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Abstract Visual object tracking is of a great applica-

tion value in video monitoring systems. Recent work on

video tracking has taken into account spatial relation-

ship between the targeted object and its background.

In this paper, the spatial relationship is combined with

the temporal relationship between features on differ-

ent video frames so that a real-time tracker is designed

based on a Hash algorithm with spatio-temporal cues.

Different from most of the existing work on video track-

ing, which is regarded as a mechanism for image match-

ing or image classification alone, we propose a hier-

archical framework and conduct both matching and

classification tasks to generate a coarse-to-fine tracking

system. We develop a generative model under a modi-

fied Particle Filter with Hash fingerprints for the coarse

matching by the Maximum a Posteriori (MAP) and a
discriminative model for the fine classification by maxi-

mizing a confidence map based on a context model. The

confidence map reveals the spatio-temporal dynamics of

the target. Because Hash fingerprint is merely a binary

vector and the modified Particle Filter uses only a small

number of particles, our tracker has a low computation

cost. By conducting experiments on 8 challenging video

sequences from a public benchmark, we demonstrate

that our tracker outperforms 8 state-of-the-art trackers

in terms of both accuracy and speed.
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1 Introduction

Visual object tracking is attracting more and more re-

searchers’ attention due to its potential applications,

which are commonly found in video surveillance [7,8,23,

16,27], sports analysis [19,29] and human motion recog-

nition [11,31,34]. Interesting applications reported in

these studies include crowd control, traffic monitoring

and transportation security. Several factors, such as

cluttered scene, illumination change, motion blur and

fast motion complicate a tracking problem. Most state-
of-the-art tracking approaches either rely on generative

methods [14,15,25,38,40], discriminative methods [2,

6,9,10,13] or hybrid methods [33,39] to handle visual

tracking.

Generative methods aim at building a model based

on the object appearance of interest, and then search for

the object appearance which best matches the learned

appearance. Recently, Zhou et al. [40] introduced a novel

appearance model that fused colour distributions and

spatio-temporal motion energy. Zhang et al. [38] pro-

posed a part matching tracker (PMT) which utilized

the leveraging multi-mode target templates. The local

orderless tracker (LOT) [22] applied the Earth Mover’s

Distance (EMD) [24] into the generatively probabilistic

model. Generative methods often outperform discrimi-

native methods when the size of training data is small.

However, the common weakness of generative methods

is that they cannot discriminate an object of interest

from the background because they consider only object

similarity. In this case, they are prone to drift.
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Discriminative methods regard the tracking as a bi-

nary classification problem. They attempt to distin-

guish an object from its surrounding background with-

out the description of the object. We state some of the

most recent methods as follows. The multiple instance

learning tracker (MIL) in [1] trained a classifier online

which was bootstrapped to extract positive and nega-

tive examples. The weighted MIL tracker (WMIL) in

[35] improved MIL by assigning weights to the samples

according to their importance when it was trained. Hen-

riques et al. [10] derived the Kernelized Correlation Fil-

ter (KCF) tracker based on Histogram of Oriented Gra-

dients (HOG) features instead of raw pixels. Discrim-

inative methods often outperform generative methods

if there are enough training data. However, discrimina-

tive methods, in general, cannot well adapt to appear-

ance changes [12], especially in the scenarios with mo-

tion blur. Furthermore, a discriminative method may

extract insignificant positive samples during its learn-

ing stage when sample’s importance is not known, so

that its tracking performance may be degraded.

Recently, several hybrid algorithms were proposed

for benefitting from both types of methods. Qian et al.

[33] proposed to encode appearance changes by a gen-

erative model and reacquired the targeted object after

a full occlusion occurred by a discriminative classifier.

Similarly, Zhong et al. [39] combined a sparsity-based

discriminative classifier with a histogram-based gener-

ative model for tracking an object of interest.

In this paper, we present a Hybrid Generative and

Discriminative Hash Tracker (HGDHT), which is insen-

sitive to scene clutter, illumination variation, motion

blur and abrupt motion. Different from the existing hy-
brid methods that perform discriminative classification

only when it is needed, our method sequentially exe-

cutes both a generative tracker and a discriminative

tracker.We intend to solve the main issues described as

follows. Firstly, feature vectors with high dimensional-

ity lead to expensive computation. Secondly, searching

algorithms generally fail to balance the efficiency and

speed. Thirdly, an effective matching and a classifier are

hard to design when the object and its background are

similar.

To tackle the above problems, we implement the in-

tegration of Hash fingerprints and spatio-temporal con-

textual cues. We generatively construct the appearance

model of an object based on the Hash fingerprints of

the primarily located object. Both a low-density sam-

pling and simple features in the Hash algorithm [17] can

reduce the computational complexity under the Parti-

cle Filter framework [20,26]. The spatial and temporal

cues of the object and its surroundings are discrimina-

tively fused into a confidence map, which is converted

to the Fourier domain by FFT for expediting the de-

tection process. This fusion strategy helps improve the

detection accuracy, especially when the object appear-

ance is changed due to deformation, occlusion, rotation,

illumination variation and motion blur. The optimized

confidence map in each frame provides the tracking re-

sults. Experimental results demonstrate our superiority

when compared with state-of-the-art approaches.

This paper is an extension of our paper showing

preliminary results in [5]. We highlight the main and

new contributions of this paper as follows.

• We propose a hybrid tracker which has both a gen-

erative tracker and a discriminative tracker. The

“generative to discriminative” scheme generates a

“coarse to fine” result, and hence results in fast yet

accurate performance.

• We design a simplified Particle Filter framework for

primary position calibration. We use only a small

number of particles to establish the Maximum a

Posteriori (MAP), instead of massive particles that

the conventional Particle Filter uses, in order to in-

fer the coarse position of an object.

• Compared with the preliminary work in [5], our

HGDHT makes use of Hash fingerprints and can

help decrease the calculation complexity.

The rest of this paper is organized as follows. Section

2 introduces the related work for immediate reference.

In Section 3, the proposed approach is presented. Sec-

tion 4 makes qualitative and quantitative comparisons

with 8 state-of-the-art approaches on 8 publicly avail-

able video sequences. At last, some concluding remarks

are demonstrated in Section 5.

2 Related Work

2.1 Spatio-Temporal Context Model

Our method uses the spatio-temporal context model

in the STC tracker [36] which reveals the relationship

between an object of interest and its local context. Here,

we provide a brief overview of this approach.

In STC tracker, a tracking problem is formulated by

computing a confidence map, namely the object loca-

tion likelihood. We get the current object location x∗

and the feature set Xc = {c(z) = (I(z), z)|z ∈ Ωc(x∗)}
where I(z) represents the image intensity at location z

and Ωc(x
∗) is the neighborhood of location x∗. The ob-

ject location likelihood at x under the Bayesian frame-

work is computed by

m(x) = P (x|o)
=
∑

c(z)∈Xc P (x, c(z)|o)
=
∑

c(z)∈Xc P (x|c(z), o)P (c(z)|o),
(1)



Hybrid Generative-Discriminative Hash Tracking with Spatio-Temporal Contextual Cues 3

where o represents the object.

The spatial context model is defined as a conditional

probability function

P (x|c(z), o) = hsc(x− z), (2)

where hsc(x−z) is a spatial context function regarding

the relative displacement between object location x and

its local context location z.

We model the context prior probability in Eq. 1 as

P (c(z)|o) = I(z)wσ(z− x∗)hwin, (3)

where I(·) is the image intensity of the context, wσ(z−
x∗) is a focus of attention function, with a scale param-

eter σ, defined as

wσ(z− x∗) = e−
|z−x∗|2

σ2 , (4)

and

hwin =

{
0.54− 0.46 cos( 2π

τ t), |t| ≤ τ
2 ,

0, otherwise.
(5)

Eq. 5 defines a Hamming window and it is applied in

Eq. 3 to reduce the frequency influence from the image

boundary on the FFT [4,21].

Substitute Eqs. 2 and 3 into Eq. 1, the confidence

map of the object location x is defined and computed

by

m(x) = b · e−
∣∣∣ x−x∗

α

∣∣∣β
=
∑

z∈Ωc(x∗) h
sc(x− z)I(z)wσ(z− x∗)hwin

= hsc(x)
⊗

(I(x)wσ(x− x∗)hwin),

(6)

where b is a normalization constant, and α and β are

a scale parameter and a shape parameter respectively.

Eq. 6 is transformed to a frequency domain for fast

convolution through:

F (b·e−
∣∣∣ x−x∗

α

∣∣∣β
) = F (hsc(x))

⊙
F (I(x)wσ(x−x∗)hwin),

(7)

where F (·) denotes the Fast Fourier Transform (FFT)

function and
⊙

denotes the dot product. The hsc(x) is

computed by

hsc(x) = F−1(
F (b · e−

∣∣∣ x−x∗
α

∣∣∣β
)

F (I(x)wσ(x− x∗)hwin)
), (8)

where F−1(·) denotes the inverse FFT (IFFT) function.

More details can be found in [36].

2.2 Orderless and Blurred Visual Tracking

Dai et al. [5] presented a robust tracker, namely order-

less and blurred tracker (OBT), which adapts to both

rigid and deformable objects in the scenarios contain-

ing orderless motion and image blurs. In this paper,

the RGB vector of an image is resized into 2 × 2 and

the Euclidean distance is used as the similarity mea-

surement between a candidate and a template for the

preliminary screening. Then, the best target location is

obtained by computing a confidence map based on the

spatio-temporal context.

3 Hybrid Generative-Discriminative Tracking

3.1 Framework

Figure 1 Framework of our tracking algorithm. The gener-
ative layer (coarse tracking) estimates the primary location
(tentative object) by the Maximum a Posteriori (MAP) of
Hash fingerprints. Then, the discriminative layer (fine track-
ing) integrates the tentative object and its surroundings to
construct a spatio-temporal context model and a focus-of-
attention model. The final location is inferred by maximizing
the image convolution.
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Figure 1 shows the basic flow of our proposed track-

ing algorithm. The hierarchical tracker consists of two

parts as follows.

Generative Layer Assume that this process is under

the framework of the Particle Filter. Firstly, we crop out

a candidate set from a search scope restrained to the

previous trajectory. Then, the Average Hash method is

integrated into our similarity metric to help estimate

the particle weights. Afterwards, the primary result is

estimated by the Maximum a Posteriori (MAP).

Discriminative Layer At the location indicated in

the primary result, we firstly fuse the cues of the local

context region to construct a focus-of-attention model

in the first frame and a spatial context model for each

frame. The spatial context models constructed from the

previous frames are used to form a spatio-temporal con-

text model by a weighted accumulative addition. Then,

the confidence map is obtained by the convolution of

the focus-of-attention model and the spatio-temporal

context model. Finally, the largest response of the con-

fidence map is regarded as the tracking result.

3.2 Fast Tracking on the Generative Layer

In this paper, we employ the framework of Particle

Filter to conduct the candidate sampling. The conven-

tional Particle Filter described in [20,26,30,32], which

is based on the Monte Carlo method, uses a Bayesian

sequential importance sampling technique to approxi-

mate the posterior distribution of state variables. Mean-

while, this solution is restricted by the following factors.

On one hand, to collect plentiful observations of parti-

cles is critical for doing a better posterior distribution

approximation. On the other hand, to extract exces-

sive similar samples will generate the problems of parti-

cle degeneracy and redundancy, and is time-consuming.

Two important steps for avoiding particle degeneracy

are choosing a proper proposal distribution and select-

ing a resampling algorithm. Therefore, we design a sim-

plified Particle Filter framework to search the object

based on MAP.

Instead of using massive particles to infinitely ap-

proach a real posterior distribution, we tend to use only

a small number of particles for pointing out the region

where the object is located. We extract the particles

that are significant to form a simplified candidate set

xt in order to decrease the calculation load and redun-

dancy. For doing this, we define a state set xt, of which

each element is a pair of the x coordinate and y co-

ordinate of a candidate’s location corresponding to an

object at time t:

xt = {(x, y)|(x, y) = (f ix, f
j
y )},

f ix = x∗∗t−1 + i× ∆x∗∗t−1

2 ,

f jy = y∗∗t−1 + j × ∆y∗∗t−1

2 ,

i, j = 0, 1, 2,

(9)

where (x, y) denotes the location of a candidate at time

t, f ix and f jy are the functions to generate the x coordi-

nate and the y coordinate of the candidate’s location,

respectively, and (x∗∗t−1, y
∗∗
t−1) indicates the object posi-

tion at time t− 1, and ∆x∗∗t−1 and ∆y∗∗t−1 represent the

moving distances of an object from time t− 2 to t− 1

in x and y directions respectively.

Given that our goal is to gain a potential location

with little computation, we use the Average Hash algo-

rithm [17] based on the low-frequency cues to achieve

the optimal similarity solution as follows.

Let x̂t be the template and xt be the candidate set

at time t . Let G(x̂t) be the template’s gray image cen-

tered x̂t and G(xt) be the set of candidate’s gray images

centered at the individual elements of xt respectively.

By doing the down sampling, we can quickly remove

the high-frequency features and details, and preserve

only the basic information, such as the structure and

intensity of an image. Meanwhile, the color of pictures

is also simplified.

Each matrix G = [Gij ]m×n representing an gray

image is converted to its corresponding Boolean matrix

B = [Bij ]m×n by the following function:

Bij =

{
1, Gij ≥ µ
0, otherwise

, (10)

where each Boolean matrix’s element Bij is converted
from the gray matrix’s element Gij , and µ is the mean

value of the elements in the gray matrix. Then, we se-

quence B to form a vector and gain a Hash fingerprint

K by K = [B11, B12, · · · , Bmn].

The relative distance between the Hash fingerprints

of the template x̂t and the l-th candidate xlt at time t,

denoted by K(x̂t) and K(xlt) respectively, can be esti-

mated by

d(x̂t, x
l
t) = exp(−HamDis(K(x̂t),K(xlt))),

l = 1, 2, · · · , N, (11)

where HamDis(·) stands for the Hamming distance.

Given the l-th sample of state at time t, xlt and the

observations up to time t, y1:t, our method estimates

the posteriori probability p(xlt | y1:t) of state xlt un-

der the framework of Particle Filter with the following

formulation:

p(xlt | y1:t) =
p(yt|xlt)p(xlt|y1:t−1)

p(yt|y1:t−1)
, l = 1, 2, · · · , N, (12)
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where p(yt|xlt) denotes the observation likelihood. The

likelihood is defined as p(yt|xlt) = d(x̂t, x
l
t).

The posterior p(xlt | y1:t) is approximated given a

finite set of N samples {xlt}l=1,··· ,N with importance

weights {ωlt}l=1,··· ,N . The candidate xlt is drawn from

an importance distribution q(xlt|xl1:t−1, y1:t), and then

the weight of the sample is updated by

ωlt = ωlt−1
p(yt|xlt)p(xlt|xlt−1)

q(xlt|xl1:t−1, y1:t)
, l = 1, 2 · · · , N. (13)

In the bootstrap filter, there is q(xlt|xl1:t−1, y1:t) =

p(xlt|xlt−1) which is equivalent to Eq. 9. Then, Eq. 13

can be calculated by

ωlt = ωlt−1p(yt|xlt)
= ωlt−1d(x̂t, x

l
t)

l = 1, 2 · · · , N. (14)

Let

ωt = {ω1
t , ω

2
t , · · · , ωNt }. (15)

Then, the values of ωlt for l = 1, 2, · · · , N at time t are

reassigned by

ωlt =

{
1, ωlt = maxωt
0, otherwise

l = 1, 2, · · · , N. (16)

Eqs. 9 - 16 can reduce the particle degeneracy by aban-

doning the less significant particles and increasing the

weights of more significant particles.

Then, the aforementioned best configuration of an

object, x∗t , can be obtained by the weighted particles

over the N number of particles at each time t.

x∗t =

N∑
l=1

xltw
l
t (17)

where xlt indicates the l-th sample of the state xt. For

the Particle Filter, the maximum posteriori probability

p(xlt|y1:t) is equal to
∑N
l=1 x

l
tw

l
t. In this way, we can

say that x∗t is obtained by the Maximum a Posteriori

(MAP) estimate

x∗t = arg max
xlt

p(xlt|y1:t), l = 1, 2, · · · , N. (18)

3.3 Optimization on the Discriminative Layer

Let us denote the hsc(x) in Eq. 8 at time t by hsct (x).

Let us also denote the corresponding context feature

set used in deriving Eq. 8 at time t by Xc
t = {c(z) =

(It(z), z|z ∈ Ωc(x
∗
t ))}, where It(z) represents the im-

age intensity at location z and Ωc(x
∗
t ) is the local con-

text region centered at x∗t obtained in Eq. 18 at time

t. hsct (x) is used to update the spatio-temporal context

model [36] Hstc
t (x) at time t in Eq. 19 below.

Hstc
1 (x) = hsc1 (x)

Hstc
t (x) = (1− ρ) ·Hstc

t−1(x) + ρ · hsct (x), for t > 1,

(19)

where ρ is considered as a learning parameter. The ob-

ject location x∗∗t is selected as the location of ground

truth at time t = 1 and is calculated by maximizing the

new confidence map [36] at t > 1:

x∗∗t = arg max
x∈Ωc(x∗t )

mt(x), (20)

where

mt(x) = F−1(F (Hstc
t−1)(x)

⊙
F (It(x)wσ(x−x∗t )hwin)),

(21)

which is deduced from Eq. 7.

Note that we use the zero mean treatment to ev-

ery frame in order to remove the effect of illumination

changes.

Finally, the template in Section 3.2 is updated by

G(x̂t) = G(x∗∗t ).

The tracking procedure is summarized in Algorithm

1.

Algorithm 1 The proposed tracking method.
Input: Video frame t = 1 : F
1: for t = 1 : F do
2: if t == 1 then
3: Generate the gray matrix of the template G(x̂1) and

the hsc1 , and then construct the spatio-temporal con-
text as Hstc1 = hsc1 .

4: Obtain the location x∗∗1 of the tracking object from
ground truth.

5: else
6: Generate the gray matrices of the candidate set

G(xt) = {G(x1t ), G(x2t ) · · · , G(xNt )}.
7: Construct the Hash fingerprints of K(x̂t) and K(xlt)

for l = 1, 2, · · · , N , and obtain the primary location
x∗t by the MAP.

8: Construct the spatio context model hsct based on x∗t .
9: Compute the confidence map mt(x) based on Hstct−1.

10: Estimate the object location x∗∗t at time t by max-
imizing the confidence map.

11: Update G(x̂t) and Hstct .
12: end if
13: end for
Output: Tracking results {x∗∗1 , x∗∗2 , · · · , x∗∗F }.
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4 Experiments

We compare our method with 8 state-of-the-art meth-

ods: spatio-temporal context tracker (STC) [36], multi-

ple instance learning tracker (MIL) [1], weighted MIL

tracker (WMIL) [35], compressive tracker (CT) [37], L1

minimization tracker (L1) [18], L1 tracker using accel-

erated proximal gradient (L1-APG) [3], local orderless

tracker (LOT) [22] and orderless and blurred tracker

(OBT) [5].

Our comparison is done on the Visual Tracker Bench-

mark [28], particularly focusing on the video sequences

with the impact factors including illumination varia-

tion, motion blur, fast motion and cluttered scene. Ta-

ble 1 shows the details of the evaluated video sequences.

For some trackers involving randomness, we repeat the

experiments five times on each video and get the aver-

aged results.

Table 1 Evaluated video sequences. ‘
√

’ denotes that the se-
quence contains the corresponding challenge, and ‘×’ implies
that the challenge is excluded.

Sequence Object Size Frames
Main Challenges

Illumination Motion Fast Cluttered
variation Blur Motion Scene

Body 87*319 334 ×
√

× ×
Car2 122*99 585 ×

√
×

√

Car4 170*149 380 ×
√

×
√

Face 94*114 493 ×
√

× ×
Deer 95*65 71 × ×

√ √

David 51*54 761
√

× × ×
Shaking 61*71 365

√
× ×

√

Bike 67*56 228 × ×
√

×

4.1 Parameter settings

The proposed method has several adjustable parame-

ters. In the process of spatio-temporal context, the pa-

rameters of the map function are set to α = 1.8 and

β = 1. The learning parameter is set to ρ = 0.086.

Here, β and ρ are set to the same values as those in

[36]. α is a scale parameter as found in Eq. 6 for com-

putation of m(x). The greater α is, the bigger weight

is given to each x further away to the object centre

in computing m(x). Noting that the focus of our work

is on tracking with motion blur, the information near

the indistinct outlier is less reliable than that close to

the object center. Therefore, it is a good idea to assign

a small weight to each x near the outlier by setting a

small α. Instead of using the fixed α = 2.25 as shown

in [36], we test our results using various values of α in

[1,3] with the increment of 0.05 in this paper. The aver-

age CLE and average DP are chosen as the evaluation

criteria.

Figure 2 The means of average CLE plots of all tested se-
quences with various values of parameter α ∈ [1, 3].

Figure 3 The means of average DP plots of all tested se-
quences with various values of parameter α ∈ [1, 3].

As shown in Figures 2-3 and Table 2, we get the

second best (slightly worse than the best) average re-

sults over all eight videos in terms of both CLE and

DP when α = 1.8. Although the average DP over the

eight videos reaches to its maximum when α = 1.5, the

average CLE result is only the third best for the same

α value. Similarly, although the average CLE over the

eight videos reaches to its maximum when α = 1.55, the

average DP result is only the third best for the same

α value. Therefore, by taking into account both CLE

and DP results, we decide to set α = 1.8 in this pa-

per. The full set of values showing the average DP and

CLE results over all eight videos is displayed in Table 2.

With the selection of this parameter value, our tracker

achieves relatively lower average CLEs and relatively

higher average DPs over the eight videos. Note that,
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Table 2 The detailed data of the means of average CLEs and the means of average DPs of 8 video sequences. We highlight
the results in α = 1.80 and α = 2.25.

α 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65
CLE 26.46 34.92 20.39 9.13 15.10 13.18 14.03 17.92 12.40 22.60 8.52 8.39 18.45 12.66
DP 84.11 85.19 86.29 89.19 85.29 84.78 85.37 88.29 87.40 85.41 93.06 91.88 87.95 87.44
α 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35

CLE 23.34 12.68 8.42 9.86 9.95 9.07 14.34 15.21 9.82 18.99 11.79 19.75 10.82 14.11
DP 86.04 87.76 92.14 87.81 88.30 89.36 84.92 81.77 88.35 82.74 88.38 84.51 82.78 83.62
α 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00

CLE 15.04 11.09 15.98 22.93 19.30 14.10 13.56 13.48 13.34 15.10 13.69 13.82 10.04
DP 83.81 87.48 86.70 78.53 80.85 86.35 83.89 84.53 86.13 81.58 79.64 88.22 86.95
*CLE represents the means of the average CLE; DP represents the means of the average DP.

even when α = 2.25 (the value used in STC [36]), our

tracker achieves the average CLE of 19.75 and the aver-

age DP of 84.51 (shown in Table 2), which are still sig-

nificantly better than the STC’s average CLE of 88.43

and average DP of 67.49 (shown in Tables 3 and 4 re-

spectively).

4.2 Qualitative analysis

Figures 4 - 5 visually demonstrate some tracking results

using different tracking methods.

Figure 4 Comparison of our approach with state-of-the-art
trackers on videos Bike, Body, Car2 and Car4.

Illumination variation: For David sequence (Fig-

ure 5(e)), most of the existing methods fail to track on

a frame (e.g., #134), where the target is in a very dark

area. The tracking results on frame #134 demonstrate

that OBT, STC and our method perform relatively well

while the other methods (e.g., WMIL, MIL, LOT, L1,

L1-APG and CT) completely fail to track the objects.

These results are attributed to that our tracker and

STC use the zero mean treatment (as mentioned in Sec-

tion 3.3) to reduce the influence of uneven illumination.

On frames #339, #438 and #666, OBT, STC and our

method show their superiority over other methods be-

cause they apply updated cues.

In Shaking sequence (Figure 5(h)), the dramatic

variation of the stage light makes the tracking even

harder. OBT, STC and our method use the spatio-

temporal context models, so they can discover the rel-

evance between object appearance and candidate sam-

ples. Therefore, OBT, STC and our method also out-

perform other trackers when an video experience signif-

icant illumination and appearance variations.

Motion Blur: The proposed method is robust to

motion blur as shown in Body (Figure 4(b)), Car2
(Figure 4(c)), Car4 (Figure 4(d)) and Face (Figure

5(g)) sequences. Other methods suffer from severe drift

and even fail to track. This robustness is attributed

to the hierarchical structure which has both generative

and discriminative merits. The generative method can

detect the most similar patch to a target and the dis-

criminative method uses the spatial relationships and

appearances of local contexts to separate the target

from its background. Furthermore, the Hash fingerprint

introduced in the generative appearance model can ef-

fectively remove the complex information (i.e., high-

frequency information) and preserve the basic informa-

tion (i.e., low-frequency information). Therefore, our

generative method under the Particle Filter framework

can estimate similarities between the template model

and candidate samples in a fast and accurate way.

Fast Motion: It is difficult to capture a target

which is undergoing a random and fast motion.

In Bike sequence (Figure 4(a)), the proposed method

and STC are more appropriate than other methods for

foreground segmentation from background. This is be-

cause that the two methods can reveal the relevance

between an object and its contextual cues while other

methods cannot. Besides, the tracking will be more dif-

ficult when some analogues appear in a scene.

As shown in Deer sequence (Figure 5(f)), only our

tracker performs well throughout the whole sequence

while other trackers fail to complete the tracking task.
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Table 3 Center location error (CLE) (in pixels). The best results are shown in red while the second and third ones are shown
in blue and green.

Sequence WMIL[35] STC[36] MIL[1] LOT[22] L1[18] L1-APG[3] CT[37] OBT[5] OURS
Body 54.4 148 128 84.5 131 36.7 122 18.1 16.8
Car2 163 5.41 73.9 26.2 49.9 213 104 5.14 5.02
Car4 101 18.2 146 25.3 61.6 20.5 161 16.2 15.62
Face 127 113 123 33.4 149 91.9 55.8 3.91 3.86
Deer 15.6 401 202 63.7 78.1 214 211 5.43 5.41
David 36.3 6.61 43.8 103 63.4 67.1 44.9 5.45 5.41
Shaking 12 8.2 145 73.6 29.1 23.7 11.2 10.7 8.09
Bike 120 7.03 217 24.1 136 26.5 216 7.35 7.15
Average CLE 78.66 88.43 134.84 54.23 87.26 86.68 115.74 9.04 8.42

Figure 6 Error plots of all tested sequences for different tracking methods.

Table 4 Distance precision (DP) (in pixels). The best results are shown in red while the second and third ones are shown in
blue and green.

Sequence WMIL[35] STC[36] MIL[1] LOT[22] L1[18] L1-APG[3] CT[37] OBT[5] OURS
Body 16.2 16.5 2.99 14.1 27.2 7.49 1.2 55.4 66.2
Car2 7.69 99 15.9 43.9 30.4 12 7.52 95.7 99.3
Car4 3.42 57.4 3.42 52.4 33.2 50.3 3.68 68.9 71.6
Face 18.1 62.9 15.4 39.4 12.4 30.8 19.9 100 100
Deer 87.3 4.23 5.63 19.7 9.86 4.23 4.23 100 100
David 10.1 99.9 16.6 1.97 17.2 31.5 0.131 100 100
Shaking 83.8 100 12.3 17 46.3 26 94.5 72.3 100
Bike 52.2 100 17.1 71.9 26.8 72.4 17.1 100 100
Average DP 34.85 67.49 11.17 32.55 25.42 29.34 18.53 86.54 92.14

Although WMIL is also robust under the situations that

the surroundings are similar to the initial state, it lost

the target when there are sharply changing surround-

ings as shown in frames #8 and #40. In fact, our success

is attributed to the coarse-to-fine structure. Within a

search scope, we firstly extract an image patch which

is most likely to contain a target. Then, we attempt

to find the exact location of the object within the ex-

tracted patch and its surroundings. This strategy makes

our method search a large scope efficiently while other

methods are restricted to their small search scopes.

Cluttered Scene: Similar foreground and back-

ground can cause confusion during tracking. As seen in

Car4 sequence (Figure 4(d)), there are many similar

cars passing by and the image blur caused by the shak-

ing camera also increases the tracking difficulty. Given

that our tracker removes the high-frequency informa-

tion (e.g., contours) by down sampling, it can avoid the

influence of fuzzy boundaries. In addition, our tracker

predicts the location of an object with the help of re-

lationships between the object and its surroundings.

Therefore, our method can succeed in tracking while
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Table 5 Comparison with average frames per second (FPS). The best results are shown in red while the second and third
ones are shown in blue and green.

Sequence WMIL[35] STC[36] MIL[1] LOT[22] L1[18] L1-APG[3] CT[37] OBT[5] OURS
Body 20.68 20.63 0.87 0.3 1.82 15.03 12.92 18.35 21.22
Car2 19.23 22.22 1.42 0.41 1.94 8.43 12.47 27.66 25.76
Car4 20.2 20.21 1.24 0.3 2.85 15.12 12.65 22.04 22.25
Face 20.52 22.52 1.02 0.1 2.61 9.51 12.69 28.02 26.41
Deer 19 26.07 3.26 0.1 2.67 6.63 13.55 29.36 26.42
David 31.47 32.54 1.73 1.11 3.1 10.21 16.85 53.29 41.77
Shaking 20.87 30.86 1.59 0.45 2.79 8.44 15.76 37.72 31.8
Bike 20.86 30.31 2.09 0.58 1.47 8.1 14.2 37.48 33.69
Average FPS 21.6 25.67 1.65 0.42 2.41 10.18 13.89 31.74 28.67

Figure 5 Comparison of our approach with state-of-the-art
trackers on videos David, Deer, Face and Shaking.

other trackers undergo severe drifts and tracking fail-

ures.

In Car2 (Figure 4(c)), Deer (Figure 5(f)) and Shak-
ing (Figure 5(h)) sequences, our tracker also shows its

superiority compared with other methods.

4.3 Quantitative analysis

Here, we use two evaluation criteria as introduced in

[28] for experimental comparison: center location error

(CLE) and distance precision (DP). The speed perfor-

mance is evaluated by frames per second (FPS). CLE

is calculated based on the average Euclidean Distance

between an object’s center and its ground-truth. The

pixel error in each frame is defined as:

CLE =
√

(xob − xgt)2 + (yob − ygt)2, (22)

where (xob, yob) is the object location in each frame,

and (xgt, ygt) is the ground truth of each frame.

Besides CLE, we also compute the precision rate

DP, which embodies the correlative number of frames

where CLEs are below a certain threshold. Here, we set

the DP values at the threshold of 20 pixels [28]. The

DP score in a sequence is calculated by:

DP =
Num(CLE < τ)

N
, (23)

where τ is the DP threshold, andNum(·) is the function

to accumulate the total number of frames where CLEs

are smaller than τ . The denominator N is the number

of frames in a full sequence.

Table 3 and Figure 6 report the center location er-

ror and smaller CLE reflects better performance. In Ta-

ble 3, each row shows the average CLE of the different

methods tested on a certain video sequence. The best

results are shown in red while the second and third ones

are shown in blue and green. Table 4 reports the DP

which records the success frame number of a sequence.

Larger DP means more accurate results. As seen in Ta-

bles 3 - 4 and Figure 6, our tracker achieves the best per-

formance in Body, Car2, Car4, Face, Deer, David
and Shaking, when compared with WMIL, STC, MIL,

LOT, L1, L1-APG and CT. For Bike sequence, in spite

that our CLE is a little greater than the counterpart of

STC in Table 3, our CLE curve (shown in Figure 6) al-

most overlaps the curve of STC and hence demonstrates

almost equal performance to STC. Our slightly poorer

performance in terms of CLE compared with STC is

because the object’s center is not estimated accurately

enough at the generative stage so that some parts of

the target are excluded from our searching scope in the

discriminative stage. The main reason for the above to

happen is the low sampling density that occurred when

down sampling was performed to reduce the computa-

tion complexity of the Particle Filter. Nevertheless, the

results in terms of DP verify the outstanding perfor-

mance and superiority of our approach.

Furthermore, we also use the average frames per sec-

ond (FPS) (see Table 5) to evaluate the speed of each

method. Actually, speed is a crucial factor for many

real-world applications. In our method, we use the down

sampling and FFT transformation for rapid calculation.

Implemented in MATLAB, our tracker runs at 28.67

PFS on average on an i7 2.80 GHz CPU with 16 GB
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RAM. PFS results show the suitability of our method

for real-time applications.

To summary, Tables 3 - 5 show that our method per-

forms excellently in terms of both speed and accuracy

on 8 challenging sequences. Our approach outperforms

the 8 state-of-the-art methods in terms of average CLE

and average DP, and is second best in terms of average

FPS.

5 Conclusions and future work

In this paper, a real-time method which is named hy-

brid generative-discriminative Hash tracker (HGDHT)

has been proposed. Firstly, the particles representing

the potential centers of a target are generated in the

generative stage. The Hash fingerprint matching is ap-

plied to formulate the observation likelihood. Then, the

preliminary location of the target is estimated by an im-

proved Maximum a Posteriori (MAP). This preprocess

has also extended the search scope in order to capture

the object which undergos a random and fast motion. In

the discriminative stage, we optimize a confidence map

derived using spatio-temporal context to find the accu-

rate target location. As a consequence, our method is

robust to appearance variations. Experiments on some

challenging video sequences have demonstrated the su-

periority of the proposed approach over 8 existing state-

of-the-art methods in terms of both accuracy and ro-

bustness.

In the future, we will improve the scale adaptability

of our tracker so that extracted rounding box containing

a target can be more precise.
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