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Abstract In this paper, we invest the domain transfer learning problem with
multi-instance data. We assume we already have a well-trained multi-instance
dictionary and its corresponding classifier from the source domain, which can
be used to represent and classify the bags. But it cannot be directly used to the
target domain. Thus we propose to adapt them to the target domain by adding
an adaptive term to the source domain classifier. The adaptive function is a
linear function based a domain transfer multi-instance dictionary. Given a tar-
get domain bag, we first map it to a bag-level feature space using the domain
transfer dictionary, and then apply a the linear adaptive function to its bag-
level feature vector. To learn the domain-transfer dictionary and the adaptive
function parameter, we simultaneously minimize the average classification er-
ror of the target domain classifier over the target domain training set, and the
complexities of both the adaptive function parameter and the domain trans-
fer dictionary. The minimization problem is solved by an iterative algorithm
which update the dictionary and the function parameter alternately. Experi-
ments over several benchmark data sets show the advantage of the proposed
method over existing state-of-the-art domain transfer multi-instance learning
methods.
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1 Introduction

Machine learning usually assumes that the training data are from the same
domain [29,9,10,8,7,11,30,32,21,31,15]. Recently, transfer learning has been
a well-studied topic in machine learning community. It refers to the problem
of learning a machine learning modeling for a target domain with help from
a source domain [34,24,25,39,41]. For a machine learning problem, a source
domain is a domain with sufficient training data, which are well labeled, and
thus it is easy to train models in this domain. A target domain is usually in
lack of training data, or in lack of labels. Because of the lack of data and/or
label, the training in the target domain is difficult, and has the problem of
over-fitting. The source domain and target domains share the same feature
space and label space, thus it would be very helpful to use the source domain
data to help the learning problem in the target domain. However, the data
distributions of the source and target domains are usually very different, if we
simply use the models trained by using the source domain training set, the
prediction performance over the target domain can be very inferior. The reason
for this is that the difference between the two different domain distributions
can even be more significant than the difference between different classes. To
solve this problem, we need to transfer the source domain model to the target
domain by adapting the source domain predictor to the target domain data
set. This is called domain transfer learning. Given a source domain predictor,
its train a target domain predictor by adapting it to the target domain over
the target domain training set, even when the target domain training set itself
is insufficient to train a new target domain predictor. One example of domain
transfer learning is spoken Arabic digit recognition [13,14]. In a spoken Arabic
digit data set, there are two domains of data, which are male voice signal, and
female voice signal. For each domain, there are voice data of ten classes, and
each class is a one digit, varying from one to ten. Although the voice signal
of both domains shares the same feature space and class label space, however,
the classifier trained with male domain data cannot be used directly in the
female voice signal domain, due to the significant difference between male and
female voice signal domains. Thus an adaptation is necessary to transfer the
classifier for the male domain classifier to the female domain. Another example
of transfer learning is spam detection problem [5]. For one email user, we can
train a spam detector from the well labeled spam and normal emails. However,
it cannot be used to detect the spams of another user because the emails of
these two users may are significantly different from each other. Thus to use
the first user’s detector to the second user’s email, we need to perform an
adaptation to the detector.

Up to now, most of the domain transfer learning methods are focused on
single instance data [6,5,16,38,27]. That is, one data point is only presented
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as one single instance. However, in many machine learning applications, one
data point can contains multiple instances, and is presented as a bag of in-
stances. This type of data is called multi-instance data. In domain transfer
learning problem, many applications require to learn domain transfer classi-
fier for multi-instance data. However, only a few works are done to this direc-
tion, while most existing works ignore the nature of multi-instance data and
only treat them as one single feature vector. To overcome this problem, two
methods have been proposed for domain transfer learning with multi-instance
data.

– Zhang and Si [40] proposed the problem of domain transfer learning for
multi-instance data, and a novel method to solve it within the framework
of multi-task learning. More than one source domains are considered and
each domain is considered as a task. The target domain classifier is obtained
by a weighted linear combination of the classifiers of the multiple tasks.

– Wang et al. [35] proposed an adaptive knowledge transfer learning frame-
work for multi-instance data. This method adapts the source-target domain
cross class knowledge to the target domain for the multi-instance data to
boost the learning. It also build a data-dependent mixture model to com-
bine the knowledge from the source domain to enhance the target domain
weak classifier. The objective of this model is optimized by an iterative
coordinate descent method as a constraint concave-convex programming
problem.

It has been shown that the most effective way for multi-instance learning
method is using multi-instance dictionary to map a bag of instances to a
bag-level feature vector [3,12]. This representation method is based on bag-
instance similarity, and the critical component of this method is the learning of
the dictionary. In this paper, we invest the problem of domain transfer multi-
instance learning problem and propose a novel solution based on the dictionary.
According to our knowledge, this is the first work toward the direction of
learning multi-instance dictionary in the scene of domain transfer learning.

We assume that in the source domain, we have a well-trained multi-instance
dictionary and a corresponding classifier. Using this dictionary, we can map a
bag of instances to a bag-level feature by using the bag-instance similarity, and
then in the bag-level feature space, we can apply the classifier to classify the
bag. However, the source domain dictionary and classifier cannot be directly
applied to the target domain, we propose to add an adaptive term to the
source domain classifier to construct the target domain classifier to transfer the
knowledge of the source domain to the target domain. To construct the domain
adaptive term, we propose to learn a domain transfer dictionary to represent
a target domain bag to the bag-level feature space, and the adaptive term is
designed to be a linear function in this space. The problem is transferred to
the problem of learning the domain transfer dictionary and adaptive function
parameter. To this end, we propose to optimize both the mentioned parameters
by learn from a limited target domain training set. We propose to minimize the
hinge loss of the target domain training bags, the complexity of the adaptive
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function, and the complexity of the domain transfer dictionary. To solve the
minimization problem, we develop an iterative algorithm. The contributions
of this paper are listed as follows.

– Contribution #1. We propose a novel problem of transfer domain dictio-
nary learning. This problem is beyond simple domain transfer learning or
dictionary learning. It is proposed to explore the cross-domain knowledge
in the aspect of dictionary learning. Its significance is to learn the critical
dictionary which can bridge the source and target domains. It only learns
a good predictor in the target domain with help of source domain, but
also reveals the nature of the multi-instance data which connects the to
domains.

– Contribution #2. We build a novel learning model to solve this problem.
This model based on a joint optimization problem of both the domain
transfer dictionary and the domain adaptation function. The objective is
composed of three terms. The first term is the average classification error
over the target domain training bags, measured by the hinge loss, the
second term is the complexity term of the adaptation function, and the
last term is the complexity term of the domain transfer dictionary. In this
way, our problem is modeled as a minimization problem.

– Contribution #3. We also develop an effective algorithm to solve the
problem proposed in Contribution #2. We use the Lagrange multiplier
method and an alternate optimization strategy. The optimization of the
adaptation function parameter is transferred to the optimization of some
Lagrange multipliers, and the optimization of domain transfer dictionary
and the Lagrange multipliers are conducted alternately. The optimization
of Lagrange multipliers is performed as a quadratic programming prob-
lem, while the domain transfer dictionary is updated by gradient descent
algorithm.

This paper is organized in the following way. In section 2, we introduce the
proposed domain transfer dictionary learning method, in section 3, we give
the experimental results of the proposed method over several benchmark data
sets, and finally in section 4, we conclude the paper with some future works.

2 Learning Domain Transfer Dictionary

In this section, we introduce the newly proposed multi-instance dictionary
learning method for domain transfer learning problem. In section 2.1, we model
the learning problem as a minimization problem, and the problem is solved in
section 2.2. Furthermore, in section 2.3, we propose an iterative algorithm to
implement the solution of the problem.
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2.1 Problem modeling

In the problem of domain transfer multi-instance learning, we suppose we have
two domains, which are a source domain and a target domain. For the source
domain, we have a training set, and we have learned a well-trained multi-
instance dictionary, Φ = {φk}

ι
k=1

, where φk ∈ R
d is the vector of the k-th

word of the dictionary, and ι is the number of the words in this dictionary.
With this dictionary, we can represent a bag of instances as a feature vector
of ι dimensions. Suppose we have a bag denoted as B = {xj}

m
j=1, where xj is

d-dimensional feature vector the j-th instance of the bag, and m is the number
of the instances of this bag, we can represent as

B → zΦB =

[

m
max
j=1

φ
⊤
1 xj , · · · ,

m
max
j=1

φ
⊤
ι xj

]⊤

∈ R
ι (1)

where the k-th dimension is the maximum dot-produce between the k-th code-
word and the instances of B. The motive to use the maximum dot-product
to measure the similarly between an instance and a bag is it is simple and
parameter-free. Some other similarity measures such as Gaussian kernel re-
quires additional parameters such as the band-width parameter. The tuning
of these parameters is time-consuming and has the problem of over-fitting. The
chosen similarity maximum dot-product does not have such problems because
it is parameter-free. With this bag-level feature vector, we can classify the
bags in the bag-level space. To this end, we also have a well-trained classifier,
f(B), which is learned from the source domain, to map the bag B to its true
binary class label, y ∈ {+1,−1}, from its bag-level features,

y ← f(B;Φ,v) = v⊤zΦB , (2)

where v ∈ R
ι is the parameter of the source domain classifier. The source

domain dictionary, Φ, and its corresponding bag-level classifier, v are trained
over the source domain, and are supposed work well in the source domain.
Moreover, we have a target domain, and we also want to present and classify
the bags of the target domain. One direct method is to apply the source
domain dictionary and classifier to the target domain data. However, this is
not suitable due to the significant difference between the distributions of the
source domain and target domain. We propose to design the target domain
multi-instance classifier, g, by adapting the source domain dictionary classifier,
f , to the target domain. More specifically, the target domain classifier is the
combination of the source domain classifier and an adaptation term, ∆,

g(B;Ψ,w) = f(B;Φ,v) +∆(B;Ψ,w) (3)

where Ψ and w are parameters of the adaptation term which will be specified
as follows. Ψ is the domain transfer multi-instance dictionary, and it contains
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κ codewords, Ψ = {ψk}
κ
k=1

, where ψk ∈ R
d is its k-th codeword. We use it to

represent a bag B to a κ-dimensional bag-level feature vector,

B → zΨB =

[

m
max
j=1

ψ⊤
1 xj , · · · ,

m
max
j=1

ψ⊤
κ xj

]⊤

∈ R
κ. (4)

The adaptation term is a linear function in this bag-level feature space con-
structed by the domain transfer dictionary, Ψ ,

∆(B;Ψ,w) = w⊤zΨB (5)

w = [w1, · · · , wκ] ∈ R
κ is the κ-dimensional adaptation function parameter

vector, and wk is its k-th element. Substituting the definition of the adaptation
term ∆ to (8), we can rewrite the target domain classifier g as follows,

g(B;Ψ,w) = f(B;Φ,v) +w⊤zΨB, (6)

and the problem of domain transfer multi-instance dictionary learning is to
learn both Ψ and w by using a target domain training set. The target domain
training set is denoted as X = {(Bi, yi)}

n
i=1, where Bi is the bag of the i-

th target domain training data point, and yi ∈ {+1,−1} is the binary class
label of the i-th target domain training data point. Bi contains mi instances,
Bi = {xi

j}
mi

j=1
, where xi

j ∈ R
d is the j-th instance of the i-th bag. Given

a dictionary Ψ , without confusion, the bag-level vector of Bi, z
Ψ
Bi

is simply

denoted as zΨi . Moreover, the classification response of the source domain
classifier over this bag is denoted as

fi = f(Bi;Φ,v) = v⊤zΦi . (7)

In this way, the response of the target domain classifier over Bi is given as

g(Bi;Ψ,w) = fi +w⊤zΨi , (8)

To learn both the domain transfer dictionary Ψ and the classifier param-
eter w over the target domain training set, we consider the following three
minimization problems.

– Minimization of the classification errors. The classification error of
the i-th training bag is measure by the hinge loss,

E(g(Bi;Ψ,w), yi) =max (0, 1− yig(Bi;Ψ,w))

=max
(

0, 1− yi
(

fi +w⊤zΨi
)) (9)

To seek the optimal classifier and dictionary, this classification error term
should be minimized. We propose to minimize the average hinge loss over
the target domain training set,

min
Ψ,w

{

1

n

n
∑

i=1

E(g(Bi;Ψ,w), yi) =
1

n

n
∑

i=1

max
(

0, 1− yi
(

fi +w⊤zΨi
))

}

.

(10)
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The minimization of this problem is difficult because it is couple with a
maximization problem within the hinge loss function. To solve this prob-
lem, we introduce a slack variable ξi to present the maximum variable
between 0 and 1− yi

(

fi +w⊤zΨi
)

,

ξi ≥ 0, ξi ≥ 1− yi
(

fi +w⊤zΨi
)

. (11)

With this slack variable, we can rewrite the problem in (10) as a constrained
minimization problem as follows,

min
Ψ,w,ξi|ni=1

1

n

n
∑

i=1

ξi,

s.t. ξi ≥ 0, ξi ≥ 1− yi
(

fi +w⊤zΨi
)

, ∀ i = 1, · · · , n.

(12)

– Reducing the complexity of the adaptation function. To prevent the
over-fitting problem, we want to keep the adaptation function as simply
as possible, and reduce the complexity of the adaptation function. The
complexity of the adaptation function is measured by the squared ℓ2 norm
of the adaptation function parameter,

R(w) =
1

2
‖w‖22 =

1

2

κ
∑

k=1

w2
k. (13)

To this end, we propose to minimize this regularization term as follows,

min
w

{

R(w) =
1

2
‖w‖22

}

(14)

The solution of this single problem is an all-zero vectorw = [0, · · · , 0]. This
solution is not optimal for the overall problem, but when this minimization
problem is combined with the other problems, this term can bring a tradeoff
between the classification error and the adaptation function simplicity.

– Reducing the complexity of the dictionary. We also hope the dictio-
nary can be as simple as possible. The complexity is also measure by the
squared ℓ2 norms of the codewords,

min
Ψ

{

Q(Ψ) =
1

2

κ
∑

k=1

‖ψk‖
2
2

}

(15)

Similarly, the solution for this single problem is κ all-zero codewords, ψk =
[0, · · · , 0], k = 1, · · · , κ. So we also use it as a regularization term to tradeoff
the learning of the dictionary.
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The overall minimization problem is the weighted linear combination of
the problems in (16), (14), and (15).

min
Ψ,w,ξn

i=1

{

1

n

n
∑

i=1

ξi + C1R(w) + C2Q(Ψ)

=
1

n

n
∑

i=1

ξi +
C1

2
‖w‖22 +

C2

2

κ
∑

k=1

‖ψk‖
2
2

}

s.t. ξi ≥ 0, ξi ≥ 1− yi
(

fi +w⊤zΨi
)

, ∀ i = 1, · · · , n,

(16)

where C1 is the weight of the regularization term of w, and C2 is the weight of
the regularization term of Ψ . Please note that in the objective function, the first
term is the classification error term of the target domain, which is critical for
the learning of optimal domain transfer multi-instance dictionary. This term
grantees that the learned dictionary and its corresponding classifier can lead
to a good classification accuracy over the training set of the target domain.
The second and third terms are regularization terms which try to generalize
the learned dictionary and classifier to the data beyond the training set.

2.2 Problem solving

In this section, we discuss how to solve the overall problem in (16). We use the
Lagrange multiplier method to solve this problem. We first define a Lagrange
multiplier variable αi ≥ 0 for each constraint ξi ≥ 0, and a Lagrange multiplier
variable βi ≥ 0 for each constraint ξi ≥ 1 − yi

(

fi +w⊤zΨi
)

. The Lagrange
function of this constrained problem is,

L =
1

n

n
∑

i=1

ξi +
C1

2
‖w‖22 +

C2

2

κ
∑

k=1

‖ψk‖
2
2

−

n
∑

i=1

αiξi −

n
∑

i=1

βi

(

ξi − 1 + yi
(

fi +w⊤zΨi
))

.

(17)

Thus the dual form of the problem is given as

max
αi|ni=1

,βi|ni=1

min
Ψ,w,ξn

i=1

{

L =
1

n

n
∑

i=1

ξi +
C1

2
‖w‖22 +

C2

2

κ
∑

k=1

‖ψk‖
2
2

−

n
∑

i=1

αiξi −

n
∑

i=1

βi

(

ξi − 1 + yi
(

fi +w⊤zΨi
))

}

s.t. αi ≥ 0, βi ≥ 0, ∀ i = 1, · · · , n.

(18)



Domain Transfer Multi-Instance Dictionary Learning 9

To solve this problem, we set the partial derivatives of L with regard to w, ξi
to zeros,

∂L

∂w
= C1w−

n
∑

i=1

βiyiz
Ψ
i = 0,

⇒ w =
1

C1

n
∑

i=1

βiyiz
Ψ
i ,

∂L

∂ξi
=

1

n
− αi − βi = 0,

⇒
1

n
− βi = αi ≥ 0,

⇒
1

n
≥ βi.

(19)

We substitute the results of (19) to (18), and obtain the following problem,

max
βi|ni=1

min
Ψ

{

L =
C1

2
‖w‖22 +

C2

2

κ
∑

k=1

‖ψk‖
2
2

+
n
∑

i=1

βi (1− yifi)−
n
∑

i=1

βiyiw
⊤zΨi

=
C2

2

κ
∑

k=1

‖ψk‖
2
2 +

n
∑

i=1

βi (1− yifi)−
1

2C1

n
∑

i,j=1

βiβjyiyjz
Ψ
i

⊤
zΨj







s.t.
1

n
≥ βi ≥ 0, ∀ i = 1, · · · , n.

(20)
To solve this problem, we use an iterative algorithm with alternate optimiza-
tion strategy. We only consider two variables in (20), which are βi|

n
i=1 and Ψ ,

and all other variables have vanished. To optimize them, in an iteration, we
first fix Ψ and update βi|

n
i=1, then with the updated βi|

n
i=1, we update Ψ .

2.2.1 Updating βi|
n
i=1

When Ψ is fixed, the problem in (20) is reduced to

max
βi|ni=1







C2

2

κ
∑

k=1

‖ψk‖
2
2 +

n
∑

i=1

βi (1− yifi)−
1

2C1

n
∑

i,j=1

βiβjyiyjz
Ψ
i

⊤
zΨj







s.t.
1

n
≥ βi ≥ 0, ∀ i = 1, · · · , n.

(21)

This is a maximization problem with regard to βi|
n
i=1. The objective is a

quadratic function and the constraints are linear functions. Thus it is a linear
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constrained quadratic programming problem. We can solve it by active set
algorithm.

2.2.2 Updating Ψ

When βi|
n
i=1 is fixed, the problem in (20) is reduced to

min
Ψ







C2

2

κ
∑

k=1

‖ψk‖
2
2 +

n
∑

i=1

βi (1− yifi)−
1

2C1

n
∑

i,j=1

βiβjyiyjz
Ψ
i

⊤
zΨj







.

(22)
We further rewrite the bag-level feature vector as

zΨi =

[

mi
max
j=1

ψ
⊤
1 x

i
j , · · · ,

mi
max
j=1

ψ
⊤
κ x

i
j

]⊤

=
[

ψ⊤
1 x

i
πi
1

, · · · ,ψ⊤
κ x

i
πi
κ

]⊤

,

(23)

where

πi
k = argmaxmi

j=1
ψ

⊤
k x

i
j (24)

is the index of the instance which gives the maximum product between ψk

and the instance. Thus we can rewrite zΨi
⊤
zΨj in (20) as follows,

zΨi
⊤
zΨj =

κ
∑

k=1

(

ψ
⊤
k x

i
πi
k

)(

ψ
⊤
k x

j

π
j

k

)

=

κ
∑

k=1

ψ⊤
k

(

xi
πi
k

xj

π
j

k

⊤
)

ψk.

(25)

Substituting (25) to (22), we can rewrite it as follows,

min
Ψ

{

C2

2

κ
∑

k=1

‖ψk‖
2
2 +

n
∑

i=1

βi (1− yifi)

−
1

2C1

n
∑

i,j=1

βiβjyiyj

[

κ
∑

k=1

ψ⊤
k

(

xi
πi
k

xj

π
j

k

⊤
)

ψk

]

=

κ
∑

k=1





C2

2
‖ψk‖

2
2 −

1

2C1

ψ⊤
k





n
∑

i,j=1

βiβjyiyjx
i
πi
k

xj

π
j

k

⊤



ψk





+
n
∑

i=1

βi (1− yifi)

}

.

(26)
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It is apparently that the objective function is composed of a submission of sub-
functions over individual codewords and a term irrelevant to the codewords.
Thus we can optimize each codewords one by one independently. We define
the objective for each ψk as follows,

h(ψk) =
C2

2
‖ψk‖

2
2 −

1

2C1

ψ
⊤
k





n
∑

i,j=1

βiβjyiyjx
i
πi
k
xj

π
j

k

⊤



ψk, (27)

which is a quadratic function of ψk. The problem of (26) can be rewritten as
follows,

min
Ψ

{

κ
∑

k=1

h(ψk) +

n
∑

i=1

βi (1− yifi)

}

. (28)

Ignoring the last term irrelevant to the dictionary learning, this problem can
be decomposed to κ independent sub-problems,

min
ψk

h(ψk), k = 1, · · · , κ. (29)

To solve each of these problems, we use the sub-gradient deselect algorithm.
Firstly, we update the instance indexes according to (24) by using previous
updated codewords, and then fix them to update the codewords themselves.
To update them, we fist calculate the sub-gradient function of h(ψk) with
regard to ψk,

∇h(ψk) = C2ψk −
1

C1





n
∑

i,j=1

βiβjyiyjx
i
πi
k

xj

π
j

k

⊤



ψk. (30)

Then we descent each codeword to the sub-gradient direction,

ψk ← ψk − η∇h(ψk) = ψk − η



C2ψk −
1

C1





n
∑

i,j=1

βiβjyiyjx
i
πi
k
xj

π
j

k

⊤



ψk



 .

(31)
where η is the step size of the descent. The algorithm of updating the k-th
codeword is summarized in Algorithm 1.

– Algorithm 1: Updating the k-th codeword.
1. ψk ← [0, · · · , 0]⊤;
2. For t = 1, · · · , T
3. πi

k = argmaxmi

j=1
ψ⊤

k x
i
j for i = 1, · · · , n;

4. ψk ← ψk − η
(

C2ψk −
1

C1

(

∑n

i,j=1
βiβjyiyjx

i
πi
k

xj

π
j

k

⊤
)

ψk

)

;

5. End of For
6. Output ψk.
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2.3 Iterative algorithm

The overall algorithm for the learning of domain transfer dictionary and its
corresponding adaptation function is summarized in Algorithm 2. In this al-
gorithm, the domain transfer dictionary and the Lagrange multiplier variables
are updated alternately in a while loop. After the while loop is completed,
the adaptation function parameter is recovered from the Lagrange multiplier
variables.

– Algorithm 2: Learning domain transfer dictionary and adaptation
function parameter (DTC).
1. Input: target training set, {(Bi, yi)}

n
i=1;

2. Input: source training dictionary and its corresponding classifier pa-
rameter, Φ and v;

3. Input: size of the domain transfer dictionary, κ;
4. Input: weights of regularization terms, C1 and C2.
5. Initialization: fi = v⊤zΦi for i = 1, · · · , n.
6. Initialization: t = 1;
7. Initialization: Initialize the domain transfer dictionary Ψ1 = {ψ1

k}|
κ
k=1

.
8. Repeat

(a) For i = 1, · · · , n

(b) Update zΨ
t

i =
[

maxmi

j=1
ψt

1

⊤
xi
j , · · · ,maxmi

j=1
ψt

κ

⊤
xi
j

]⊤

;

(c) End of For
(d) Update βt

i |
n
i=1 by solve the quadratic programming problem by

fixing zΨ
t

i |
n
i=1;

βt
i |
n
i=1 = argmaxβi|ni=1

{

n
∑

i=1

βi (1− yifi)

−
1

2C1

n
∑

i,j=1

βiβjyiyjz
Ψ t

i

⊤
zΨ

t

j







,

s.t.
1

n
≥ βi ≥ 0, ∀ i = 1, · · · , n.

(32)

(e) For k = 1, · · · , κ
(f) Update ψt+1

k by fixing βt
i |
n
i=1 and using Algorithm 1;

(g) End of For
(h) t = t+ 1.

9. Until convergency
10. Update w = 1

C1

∑n

i=1
βt+1

i yiz
Ψ t+2

i ,;

11. Output: Ψ t+2, w.
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3 Experimental results

In this section, we use three benchmark data sets to evaluate the performance
of the proposed algorithm. The method is compared to state-of-the-arts do-
main adaptation algorithms, and also some single domain dictionary learning
algorithms. The running time of the algorithm is reported, and the conver-
gency of the iterative algorithm is also plot.

3.1 Benchmark data sets

We use two benchmark domain transfer multi-instance data sets in our exper-
iments, which are introduced as follows.

3.1.1 TRECVID data set

The first data set used is the TRECVID data set [26,1]. This data set is a
set of key frames of video programs. The total number of the key frames is
61,901, and they belongs to 36 classes of concepts. This data set is composed
of two sub-sets, which are TRECVID 2005 data set and TRECVID 2007 data
set. The differences of program structure and production values between these
two sub-sets are significantly, thus we treat them as two different domains.
Moreover, we choose the key frames of the Chinese channel CCTV4 from
TRECVID 2005 as source domain data, and the entire TRECVID 2007 data
set as the target domain [5]. To present each key frame, we extract the SIFT
local features, and treat each key frame as a bag of the local features. Each
local feature is treated as an instance. Thus this is a multi-instance learning
problem.

3.1.2 MRSC+VOC data set

The seconde data is the combination of the MRSC data set and VOC. The
MRSC data is an image data set containing 4,323 images of 18 classes, and the
VOC data set is also an image data set containing 5,011 images of 20 classes.
The MRSC data set is publicly accessible at http://research.microsoft.com/enu
s/projects/objectclassrecognition, and the VOC data set is publicly accessible
at http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007. Both the two
data sets share 6 common classes, which are listed as follows: aeroplane, bicy-
cle, bird, car, cow, and sheep. However, the distractions of the data of these
two data sets are significantly different, and we tree them as two different do-
mains. Thus we can combine the images of these 6 classes of both the data
sets to one cross-domain data set. The cross-domain data set is composed of
a source domain set of MSRC containing 1,269 images, and a target domain
of VOC containing 1,530 images [23]. Thus the total number of the images of
this cross-domain data set is 2,799. To present each image, we also extract a
set of SIFT local features, and treat each local feature as an instance. Each
image is treated as a bag of instances.

http://research.microsoft.com/enu
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007
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3.1.3 20 Newsgroups data set

The third data set is a subset of the 20 Newsgroups data set. This data set
is a set of 18,774 documents. The documents belong to 6 main classes, and
20 sub-classes. To construct the setting of domain learning, we set the main
class “comp” to be the positive class, and the main class “rec” to be the
negative class. In the positive class, we further select two sub-classes to be
source domain and target domain respectively, i.e., “comp.windows.x” and
“comp.sys.ibm.pc”. For the negative class, we also select two sub-classes to be
source domain and target domain, i.e., “rec.sport.hockey” and “rec.motorcycles”.
Thus the source domain contains the data of “comp.windows.x” and “rec.sport.hockey”,
and the target domain contains the data of “comp.sys.ibm.pc” and “rec.motorcycles”.
To represent each document, we treat each paragraph as a instance, and use
the word-frequency feature as the feature of the instance. Thus each document
is a bag of instances.

3.2 Experimental protocol

To conduct the experiment, we use the 10-fold cross-validation. The target
domain data set is split to 10 sub-sets. Each sub-set is used as a training
set, and the other 9 sub-sets are used as testing set. We fist train a source
domain dictionary and classifier over the entire source domain data set, and
then use the target training set to train the domain-transfer dictionary and its
corresponding adaptive function parameter. Then the target domain predictor
is obtained as the combination of the source domain predictor and the adaptive
function. The target domain predictor is finally tested over the target domain
test data set. Please note that only one fold is used as target domain training
set. This is insufficient for training a good target domain predictor without
the help of the source domain data. This setting makes it necessary to perform
domain transfer learning. The average classification accuracy over the ten folds
of training set is evaluated as performance measure.

3.3 Experimental results

In this section, we report the experimental results of the proposed algorithm.

3.3.1 Comparison to state-of-the-arts

We first compare the proposed algorithm, DTC, against both some common
domain transfer learning methods and two domain transfer multi-instance
learning methods. The compared domain transfer learning methods are listed
as follows,

– Domain transfer SVM (DT-SVM) [6],
– Domain transfer multiple kernel learning (DT-MKL) [5],
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Table 1 Average classification accuracy of comparison among domain transfer learning
methods

Method TRECVID MRSC+VOC 20 Newsgroups

DT-SVM 0.208 0.362 0.856
DT-MKL 0.268 0.397 0.918
DLRC 0.196 0.384 0.862
CDSC 0.209 0.367 0.901
DTC 0.301 0.435 0.932

– Deep low-rank coding for transfer learning (DLRC) [4], and
– Cross-domain sparse coding (CDSC) [33].

For these methods, the dictionary used to represent the bags are not learned
cross domains. The dictionary is learned before the transfer learning is con-
ducted and it is fixed during the transfer process. We also compare the pro-
posed domain transfer multi-instance learning to two other such algorithms,
which are

– the original multiple instance transfer learning (MITL) [40], and
– knowledge transfer learning for multiple instance learning (AKTL-MIL)

[35].

Please note that for the MITL algorithm, it assumes that there are several
source domains, and the algorithm learns the predictors of different source
domains and the combination coefficients of the predictors. However, in our
experimental setting, we have only one source domain. Thus we only learn one
source domain predictor and set its coefficient to one.

The comparisional results of different domain transfer learning algorithms
are given in Table 1. From Table 1 we observe that the proposed method
outperforms all the other four compared domain transfer learning methods,
including linear classifier [6], multi-kernel classifier [5], deep coding [4], and
sparse coding [33]. This indicates that for multi-instance domain transfer
learning, using a dictionary is the most effective method to represent the
multi-instance data. Moreover, the outperforming of the proposed method
over the compared method is even more significant over the data sets of
TRECVID and MRSC+VOC. For example, over TRECVID data set, DTC is
the only algorithm that achieves an average accuracy higher than 0.300, and
over MRSC+VOC, DTC is also the only algorithm that has a higher average
accuracy higher than 0.400. Both these two data sets are image sets with local
features. This implies that the proposed domain-transfer dictionary learning
is especially suitable for computer vision tasks which represent images as col-
lections of visual local features.

The results of different domain transfer multi-instance learning methods
are given in Table 2. From Table 2, we observe that the proposed DTC al-
gorithm also outperforms the two existing multi-instance transfer learning al-
gorithms, especially when compared to MITL. This is not surprising, because
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Table 2 Average classification accuracy of comparison among domain transfer multi-
instance learning methods

Method TRECVID MRSC+VOC 20 Newsgroups

MITL 0.260 0.343 0.837
AKTL-MIL 0.293 0.399 0.901
DTC 0.301 0.435 0.932

Table 3 Running time (second) of comparison among domain transfer learning methods

Method TRECVID MRSC+VOC 20 Newsgroups

DT-SVM 1682 654 482
DT-MKL 1812 722 587
DLRC 947 365 148
CDSC 861 247 130
DTC 2043 510 254

MITL conduct the adaptation to the target domain by weighting the predic-
tors of different source domains. However, in our experimental setting, there
is only one domain, thus the domain adaptation is not accessible. AKTL-MIL
also use bag-instance similarity to represent the bags, however, the dictionary
is not learned. Our algorithm learns the adaptive function and the dictionary
by transferring from the source domain to the target domain, and thus it is
natural to obtain a good result.

3.3.2 Running time

We are also interested in the running time of the compared algorithms. The
running time of the compared domain transfer learning methods are reported
in Table 3. From Table 3, we observe that the proposed DTC method is the
most time-consuming method, but it is still comparable to the other domain
transfer learning methods. The reason is its additional process of learning the
dictionary beside the domain transfer classifier. Actually, the other methods
take the bag-level features as input, and thus the time of constructing the dic-
tionary is ignored. Thus it is not a fair comparison. Moreover, considering the
significant improvement of classification accuracy archived by DTC, it is still
the best option over the domain transfer multi-instance learning problem. The
least time-consuming method is a sparse coding method, CDSC. It also learns
a dictionary, but this dictionary is used to represent the bag-level features,
and it takes the bag-level features as inputs. Thus the multi-instance learning
process is not involved in the learning process. Moreover, over the three data
sets, the running time for the TRECVID data set is the longest, due to its
large size.

We also compare the proposed method against the two domain transfer
multi-instance learning method regarding the running time performance. The
compared methods include MITL and AKTL-MIL. The results are reported
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Table 4 Running of comparison among domain transfer multi-instance learning methods

Method TRECVID MRSC+VOC 20 Newsgroups

MITL 1923 521 198
AKTL-MIL 2684 721 364
DTC 2043 510 254
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Fig. 1 Curves of changes of accuracy to changes of C1 and C2.

in Table 4. It seems that MITL is comparable with DTC in the respect of
running time, but AKTL-MIL is more time-consuming than DTC. This is not
surprising because AKTL-MIL is a more complex algorithm than DTC.

3.4 Analysis of sensitivity of the algorithm to C1 and C2

We perform the analysis of the sensitivity of the proposed algorithm to the two
tradeoff parameters, C1, and C2. We plot the average classification accuracy of
the proposed algorithm with different values of C1 and C2 over the TRECVID
data set in Fig. 1. According to the figure, the proposed algorithm are stable
to the changes of both the two parameters.

4 Conclusions

In this paper, we study the problem of domain transfer learning with multi-
instance learning. We proposed to use the multi-instance dictionary to repre-
sent the bag of instances. However, due to the significant difference between
the distributions of source and target domains, the dictionary learned from
the source domain is not suitable to the target domain. We propose to learn
a domain transfer dictionary to solve this problem. A target domain bag is
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represented by both the source domain and the domain transfer dictionaries,
and then classified by the source domain classifier and an adaptive function
simultaneously. The target domain classification response is the combination
of the source domain response and the result of the domain adaptive func-
tion. To learn the domain transfer dictionary and its corresponding adaptive
function parameter, we model a minimization problem, which minimizes the
complexities of the adaptive function parameters, the domain transfer dictio-
nary, and the average classification error jointly. The optimization problem is
solved by an iterative algorithm. Our proposed method is shown to be effective
by experiments over three benchmark data sets. In the future, we will also use
the proposed algorithm to applications of bioinformatics [28,42,37,36,22] and
data analysis of nanotechnology [17,18,20,19,2].
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