures that complementary information

inside multi-view data can be exploited to comprehensively

and accurately extract features and thus improve the

learning performance. Further details of multi-view learn-

ing can be found in [15]. The basic solution of multi-view

learning is to use an independent feature extractor to model

a particular view and to optimize these functions to exploit

the view-related information of input data to improve the

learning performance. The multiple views for different

problems have different formats, e.g., color descriptor, local

shape descriptor, and spatiotemporal context captured by

multiple cameras. In this paper, we use 3D-CNNs for MOR

tasks as the basic unit of a local shape descriptor.

A naive method to combine 3D-CNNs and multi-view

learning is to train single 3D-CNNs for each view and then

average all of the 3D-CNNs from all views as the final

result. Though this method achieves the basic requirement

of using multiple views, it does not incorporate the prin-

ciples of multi-view learning. Because all 3D-CNNs are

trained on different views independently, this method

cannot assist in the learning of view-related features.

Facing this challenge, we consider how to use a parallel

3D-CNN model to combine the view descriptors from all

separate 3D-CNNs to give a union architecture. The sim-

plest method is to directly concatenate all view descriptors

and then connect them to a unified classifier for the final

recognition task. The training of this unified model could

help in finding view information.

Though parallel architectures using separate descriptors

would possibly assist with the MOR task, a considerable

problem is that simply concatenating the multiple view

descriptors may not benefit the final recognition. As each

individual view with incomplete information participates in

recognition, thismethod could therefore easily confuse classes

if some views were irrelevant to the task. To deal with this

challenge, a view-pooling layer has been developed to

aggregate the global view information [14]. Thebasic idea is to

use an element-wisemaximumoperation or average operation

across the views in the view-pooling layer. The view-pooling

layers are closely related to max pooling and maxout layers,

which would also be applied in the 3D pooling layers.

The details of our architecture are depicted in Fig. 1.

The model contains three important parts. First, the

MV3D-CNN model involves independent 3D-CNNs to

extract features from videos taken at multiple views. Sec-

ond, a view-pooling layer is developed to aggregate all

view descriptors and learn view-related features. Finally,

an FNN with a softmax classifier performs the final

recognition. This type of deep architecture has demon-

strated strong performance in many vision tasks [8].

The view-pooling layer is intended to enable the model

to distinguish important views from irrelevant views. Thus,
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the model can choose several of the most important views

as the final determinant. We design a new variation of the

average view-pooling layer, called the weighted average

view-pooling (WAVP) layer, to help aggregate the view

descriptors. The output from all multiple view descriptors

is usually the output of the last 3D convolution layer. The

three view-pooling layers are computed as:

MVP layer:

aijk ¼ maxfz1ijk; z2ijk; :::; zvijkg: ð3Þ

AVP layer:

aijk ¼
1

v

X

u

zuijk: ð4Þ

WAVP layer:

aijk ¼

X
t
expa

t �ztijkX
u
expa

u : ð5Þ

Different from other view-pooling methods, WAVP

adds the weighted parameters to confirm that the network

has automatically extracted view-related features when

aggregating the multiple view descriptors. Training the

WAVP layer using a gradient descent method ensures that

important view features stand out. When the multiple views

are reduced to two views, the parameters of the WAVP

layer can be set to a and 1� a, a 2 ð0; 1Þ. The 3D pooling

layer can be computed as::

aijk ¼ a � xð1Þijk þ ð1� aÞ � xð2Þijk : ð6Þ

After fusing the view-pooling layer, the aggregate of the

multiple views is input to the FNN for further deep learning

of high-level features. The formulation at layer l of the

FNN is as follows:

al ¼ f wlal�1 þ bl
� �

: ð7Þ

We denote the output of the final layer of the FNN as aL.

The cost function can be defined using the softmax clas-

sifier as:

JðhÞ ¼� 1

m

X

m

X

i

1fdðmÞ ¼ iglog exphia
LðmÞ

X

j

exphja
LðmÞ þ

k
2

X

i

X

k

hð2Þik :

ð8Þ

By maximizing the cost function, the MV3D-CNN

model learns how to extract spatiotemporal features and

fuse the view-related features into a deep FNN structure for

the final recognition. The steps in the MV3D-CNN model

for MOR tasks are formulated in Algorithm 1. The training

of the network is based on the variant of backpropagation

algorithm, for details refer to [16]. Although our proposed

architecture is similar to previous parallel architectures [4,

10, 14], there are three significant and interesting

improvements. First, we use 3D-CNNs for the single-view

video feature descriptor to learn spatiotemporal features,

but this only involves parallel architectures at the image

level to solve MOR problems. Second, we use a deep FNN

architecture to improve learning performance, as more

high-level features could be learned to enhance perfor-

mance. Finally, we propose a new view-pooling layer for

combining the multiple view information. The proposed

view-pooling layer learns to select important view infor-

mation for later FNNs to assist with view-related feature

learning.

Algorithm 1 The training algorithm of MV3D-CNNs
with a WAVP layer

Input The training dataset S.
Output The network’s parameters.
Initialization w ← w0, b ← b0, α ← α0, β ← β0, θ ← θ0.
for epoch = 1 to max epoch do

Define the cost function J(θ) by equation 8.
Forward pass.
for l = 1 to max l in single-view feature learning stage do

for v = 1 to max v do
if l is the convolution layer then

Compute the activations of convolution layer by
equation 1.

else
Compute the activations of pooling layer by
equation 2.

end if
end for

end for
View Aggregation.
Aggregate the multiple view information by equation 5.
Compute the activation of FNN layers.
Backward pass
Use the variational backpropagation algorithm to compute
the partial derivatives of
parameters w, b, α, β, θ.
Update Weights.
Update all parameters by gradient descent method.

end for

Fig. 1 Architecture of multi-view 3D convolutional neural networks
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4 Experiments

In this section, we describe the application of MV3D-

CNNs in two experiments. First, we examine the perfor-

mance of the proposed method on the American Sign

Language Lexicon Video Dataset (ASLLVD) corpus [17,

18] and compare the results with those from other baseline

methods. Second, we apply the MV3D-CNNs to a com-

plicated real-world vehicle recognition problem.

4.1 Multi-GPU computation

The experiments were implemented using the Torch tool-

box.1 We designed the MV3D-CNN architecture and

implemented the WAVP layer for this architecture. The

model was trained on multiple GPUs for two MOR tasks.

The average training time for the ASLLVD corpus was

approximately 10 h, and that for the vehicle recognition

task was 2 h.

4.2 Baselines

To compare the MV3D-CNNs with general CNN methods,

we report the accuracy of the single-view CNNs and the

single-view 3D-CNN approaches on the ASLLVD corpus.

The single-view methods use data from one view to extract

features and then apply the FNN and softmax classifier for

the final recognition. The CNNs were trained using a single

frame of the video clips. The trained CNNs were tested on

all frames of each video sample, and the results were

averaged to give the final scores. Simple concatenation and

three view-pooling methods were also applied in the sign

language recognition task. In the real-world moving vehicle

recognition task, we applied the proposed MV3D-CNN

with WAVP using different FNNs. The experimental results

for MV3D-CNN with different 3D-CNN layers are also

reported for this task. ReLU and drop out techniques [19]

inside the FNNs were used to decrease the training time and

prevent over-fitting. Model parameters such as the learning

rate, weight decay, and the number of neurons in all layers

were tuned to their optimal values for comparison. The best

classification results are highlighted with bold face in

Tables 1 and 3.

4.3 Sign language recognition

The ASLLVD corpus consists of videos of more than 3300

ASL signs. There are a total of almost 9800 samples per-

formed by 6 native ASL signers. The data were collected at

Boston University. This dataset contains several

synchronized videos of the signs from different angles that

adapt to our architecture. The videos were captured from

four synchronized cameras, affording a full-resolution front

view, a side view, a close-up of the head region and a half-

speed high-resolution front view of the signer.

4.3.1 Datasets

In applying our proposed model, there are two major

problems with the ASLLVD corpus. First, the corpus is

deficient in samples for each sign, because there are only 6

native ASL signers and each sign has an average of three

samples. Second, the major sign motion focuses on the hand

shapes of the signers. It is necessary to capture hand shape

fragments from the source corpus. Considering the proposed

problems, we applied a preprocessing stage to the datasets.

Primarily, we selected 50 sign language labels that had been

applied to more than five samples in the ASLLVD corpus.

We created video clips with an average of 150 frames for

each sample. We then chose data samples by drawing a box

including the hand shape inside the image frame. Specifi-

cally, we invited 10 volunteers to capture image fragments

from the source images. Some image clips of the sign for

afraid are described in Fig. 2. Each volunteer captured hand

shape image fragments with eight different capture rules.

The capture rules related to the box size (e.g., fixed-box and

adaptive box), body parts (e.g., hand and shoulder), and

body areas (e.g., left body part, right body part, or both).

Details of the capture rules are depicted in Fig. 3. Thus, we

obtained over 400 training samples for each sign label.

4.3.2 Experiment setup

Before building the dataset, we examined the captured

samples and removed poor or wrongly captured samples.

We then designed two experiments for the ASLLVD corpus,

10-label and 50-label SLR. The 10-label SLR contains 4500

two-view videos (150 frames/video on average), annotated

into 10 sign classes. The 50-label SLR includes 22,300 two-

view videos of 50 signs. Among the video clips, the hand

shapes of several start frames and end frames contain almost

no motion or action. Thus, we selected the middle 64 frames

as the temporal sequence. The task was to recognize the sign

from the two-view image sequences. A sign language

sample named abuse captured with the rule right hand fixed-

box is depicted in Fig. 4.

4.3.3 Quantitative analysis

The best training parameters are presented in Fig. 5. We

used three 3D-CNN convolution layers and two 3D-CNN

pooling layers as the separated view feature learning

descriptors and then applied a WAVP layer to aggregate

1 http://torch.ch/. Torch is a scientific computing framework, which

supports deep learning models and algorithms.
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the two views. This allowed us to construct the inner view

information and extract view-related features. A four-layer

(for 10-label) or five-layer (for 50-label) FNN with a

softmax classifier was connected to the view-pooling layer

for the final recognition. All other baseline methods used a

similar number of neuron connections. The experimental

results are presented in Table 1. Our MV3D-CNN exhibits

superior performance to that of the four nave baselines.

Compared with other view-pooling methods, the experi-

mental results suggest that the WAVP layer gives the best

performance in the MV3D-CNN model. It is clear that the

recognition accuracy from the front view is higher than that

for the side view. It is understandable that the front view

contains more useful information than the side view in the

ASLLVD corpus.

4.4 Vehicle recognition

Vehicle recognition is an important and challenging prob-

lem entailing the use of video data collected from highways

and railroads. This problem can be formulated as the multi-

class classification of datasets involving dynamic moving

objects. The recognition procedure is quite challenging

because of the complex highway environment and varying

vehicle appearance within categories. The source data and

application requirements are supported by the Highway

Management Department (HMD) of Jiangxi Province in

China. The source data include 10-day surveillance video

data, and the task is to recognize moving vehicles from

these data. Specifically, the task is to recognize the vehicle

categories stipulated by the highway toll criterion of HMD.

Fig. 2 Sign afraid of multi-

view image sequence

Fig. 3 Capture rules have 8 categories including: right hand suitable-box; right hand fixed-box; left hand suitable-box; left hand fixed-box; right

shoulder suitable-box; left shoulder suitable-box; double hands fixed-box; and double hands suitable-box

Fig. 4 Sample of sign ‘‘abuse’’
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There are a total of four types of coaches and five types of

trucks (see Table 2 for more details).

4.4.1 Datasets and training

The video data were captured from cameras at different

locations. We selected front-view and back-view daytime

videos and used these to create video clips. Considering the

resolution of the images, gray images were captured from

the front-view videos and color ones were captured from

the back-view videos. The captured video clips were

resized to 32 9 32 pixels. Similar to the SLR task, we

extracted the middle 32 frames as the temporal sequences

for building the datasets. There are a total of 9000 data

samples in our experiments: 80 % of these were used for

training, 5 % were used for variation, and the remainder

were used for testing.

4.4.2 Quantitative analysis

This experiment compared MV3D-CNNs with different

deep layers. The best results are shown in Fig. 6. The

experimental results show that the model can achieve

accuracy of up to 95.37 %. As the model became deeper,

the accuracy did not improve. This is mainly because of the

scale of the datasets (Table 3).

Table 1 Results of ASLLVD

corpus for sign language

recognition

Model 10-L accuracy (%) 50-L accuracy (%)

Side-view average CNNs 81.57 78.03

Front-view average CNNs 83.85 80.81

Side-view 3D-CNNs 86.92 82.28

Front-view 3D-CNNs 87.45 84.21

MV3D-CNNs with simple concatenation 88.64 85.49

MV3D-CNNs with a MVP layer 92.93 90.10

MV3D-CNNs with a AVP layer 89.44 88.74

MV3D-CNNs with a WAVP layer 93.52 91.58

Fig. 5 Best network parameter settings in sign language recognition experiment

Table 2 Coaches are categorized according to their passenger

capacities (C), and trucks are categorized according to their weight of

goods capacities (W, the unit = 1 ton)

Categories Passenger capacities

Coach 1 C B 7

Coach 2 7\C B 19

Coach 3 19\C B 39

Coach 4 C[ 39

Categories Weight capacities

Truck 1 W B 14

Truck 2 14\W B 17

Truck 3 17\W B 25

Truck 4 25\W B 32

Truck 5 W[ 32
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5 Conclusion

This paper has described an MV3D-CNN for MOR tasks.

The model constructs features from multiple views and

uses 3D-CNNs to extract spatiotemporal features. We

designed a novel view-pooling method to assist the

learning of view-related features. The model was evalu-

ated using sign language recognition and moving vehicle

recognition tasks. The experimental results indicate that

the model outperforms conventional methods on the

ASLLVD dataset. In the vehicle recognition task, the

model produced superior performance in a real-world

application environment. As multi-view learning requires

datasets that have multiple views, we have only evaluated

the model on two small-scale datasets containing two

views. It would be interesting to extend the model to

large-scale MOR tasks. The learning stage was conducted

without pre-training using some unsupervised algorithms.

We will apply the MV3D-CNN model to large-scale

datasets in future work.
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