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Abstract— Speaker Verification (SV) systems involve 
mainly two individual stages: feature extraction and 
classification. In this paper, we explore these two modules 
with the aim of improving the performance of a speaker 
verification system under noisy conditions. On the one 
hand, the choice of the most appropriate acoustic features 
is a crucial factor for performing robust speaker 
verification. The acoustic parameters used in the proposed 
system are: Mel Frequency Cepstral Coefficients (MFCC), 
their first and second derivatives (Deltas and Delta-
Deltas), Bark Frequency Cepstral Coefficients (BFCC), 
Perceptual Linear Predictive (PLP), and Relative Spectral 
Transform - Perceptual Linear Predictive (RASTA-PLP). 
In this paper, a complete comparison of different 
combinations of the previous features is discussed. On the 
other hand, the major weakness of a conventional Support 
Vector Machine (SVM) classifier is the use of generic 
traditional kernel functions to compute the distances 
among data points. However, the kernel function of an 
SVM has great influence on its performance. In this work, 
we propose the combination of two SVM-based classifiers 
with different kernel functions: Linear kernel and 
Gaussian Radial Basis Function (RBF) kernel with a 
Logistic Regression (LR) classifier. The combination is 
carried out by means of a parallel structure approach, in 
which different voting rules to take the final decision are 
considered. 

Results show that significant improvement in the 
performance of the SV system is achieved by using the 
combined features with the combined classifiers either 
with clean speech or in the presence of noise. Finally, to 
enhance the system more in noisy environments, the 
inclusion of the multiband noise removal technique as a 
preprocessing stage is proposed. 
 

Index Terms—Speaker Verification; Speech Feature 
Extraction; MFCC; BFCC; PLP; RASTA-PLP; SVM; 
Logistic Regression; Feature Combination; Classifier 
Combination. 

 

I. INTRODUCTION 

Through the past years, Speaker Recognition has become one 
of the most challenging issues in the field of speech 
technologies, as it might be crucial for many applications such 
as transaction authentication, banking operations, database 
access services, military, voice dialing, in-car systems, 
Healthcare and remote access to computers [1]. Speaker 
Verification (SV) is possibly the most important task of 
speaker recognition. Its purpose is to make the decision of 
agreement or rejection of a user using exclusively his/her 
voice (i.e. binary problem). Verification systems can be 
classified into two different categories: text-dependent [2] and 
text-independent [3]. In the first one, the user is required to 
say a predefined utterance like a password. In the second one, 
the system relies only on the voice characteristic of the 
speaker regardless the spoken text. In other words, there are 
no restrictions on the utterances said by the user and, as a 
consequence, a certain degree of mismatch between the data 
used in the training and testing phases could appear. For this 
reason, this kind of systems is more challenging than text-
dependent ones. In this work, we focus on text-independent 
SV systems, for which a detailed overview can be found in 
[4]. 
 
Speaker verification systems consist of two main stages: 
feature extraction and classification. Acoustic features are 
parametric representations of speech waveforms and must 
have high discriminative capabilities. Several works in the 
literature have addressed the problem of obtaining suitable 
features for SV, as for example in [5] in which the 
conventional Mel Frequency Cepstral Coefficients (MFCC) 
are substituted by the so-called dynamic MFCC parameters. 
In [6] there is a complete comparison between five different 
acoustic parameterizations: MFCC, Modified MFCC, Bark 
Frequency Cepstral Coefficients (BFCC), Revised Perceptual 
Linear Predictive (PLP), and Linear Prediction Cepstral 
Coefficients (LPCC) showing that MFCC achieves the highest 
accuracy compared to the other feature sets. Some other 
trends in feature extraction can be found in [7] which make 
use of information that is not contained in cepstral parameters. 
In [8] instead of using only one feature set, the accuracy of a 
speaker recognition system is improved by studying different 
combinations of several complementary features. 

https://link.springer.com/article/10.1007/s00521-016-2470-x
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The aim of the classifier in the speaker verification system is to 
compare the given features of the speech utterance to two 
different models: the claimed speaker model and the impostor 
model, which can be interpreted as the acoustic pattern 
representing all other speakers. 
 
In recent years, several types of classifiers have been 
proposed for speaker recognition, such as Artificial Neural 
Networks (ANN) [9], [10], [11], Vector Quantization based 
Probabilistic Neural Network (VQ-PNN) [9], Gaussian 
Mixture Models (GMM) [12], and Support Vector Machines 
(SVM) [4], [13], being the two latter techniques the most 
extended nowadays. 
 
GMM is a common choice for speaker-related tasks as this 
type of classifier is able to tackle the temporal nature of the 
speech signal and its mathematical formulation is well-known. 
Nevertheless, GMMs usually assume that successive acoustic 
vectors are uncorrelated and follow a Gaussian (or a mixture 
of Gaussians) distribution, which might not represent properly 
the feature distributions. On contrast, ANNs and SVMs do not 
require strong assumptions about the underlying statistical 
properties of the input features. ANNs present good 
classification/discrimination properties, however as they are 
based on the so-called Empirical Risk Minimization (ERM), 
the probability of converging to a local minimum is great and 
they are more prone to overfitting [14]. Another drawback of 
ANNs which limits its usability for speaker verification is that 
their performance is poor when the size of the available 
training data is small, which is a common situation in SV 
systems. 
 
SVM is one of the highest discriminative classifiers that is 
based on the construction of a hyperplane or set of hyperplanes 
in a high dimensional space, which simplifies the classification 
task. Contrary to ANNs, SVMs are based on Structural Risk 
Minimization (SRM) and hence, they are able to provide a 
global and unique solution, resulting in better generalization 
ability. Other advantages of SVMs over ANNs are that they 
are more suitable for limited training data and able to deal with 
high-dimensional input vectors, as they use a subset of training 
points (called support vectors) in the decision function [14]. In 
addition, SVMs are versatile because of the possibility of using 
different kernel functions for the decision. If one kernel does 
not provide the desired performance, the fusing of different 
kernels could be required. For example, in [15] three kernel 
functions are combined to achieve better performance for a 
speaker verification system. For these reasons, in this paper, 
SVM is one of the classifiers on which the developed SV 
system is based. 
 
Another interesting discriminative classifier for SV we have 
experimented in this work is Logistic Regression (LR) [4]. LR 
is one of the most popular classifiers in the family of 
Generalized Linear Model (GLM). The advantage of logistic 
regression is its probabilistic interpretation. In fact, it is based 
on the computation of the probability of an event occurrence 

having been given some previously trained data. This way, it 
can be used directly for SV to guess if an incoming utterance is 
related to the claimed user (1) or not (0). 
 
In this paper, a study of different features for text-independent 
speaker verification task is discussed and a comparison 
between three classifiers: linear kernel SVM, RBF kernel 
SVM, and Logistic Regression is shown. The main 
contributions of this paper are the improvement of the feature 
extraction stage by using a combination of different parameter 
sets and the enhancement of the classification stage by 
combining different classifiers. The paper is organized as 
follows. Section I gives a general overview of speaker 
verification systems and their main components. Section II 
presents the state of the art of techniques for building SV 
systems based on feature and/or classifier combinations. A 
brief description of the five feature sets used in this work is 
presented in section III. Section IV deals with the different 
classifiers proposed for the system. Results with different 
feature combinations and experiments regarding the use of 
only one classifier or a combination of all the three classifiers 
in clean conditions are detailed in section V. Section VI 
contains experiments and results achieved by the proposed SV 
systems in different noisy conditions. Section VII shows a 
comparison between all systems from the point of view of the 
execution time to check the ability to use them in applications 
requiring real-time. Finally, all work is concluded in section 
VIII with plans for future work. 
 

II. STATE OF THE ART 

In this paper, we consider two main techniques to improve the 
performance of speaker verification systems: 
 
1. Enhancement of the extracted features, by combining 

different feature sets with high discriminative capability. 

2. Enhancement of the classification stage, by combining 
classifiers using a parallel structure with different voting 
rules. 
 

Regarding the feature extraction process, nowadays there is a 
trend of combining different speech features to get higher 
performance. This combination helps in covering different 
aspects such as the difference in the rhythm, pronunciation 
pattern, accents, intonation style and so on. In this context, the 
authors in [16] combine Linear Prediction Coding (LPC) with 
MFCC to increase the performance of a speaker recognition 
system. In another related work, a combination of Discrete 
Wavelet Transform (DWT) and Relative Spectral Transform - 
Perceptual Linear Predictive (RASTA-PLP) is proposed [17]. 
In [18] the authors also combine DWT with traditional MFCC 
to build a robust speaker recognition system. 
 
With respect to the classification module, SVM has recently 
become one of the most common and robust classifiers for 
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speaker verification due to, among the other advantages 
previously mentioned, its good generalization capability to 
classify unseen data [19] in addition to its ability for training 
nonlinear decision boundaries efficiently [20]. The kernel 
function is the key part of SVM and, in fact, the choice of it 
could change the learning ability of the classifier. Different 
kernels, which mean different transformations and 
characteristics, will provide different accuracy for the 
classification. Based on the analysis of various kernel 
functions, it can be expected that the best performance of the 
classifier comes from the combination of several of these 
functions resulting in higher generalization and learning 
capabilities.  
In addition to this, the way of combination and the decision 
rule used to make the final decision have a major effect on the 
whole system. In this context, in [21] the authors compared 
the combination of four different kernels to build an SV 
system: linear, quadratic, polynomial of order 3 and RBF with 
σ=1. The main conclusion extracted from this study was that 
in any possible case, results of using only one kernel function 
were worse than those achieved by using the aggregation of 
all other functions. Therefore, we can hypothesize that the 
combination of kernel functions will improve the performance 
of the whole SV system as it avoids the weakness of each one 
of the individual classifiers and increases their strengths. 
 
There are three common structures for combining multiple 
classifiers [22]: 
 
1. Serial structure. In this case, each individual classifier is 

invoked sequentially, with the results of the classifier N-1 
being used as input for the classifier N which is following 
it in the sequence. 

2. Parallel structure. The outputs of the individual classifiers 
are passed to the combiner which makes the final 
decision by using some rules. 

3. Hierarchical structure. In this case, the outputs of the 
individual classifiers are feeding as inputs to the classifier 
which is the parent node of them. 

 
In addition, there are fe ̀ . fi[ed¶ rules for making a final 
decision in the combination of N classifiers [23]: 
 
1. AND rule. Speaker utterance x is declared as class 1 

(verified user) if all classifiers predict it as class 1; 
otherwise, it will declare as class 0. 

2. OR rule. Speaker utterance x is declared as class 1 
(verified user) if at least one of the classifiers predicts it 
as class 1; otherwise, it will declare as class 0. 

3. Majority vote rule. Speaker utterance x is declared as 
class 1 if the majority of the classifiers predict it as class 
1; otherwise, class 0 is declared [24]. 

4. k-out-of-N rule: Speaker utterance x is declared as class 1 
if at least k of the N classifiers predict it as class 1. The 

previous three rules are special cases of this one with 
different values of k. 

 
In our experiments, we compare the performance of the SV 
system using the first three rules of combining classifiers. 
 

III. PROPOSED FEATURE COMBINATION 

It is very difficult for the classifier to take raw speech data 
directly as the input. In fact, this may affect the learning 
ability of the classifier and dramatically decreases the 
accuracy of the system. Because of this, the input speech 
waveforms must be transformed to a set of acoustic features 
with the following desired characteristics: non-redundancy, 
dimensionality reduction, and discriminative capabilities. 
 
This transformation stage is called feature extraction. Features 
must be accurately chosen to lead to better performance of the 
system. In this paper, we propose the combination of five 
different feature sets, which are the following. 
 

A. Mel-Frequency Cepstral Coefficients 

MFCC is one of the most popular parameterizations in speech 
and speaker recognition tasks. It was developed by Davis and 
Mermelstein in 1980 [25]. The MFCC extraction method 
considers (at least, partially) knowledge about how humans 
hear acoustic signals. MFCC is computed by applying the 
Discrete Cosine Transform (DCT) on the logarithm of the 
short-term energy spectrum after converting it using a 
nonlinear Mel-frequency scale. The idea behinds this 
frequency warping is to make an approximation to the non-
equal sensitivity of the human hearing at different frequencies. 
In fact, as it can be observed in Fig. 1, the Mel scale does not 
depend linearly on the normal frequency as it is roughly linear 
below 1 kHz and logarithmic above this value. 
 

 
Fig. 1. The Mel frequency scale. 
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Fig. 2. Extraction of MFCC features from speech signals. 

 
Fig. 2 presents the block diagram of the MFCC extraction 
process. To transform from the linear frequency to the Mel 
frequency, eq. (1) is used. 

 
𝑀𝑒𝑙 ൌ 2595 logሺ1 ൅ 𝑓/700ሻ                                                    ሺ1ሻ 

 
where f is the linear frequency (Hz) and Mel is the Mel one. In 
the final step, to obtain the coefficients, the log Mel spectrum 
is converted back to time by using the DCT.  
 
MFCC is a good and compact representation of the speech 
signals as it takes into consideration some characteristics of 
the human auditory system. In fact, the MFCC 
parameterization is the most commonly used in speech-related 
tasks. However, its major weak point is its high sensitivity to 
noise interference (in general, to any kind of mismatch 
between training and testing conditions) that dramatically 
decreases the performance of the system. Also, in the 
computation of MFCC, only the magnitude spectrum of 
speech signals is used and therefore any potentially relevant 
information contained in the phase spectrum is ignored [26]. 
 
In our experiments, MFCC parameters with different 
dimensions were obtained from speech utterances. In all 
cases, feature vectors were extracted on 25 ms Hanning 
analysis windows, each at 10 ms (the step between successive 
windows which allows some overlap to the frames). These 
values are common in feature extraction from speech because 
a smaller window length will release a low number of samples 
in the frames which will not be enough to get the reliable 
information and a larger length of the window will give 
frequent changes in the information inside the frame. The 
Mel-cepstral vectors were computed using a triangular Mel-
scaled filter bank of 40 filters on the magnitude spectrum of 
the speech signal. 
 

B. Deltas and Delta-Deltas of MFCC 

Deltas and Delta-Deltas of MFCC are also called differential 
and acceleration coefficients or dynamic coefficients. The 
MFCC feature vector (static coefficients) describes only the 
power spectral envelope of a single frame, but the delta and 
delta-deltas describe the dynamics information of speech i.e. 
the behavior of the MFCC trajectories over time. 
 
They are the same dimension as MFCC coefficients; for 
example, if we have N features, we would also get N deltas 
coefficients and N delta-deltas coefficients which will 
combine to give a total feature vector of length 3×N. The delta 
coefficients are calculated using the following equation: 
  

 𝐷௧ ൌ  ∑ 𝑖ሺ஼೟శ೔−஼೟ష೔ሻೈ
೔సభ

2 ∑ 𝑖మಿ
೔సభ

                                                         ሺ2ሻ 

 
where Ct represents the MFCC coefficients at the t-th frame, 
Dt is the delta coefficients at t-th frame and W is the length of 
the window for computing the delta features. 
 
The Delta-Deltas parameters are calculated in a similar way 
but with replacing the MFCC coefficients in the previous 
equation by the delta coefficients.  
 
Dynamic features contribute to improving the robustness of 
the speaker verification system to noise in comparison with 
using only MFCC. But on contrary, they also carry additional 
information, as for example the speech rate, which might not 
be appropriate for speaker recognition systems (at least when 
no noise is present). 
 
In our experiments, we have used windows of 9 points (i.e. W 
= 4) to calculate the dynamic parameters from the MFCC 
ones. 
 

C. Bark Frequency Cepstral Coefficients 

The Bark scale provides a better and motivated scale in 
comparison to the previous Mel one. Each point on the basilar 
membrane can be considered as a band pass filter having a 
variable bandwidth equal to one critical bandwidth [27]. 
These critical band units are called ³Bark´. The following 
equation represents the function which transforms the linear 
frequency to the Bark frequency:  
 
𝐵𝑎𝑟𝑘 ൌ 6 𝑠𝑖𝑛ℎ−1ሺ𝑓/600ሻ                                                          ሺ3ሻ 
 
where f and Bark are, respectively, the linear (Hz) and Bark 
frequencies. 
 
After applying the Bark-scaled filter bank on the magnitude 
spectrum of the speech signal, the remaining conversions to 
get the final features are the same as MFCC. 
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As the BFCC extraction process is similar to the MFCC 
computation excepting for the frequency warping used, BFCC 
and MFCC basically share the same limitations. 
 
As in the case of MFCC, BFCC parameters with different 
dimensions were obtained from speech utterances on 25 ms 
Hanning analysis windows, each at 10 ms. Then a Bark 
frequency warp was used to get the Bark-cepstral vector by 
applying a Bark-scale triangular filter bank of 40 filters on the 
magnitude spectrum of the speech signal. 
 

D. Perceptual Linear Predictive Coefficients 

This method was proposed by Hermansky [28]. It uses three 
main concepts from the psychophysics of hearing (which 
improves the performance of the system) to derive an estimate 
of the auditory spectrum and obtain the PLP coefficients: (1) 
the critical-band spectral resolution, (2) the equal-loudness 
curve, and (3) the intensity-loudness exponential law which is 
known as the cubic-root compression, which is implemented 
by using eq. (4), 
 

𝑆ሺ𝑚ሻ ൌ ൭෍ |𝑋௠ሺ𝑘ሻ|2𝐻௠ሺ𝑘ሻ
𝑁−1

௞=0

൱

0.33  

                                        ሺ4ሻ 

 
where X is the magnitude spectrum of the speech signal, H is 
the perceptual filter considered (in this case, the Bark 
frequency warping is used), m is the index of the filter band 
which ranges from 0 to 39 (40 filters), N is the number of 
frames and S is the modified auditory spectrum. This equation 
is an approximation of the power law of the hearing human 
system which shows the nonlinear relationship between the 
intensity of the sound and its perceived loudness. 
 
The complete block diagram of extraction of the PLP features 
from the speech signal is shown in Fig. 3. 
 
PLP aims to combine MFCC and LPC advantages. Indeed, it 
is identical to LPC except that the speech spectral 
characteristics are transformed to match those of the human 
hearing system [29]. However, PLP analysis presents several 
drawbacks. On the one hand, the critical band filtering stage 
may introduce a spectral smoothing with limits its 
discrimination capabilities for speaker recognition tasks [30]. 
On the other hand, PLP features are dependent on the whole 
spectral balance of the formant amplitudes, which is highly 
sensitive to noise and channel distortions [26]. 
 
In our experimentation, 9-dimensional PLP feature vectors 
were extracted from speech utterances. The analysis window 
was Hanning of 25 ms length with a step time of 10 ms. 
 

 
Fig. 3. Extraction of PLP features from speech signals. 

 
 
 

E. Relative Spectral Transform - Perceptual Linear 
Predictive Coefficients 

These features, proposed by Hermansky and Morgan [31], are 
based on the application of the RASTA band-pass filtering to 
the PLP features to compensate the distortions caused by 
linear channels and get robust speaker recognition. 
 
One of the advantages of this filter is the ability to be used 
either in the log spectral or cepstral domains. It removes any 
constant offset resulting from static spectral coloration in the 
speech channel and produces a smoothing over short-term 
noise variations. Although RASTA-PLP features perform 
relatively well when there is a mismatch between the train and 
test conditions, in some occasions, its performance degrades 
in clean speech scenarios. 
 
RASTA-PLP features were extracted using the same kind of 
analysis window and step time as in the case of PLP. The 
RASTA filter was a band-pass filter with a single pole at 0.94. 
Finally, 9-dimensional RASTA-PLP feature vectors were 
computed from speech utterances. 
 

IV. PROPOSED CLASSIFIERS 

A. SVM classifier with different kernels 

SVM is one of the most used binary classifiers, which 
nowadays has become popular for speaker verification tasks 
[13]. In contrast to traditional methods for speaker verification 
that separately model the probability distributions of claimed 
speaker and impostors, SVM discriminates between the 
different classes by using a set of hyperplanes that satisfy the 
maximum separation criterion. Fig. 4 shows a 2D example for 
SVM classifier in which the data are linearly separable. 
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Fig. 4. An example of SVM classifier. 

 
The hyperplanes can be defined by the following equation: 
 
𝒘. 𝒙 ൅ 𝑏 ൌ 0                                                                                   ሺ5ሻ 
 
where w is the normal vector to this separating hyperplane, x 
is the vector containing the features points and b is a real 
parameter which determines the offset of the hyperplane from 
the origin. The perpendicular distance from the hyperplane to 
the origin is b/||w||, where ||w|| is the Euclidean norm of w. 
 
The goal for the SVM is to find the optimal position of the 
hyperplane that maximizes the margin between the two dash 
lines in Fig. 4. This corresponds to minimize 2/||w||. With the 
restriction of all samples being correctly classified, the margin 
is called a hard-margin which achieves the following 
inequality [32], 
 
𝑦𝒊ሺ𝒘. 𝑥𝒊 ൅ 𝑏ሻ ൒ 0                                                                          ሺ6ሻ 
 
where yi is either 1 or í1, indicating the class that the feature 
vector xi belongs to. 
 
In the case of non-separable data, another type of margin, 
called soft-margin, is required. In this case, there is a tradeoff 
between increasing the size of the margin (i.e. to accept some 
of the misclassified data in the training phase) and ensuring 
that all data are classified correctly (which can affect the SVM 
generalization capability and produce the over-fitting 
problem). The slack parameter which controls this tradeoff is 
called C. Low values of C imply a low number of training 
errors but with low generalization capability and vice versa. 
 
When the classes cannot be linearly separated, it is possible to 
use kernel functions to provide a simple transformation from 
linear to non-linear spaces. In other words, the original data 
are mapped and transformed using the kernel function into 
linearly separable data. In this paper, we propose the use of 
two combined kernel functions to achieve the optimal 

performance and enhance the SVM learning ability [33]. The 
selected two kernels are: 

 
1) Linear Kernel 

It is the most common and simplest type in SVM. In linear 
kernel, the function is just the dot product between two 
feature vectors,  
 
𝐾൫𝑥𝑖, 𝑥௝൯ ൌ 𝑓ሺ𝑥𝑖ሻ. 𝑓൫𝑥௝൯                                                              ሺ7ሻ 
 
where K(.) is the kernel function, f(.) is the mapping function 
from the input space to another space where the data can be 
linearly separated, and xi and xj are two feature vectors with 
the same dimension. 
 

2) Gaussian Radial Basis Function Kernel 

The RBF kernel is equivalent to a linear kernel in an infinite-
dimensional feature space, but still easy to compute. It uses 
the Gaussian function to make the transformation from the 
nonlinear separation between the two classes to a linear one. It 
is a special case for the generalized radial basis function and 
can be expressed by the following equation [14]: 
 

𝐾൫𝑥𝑖, 𝑥௝൯ ൌ exp ሺ
െ||𝑥𝑖 െ 𝑥௝||2

2𝜎2 ሻ                                                 ሺ8ሻ 
 
where xi and xj are two features vectors with the same 
dimension, ||𝑥𝑖 െ 𝑥௝||2 is the squared Euclidean distance 
between these two feature vectors and σ is the standard 
deviation which controls the width of the Gaussian radial 
basis function. 
 
As mentioned before, one of the reasons for selecting SVM as 
a classifier in this work is because it is well suitable to deal 
with high dimensional feature vectors as the construction of 
the hyperplanes in the high dimensional space do not require 
much computational complexity. A detailed discussion of the 
computational complexity of SVM can be found in [34]. 
These high dimensional features may emerge after the 
combination of several parameter sets as it will be shown in 
section V. 
 

B. Logistic regression 

LR is a special case of GLM which is a large class of 
statistical models for relating responses to linear combinations 
of predictor variables. It is widely used in problems with high 
dimensional settings [35] (what is our case here). LR can be 
represented by the following equation [36], 
 
𝑦𝑖 ൌ 𝐺ሺµ𝑖ሻ ൌ  𝒙𝑖. 𝜷                                                                      ሺ9ሻ 
 
where yi is the predicted value indicating the class that the 
feature vector xi belongs to, xi is the feature vector, β is a 
vector of unknown parameters, G(.) is the link function and µi 
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is the expected value of the variable yi, such as µi = E(yi). 
Note that ³.´ is the dot product between the two vectors. 
 
The link function can be any differentiable one but it is 
preferable the use of functions which its inverse link is easily 
computed such as Poisson, Gamma, inverse Gaussian, and so 
on. In comparison to the ordinary linear regression which 
predicts the expected value of a given unknown quantity (the 
feature vector related to the claimed user or not) as a linear 
combination of a set of the features, GLM generalizes it by 
allowing the linear model to be related to the response 
variable via the link function. So the main difference between 
them is that the linear regression is a GLM in which its link 
function is the identity. 
 
The particular LR algorithm [37] considered here is a 
binomial logistic regression which uses the logit link function 
as expressed in eq. (10), 
 
𝐺ሺµ𝑖ሻ ൌ log ሺ

µ𝑖

1 െ µ𝑖
ሻ ൌ 𝒙𝑖. 𝜷                                                  ሺ10ሻ 

 
In the training phase, LR uses this logistic function to find a 
suitable model by estimating the coefficients of β which better 
fit the current features. In the test phase, LR uses this model 
for estimating the probability of the incoming feature vectors 
of belonging to the claimed user or not. 
 

V. EXPERIMENTS ON CLEAN SPEECH 

A. Database 

In this paper, the experiments were performed using the 
English Language Speech Database for Speaker Recognition 
(ELSDSR) provided by the Department of Informatics and 
Mathematical Modeling (IMM) at Technical University of 
Denmark (DTU) [38]. The ELSDSR dataset was designed 
specifically for speaker recognition purposes by Feng and 
Hansen. It was recorded in a noise free environment with a 
fixed microphone containing 22 speakers (12 males, 10 
females) from different countries with a high range of ages 
from 24 to 63. Each speaker uttered 9 paragraphs whose text 
was taken from NOVA home [39]. This text was provided to 
capture all the possible pronunciations of English language 
including vowels, consonants, and diphthongs, etc. [40]. 
 

B. Experimental protocol 

The whole dataset was split into two groups: training and 
testing. The training set contains 154 utterances (7 paragraphs 
× 22 users), whereas the remaining 44 utterances (2 
paragraphs × 22 users) samples are used for testing. The 
average duration of reading time for the training data is 83 sec 
and 17.6 sec for testing data. 
 

In order to avoid the problem of overfitting and to select the 
best parameters of the classifier, it is required to perform 
cross-validation. It consists of splitting the training set into 
training and validation subsets and doing performance 
measurements on the validation subset. In particular, the SVM 
cost parameter C needs to be optimized by cross-validation, so 
a 7-fold method is used with a set of values of C = [1/32, 1/16, 
1/8, 1/4, 1/2, 1, 2, 4, 8], in such a way that the optimal values 
which achieve the maximum average performance on the 
validation set are taken. After selecting the best parameters, 
whole training data are used for building the final classifier. 
 
The only difference when the RBF kernel is considered with 
respect to the linear case is that RBF has one extra parameter 
to be optimized (V) and therefore, it is necessary to select the 
pair of values which achieves the best average performance 
through cross-validation. The set of V values considered is V = 
[1/8, 1/4, 1/2, 1, 2, 4, 8, 16, 32]. 
 

C. Performance measurement 

In order to compare the performance of the different 
combinations tested, we need a reliable measurement of 
success of the system. Many papers in the literature use 
Detection Error Trade-Off (DET) curves [4] or Receiver 
Operating Characteristic (ROC) curves [41], [11] for this 
purpose. Both kind of measures are very closely related, as 
DET plots the false negative rate (miss detections) against the 
False Positive Rate (FPR) instead of representing the True 
Positive Rate (TPR) against FPR (as in the case of ROC), on a 
non-linear scale (logarithmic or normal deviate scale) instead 
of a linear one (as in the case of ROC). 
 
Moreover, in order to facilitate the comparison between 
systems and for the sake of brevity, some scalar measures 
have been also proposed. Among them, it is worth mentioning 
the Equal Error Rate (EER) (operating point at which the false 
acceptance and false rejection probabilities are equal) and the 
Area Under Curve (AUC) [42]. Note that while EER only 
refers to the performance of the system in a single point 
(where miss detections equal false alarms), AUC summarizes 
the ROC curve for all operating conditions. In this context, 
recently the work in [43] has shown that the optimization of a 
speaker verification system with respect to the AUC measure 
instead of EER is a more robust strategy, especially in noisy 
conditions. For these reasons, in this paper, we have leaned 
towards the use of AUC as a measure of the overall 
performance of the speaker verification system, as in other 
recent works (see, for example, [44], and [45]. 
 
For computing the AUC of the system first, its ROC is 
obtained by plotting the TPR (or Recall) as in eq. (11) against 
the FPR (or 1- specificity) as in eq. (12), 
 

𝑇𝑃𝑅 ൌ
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where, 
TP (True Positives): system accepts a valid user. 
FP (False Positives): system accepts an impostor as a valid 
user. 
TN (True Negatives): system rejects an impostor. 
FN (False Negatives): system rejects a valid user. 
 
ROC measurements work much better than the traditional 
accuracy measure (from the point of view of the reliability) 
which is calculated by dividing the number of the correctly 
verified users by the total number of testing users [46]. This is 
due to the unbalanced testing data (2 from positive class and 
42 from the negative one). For example, if we have a bad 
system that classifies any sample as the dominant class 
(negative class) the accuracy of that system will be around 
0.95 but the AUC value will be 0.5. This shows that the AUC 
metric gives more reliable results in this case. 
 

D. Results with feature combination using one 
individual classifier. 

This set of experiments on clean speech was carried out for 
studying the performance of the five types of acoustic 
parameters initially selected and their combinations. The 
individual feature sets were: MFCC, first and second 
derivatives of MFCC (denoted as D+DD, for simplicity), 
BFCC, PLP and RASTA-PLP (denoted as R-PLP, for 
simplicity). A publicly available MATLAB implementation 
was used to generate these features [47]. 
 
For brevity, only results with the most successful 
combinations of the previous feature sets are shown. In 
summary, Table 1 contains the selected features 
experimented. 
 

Table 1. Index of the selected combination of features. 
Index of feature 

combination 
Feature sets 

1 MFCC 
2 D+DD 
3 MFCC+D+DD 
4 BFCC 
5 R-PLP 
6 MFCC+BFCC 
7 MFCC+PLP 
8 MFCC+BFCC+PLP 
9 MFCC+BFCC+R-PLP 
10 MFCC+BFCC+PLP+R-PLP 
11 MFCC+D+DD+BFCC 
12 MFCC+D+DD+PLP 
13 MFCC+D+DD+BFCC+PLP+R-PLP 

 

In the existing literature, results with some of these selected 
features and their combinations have been reported. In 
particular: 
 
1. MFCC, BFCC and their combination have been studied 

in [48], concluding that the combination of both features 
sets does not increase the performance of the system 
quality because they characterize the same properties of 
the speech signal. 

2. MFCC, MFCC+D+DD, and R-PLP have been 
experimented in [49] showing that R-PLP performs better 
than MFCC even with the MFCC dynamic parameters are 
also included. 
 

In our case, results are obtained with the acoustic parameters 
contained in Table 1 when using three different classifiers: 
linear SVM, RBF SVM, and logistic regression. After a 
preliminary experimentation in which the optimal feature 
vector dimensions were chosen, we fixed the length of the 
acoustic vectors to 10 for MFCC, D+DD, and BFCC and to 9 
for PLP and R-PLP. 
 

 
Fig. 5. AUC values for different feature combinations and linear SVM. 

 
Fig. 5 shows the results of the different feature sets considered 
with the SVM classifier which uses the dot product kernel 
(linear kernel). As it can be observed, best results come from 
the combination of MFCC with BFCC, PLP and R-PLP 
(index 10) which gives an AUC value around 94%. In 
comparison, the results when all the features are combined 
(index 13) are slightly lower (around 91%). R-PLP features 
(index 5) have the second rank of high performance (around 
92%). The minimum AUC achieved is 81% which is obtained 
with MFCC+D+DD (index 3). 
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Fig. 6. AUC values for different feature combinations and RBF SVM. 

 
The AUC values obtained with the system based on RBF 
SVM are shown in Fig. 6. It can be observed, that, in general, 
these results are similar to the case of the linear kernel. 
 

 
Fig. 7. AUC values for different feature combinations and LR. 

 
Fig. 7 shows the AUC values achieved by the logistic 
regression-based classifier and different feature combinations. 
In this case, results are better than those achieved by the SVM 
classifiers for MFCC+BFCC+PLP+R-PLP (index 10) and 
MFCC+D+DD+BFCC+PLP+R-PLP (index 13) but worse in 
some other combinations such MFCC (index 1) and 
MFCC+D+DD (index 3). 
 
From these experiments, it is possible to draw the following 
general conclusions: 
 
1. The addition of first and second derivative parameters to 

the MFCC does not enhance the text-independent speaker 
verification system, but it dramatically decreases its 
performance. As mentioned before D and DD try to 
capture the dynamics of the temporal trajectories of 
MFCC, which play an important role in phoneme 
perception. In fact, D and DD have been proved to 
improve the performance of automatic speech recognition 
systems, especially in the case of speaker-independence 
[50]. Traditionally, parameterization modules for speaker 
recognition systems have been inherited from the speech 
recognition field, so the use of MFCC and their first and 
second derivatives is a common practice in SV. However, 
dynamic features also carry additional information, as for 

example the speech rate, which can lead to errors in 
speaker recognition systems (at least when no noise is 
present). In our opinion, this is the reason for the poor 
performance of the combination MFCC+D+DD in our 
system in clean conditions. Similar results have been 
reported in other works on speaker recognition or related 
tasks [51], [52]. 

2. The highest AUC values are achieved with the 
MFCC+BFCC+PLP+R-PLP parameters. This feature 
combination seems to be a better representation of the 
acoustic characteristics of the speakers and gives the 
highest performance regardless the used classifier. 

3. MFCC+BFCC (index 6) works similar to MFCC only for 
linear and RBF SVM-based classifiers (as the conclusion 
of [48]). Nevertheless, with logistic regression this 
combination gives much better results in comparison to 
MFCC. 

4. Regardless the used classifier, R-PLP performs better 
compared to both MFCC only and MFCC+D+DD. This 
conclusion agrees with the results reported in [49]. 

5. No single classifier is clearly considered the best for any 
combination of the features. 

 
E. Results with the parallel combination of 

classifiers. 

The previous experiments showed that out of the three 
classifiers considered, no single classifier is clearly best. 
However, in general, the group of misclassified samples may 
not be the same for all of them. Thus, different classifiers may 
give complementary information and then their combination 
could be valuable. 

 
In this Section, we present a set of experiments on clean 
speech carried out for studying the performance of the SV 
system when the combination of the previous three classifiers 
is considered. The structure we have used for combining the 
classifiers is the parallel one. The comparison between the 
well-known three rules: majority voting (all weights equal), 
AND and OR rules is shown in the following three figures.  

 
Fig. 8. AUC values for the combination of the three classifiers considered 

with the majority voting rule. 
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Fig. 8 shows that the results obtained by the combination of 
classifiers and the majority voting rule are in most of the cases 
slightly better than those achieved by the individual 
classifiers. In the worst case, if one classifier performs badly 
as MFCC (index 1) or MFCC+D+DD (index 3) in Fig. 7 or 
MFCC+BFCC (index 6) in Fig. 5, it can be observed that the 
performance of the combination is medium. 

 

 
Fig. 9. AUC values for the combination of the three classifiers considered 

with the AND rule. 
 
Fig. 9 shows the results achieved by using the AND rule. As it 
can be observed, the performance of the whole system using 
this rule is not good. This is because the positive class is the 
minor class in our unbalanced data, and therefore detecting it 
is harder than the majority class. So this rule increases the 
probability of misclassifying the samples from this minor 
class. 
 

 
Fig. 10. AUC values for the combination of the three classifiers considered 

with the OR voting rule. 
 
Fig. 10 contains the AUC values obtained with the OR rule. 
From these results, we can see that in any possible case, the 
AUC values achieved with only one classifier are worse than 
those obtained by using the combination of the three 
classifiers and the OR rule. This fact suggests that this rule is 
more efficient because it avoids the weakness of each of the 
single classifiers and increases their strengths. 
 
From Fig. 10 it can be observed that MFCC+BFCC+PLP+R-
PLP (index 10) provides a very high AUC value (around 
98%). This result is relatively high in comparison to 94%, 

94%, and 96% achieved by linear SVM, RBF SVM, and 
logistic regression, respectively. 
 
As a general conclusion from the previous six figures, we can 
see that the feature set composed of MFCC, BFCC with PLP 
and R-PLP gives the highest performance using any 
individual classifier or using the combination of classifiers 
with any rule. 
 
With respect to the classification module, in general, the 
combination of linear SVM, RBF SVM and LR with the OR 
rule produces the best results in comparison to the individual 
classifiers and other combination schemes. The system based 
on the majority voting rule also achieves satisfactory results in 
clean speech. Nevertheless, the OR rule is selected for the rest 
of our experimentation, as it provides in clean conditions an 
approximately flat performance with high accuracy regardless 
of the used features. In addition, in a preliminary 
experimentation with noisy speech, it was observed that the 
OR rule provides a significantly higher performance than the 
majority voting, especially for very low Signal-to-Noise 
Ratios (SNR) values, as for this specific application, the FP 
error of the individual classifiers is negligible in comparison 
to the FN one. This fact is also clear from the significant 
reduction of performance of the system based on the AND 
rule for any feature combination. 
 

VI. EXPERIMENTS ON NOISY SPEECH 

In this section, the results achieved by the different proposed 
SV systems under several noise conditions are presented. 
 

A. First proposed system 

Fig. 11 shows the diagram of the overall proposed system 
which consists of the combination of four feature sets with 
different dimensions in the feature extraction module and the 
combination of three classifiers with the OR voting rule to 
take the final decision of acceptance or rejection in the 
classification module. 
 

 
Fig. 11. The first proposed speaker verification system. 

 
For comparative purposes, the performance ³at the same 
dimension of features´ of other three basic systems is also 
presented. These reference systems are: MFCC only (denoted 
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as ³Basic 1´), MFCC+D+DD (denoted as ³Basic 2´) and 
MFCC+D+DD+BFCC+PLP+R-PLP (denoted as ³Basic 3´). 
In order to extend the comparison, in addition to the previous 
systems which include MFCC in the feature vectors, another 
three systems involving PLP parameters are also considered. 
These PLP-based reference systems are: PLP+BFCC (denoted 
as ³Basic 4´), PLP+R-PLP (denoted as ³Basic 5´), and 
PLP+BFCC+R-PLP (denoted as ³Basic 6´). All the reference 
systems use the linear kernel SVM classifier. Note that in 
spite of the poor performance of MFCC+D+DD for clean 
speech, in this set of experiments in noisy conditions, we 
decided to augment MFCC with dynamic information by 
including the corresponding first and second derivatives in the 
second and third reference systems, as several works have 
shown that this parameterization approach improves the 
robustness of the system to noise in comparison with using 
only MFCC [53]. 
 
Table 2 shows a detailed comparison between the results in 
noisy scenarios using the proposed system shown in Fig. 11 
and the six basic systems. For doing these experiments, the 
database was artificially contaminated with eight different 
noises (airport, babble, car, exhibition, restaurant, street, 
subway, and train) at three different SNRs: 20, 15 and 10 dB. 
The different classifiers were trained with a clean speech in all 
cases, whereas the test was performed in noisy conditions. 

 
Table 2. AUC values for various noise types and SNRs for the first proposed 

system. 
Noise type System SNR values 

20 dB 15 dB 10 dB 
Noise 1 
(airport) 

Basic 1 61.5 59.1 57.0 
Basic 2 59.7 55.3 54.8 
Basic 3 60.7 58.8 56.6 
Basic 4 61.7 58.8 56.0 
Basic 5 57.0 55.1 54.5 
Basic 6 58.0 57.7 57.2 

Proposed 1 63.6 59.8 58.5 
Noise 2 
(babble) 

Basic 1 61.6 59.9 56.7 
Basic 2 60.3 55.4 52.1 
Basic 3 59.2 57.8 55.4 
Basic 4 61.7 57.8 56.7 
Basic 5 55.6 54.0 53.5 
Basic 6 58.0 57.6 57.4 

Proposed 1 63.4 61.0 58.9 
Noise 3 

(car) 
Basic 1 62.5 59.9 57.0 
Basic 2 60.9 56.3 54.3 
Basic 3 60.6 56.8 56.6 
Basic 4 60.5 57.5 55.5 
Basic 5 56.9 55.1 53.4 
Basic 6 58.2 57.8 57.5 

Proposed 1 64.5 61.8 59.1 
Noise 4 

(exhibition) 
Basic 1 62.3 58.0 55.9 
Basic 2 61.0 57.5 52.0 
Basic 3 60.7 58.7 57.0 
Basic 4 59.8 58.6 57.0 

Basic 5 55.8 55.2 53.5 
Basic 6 58.3 58.0 57.8 

Proposed 1 66.0 61.5 60.6 
Noise 5 

(restaurant) 
Basic 1 61.4 58.6 56.3 
Basic 2 58.3 55.0 52.1 
Basic 3 60.3 56.7 55.4 
Basic 4 61.4 58.9 56.3 
Basic 5 55.8 55.0 53.2 
Basic 6 57.9 57.8 57.6 

Proposed 1 62.8 59.9 58.1 
Noise 6 
(street) 

Basic 1 62.5 58.6 56.9 
Basic 2 60.2 56.4 53.5 
Basic 3 61.9 58.3 57.0 
Basic 4 60.2 57.4 56.0 
Basic 5 55.7 54.0 53.7 
Basic 6 58.0 57.9 57.5 

Proposed 1 66.0 59.9 58.7 
Noise 7 

(subway) 
Basic 1 61.3 58.4 56.4 
Basic 2 59.8 57.1 54.0 
Basic 3 60.9 58.2 56.3 
Basic 4 60.3 57.9 56.1 
Basic 5 54.8 54.4 54.2 
Basic 6 58.4 58.2 57.9 

Proposed 1 65.7 61.0 58.6 
Noise 8 
(train) 

Basic 1 62.7 59.1 57.4 
Basic 2 60.7 57.3 53.6 
Basic 3 59.5 58.7 56.6 
Basic 4 60.4 57.8 56.2 
Basic 5 55.9 55.4 54.1 
Basic 6 58.2 57.7 57.2 

Proposed 1 64.2 60.7 58.0 
 

Average 
Basic 1 62.0 59.0 56.7 
Basic 2 60.1 56.3 53.3 
Basic 3 60.5 58.0 56.4 
Basic 4 60.8 58.1 56.2 
Basic 5 55.9 54.8 53.8 
Basic 6 58.1 57.8 57.5 

Proposed 1 64.5 60.7 58.8 
 
Table 2 shows that the proposed system outperforms all the 
basic systems in all the 8 noises along the different SNR 
levels. Also, it can be observed that although PLP+BFCC 
(³Basic 4´) proYides the second best results in some types of 
noise at high SNR, overall, the system with MFCC only 
(³Basic 1´) produces the second best result in average. 
 

B. Second proposed system 

Although the first proposed system works better than all other 
ones, its performance still faces high degradation in the noisy 
case. Therefore, another study has been carried out by 
increasing the dimensions of the first two feature sets (MFCC 
and BFCC) from 10 to 23. In these conditions, PLP can be 
removed from the feature extraction module without a 
significant loss in performance. Fig 12. shows the diagram of 
the second proposed system. 
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Fig. 12. The second proposed speaker verification system. 

The average results over all the noise types and SNRs 
achieved by this system are shown in Fig. 13. Average AUC 
values for the three first MFCC-based basic systems are also 
shown for comparison purposes. For clarity, results with the 
PLP-based basic systems are not included in this figure. As it 
can be observed, in this case, the second proposed system 
performs much better than the basic ones. Also, this system 
presents an improvement around 4% or 5% absolute in 
comparison to the first proposed one. Although the results 
obtained by the second system are higher than the other 
systems, it still has a significant degradation caused by the 
presence of noise. In next subsection, a noise removal 
technique is used to modify the second proposed system in 
order to get better performance. 
 

C. Third proposed system 

In this case, a noise removal technique is used as a 
preprocessing stage (before the feature extraction process) of 
the second proposed SV system with the aim of improving its 
performance in the presence of noise. After trying different 
techniques of noise removal such as Berouti's Spectral 
Subtraction, Minimum Mean-Square Error Short-Time 
Spectral Amplitude (MMSE-STSA), and Multiband Noise 
Removal, the latter one showed the highest performance. 
 
This technique was proposed in 2002 by Kamath and Loizou 
[54]. Instead of subtracting the noise spectrum estimate over 
the entire speech spectrum (as in the case of the standard 
Spectral Subtraction), the multiband technique firstly divides 
the spectrum of the utterance into non-overlapping bands and 
then the subtraction is done in each band independently. This 
method works much better than the other ones because the 
real-world noises are colored (³not Zhite´). 
 
The average results of the third proposed system over all the 
noise types and SNRs are shown in Fig. 13. Average AUC 
values for the three MFCC-based basic systems and the 
second proposed one are also shown for comparison purposes. 
 
It can be observed a significant improvement around 7% or 
8% absolute in comparison to the second proposed system due 
to the inclusion of the multiband noise removal technique. 
Also, these results provide an average improvement in AUC 

values around 15% absolute compared to the best basic 
system (³Basic 1´). 

 
Fig. 13. Averaged AUC values overall noise types and SNRs with and 

without the multiband noise removal technique. 
 

VII. EXECUTION TIME 

The previous two Sections have shown the success of the 
three proposed systems from the point of view of the 
performance. There is a tradeoff between the performance of 
the system and its execution time which is related to its 
computational complexity. This Section is dedicated to 
comparing the complexity of the three proposed systems and 
the three MFCC-based basic systems (with low and high 
feature dimensions) in terms of execution time. Although it 
can be predicted that the proposed systems will require more 
time because of the combination of features and classifiers, it 
is important to check if these systems can be applied in real-
time speaker verification applications or not. 
 
For this purpose, a whole experiment has been carried out 
using the same computer to ensure a fair comparison. The 
used one is Dell equipped with an Intel core 2 duo CPU at 
2.0GHz and 2GB of RAM. Table 3 shows the averaged 
execution time for testing for all the systems. The execution 
time is the average over 22 speakers and 2 different utterances 
and it refers to the required time for doing the whole test 
phase: read the sound file, extract the feature vectors, and do 
the classification stage. 
 
Table 3. Execution time for the basic and proposed systems averaged over 44 

different testing utterances. 
Feature dimension System Execution time 

(in seconds) 
 

Low 
Basic 1 0.12 
Basic 2 0.15 
Basic 3 0.78 

Proposed 1 0.76 
 

High 
Basic 1 0.18 
Basic 2 0.22 
Basic 3 0.99 

Proposed 2 0.88 
High with multiband 

noise removal 
Proposed 3 1.86 
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From Table 3 we can draw the following remarks: 
 
1. The systems which use MFCC only with linear SVM 

(³Basic 1´) have the lowest execution time in comparison 
to any other systems regardless the dimension of the 
features. 

2. The combination of all features (³Basic 3´) dramatically 
increases the complexity of the system. This increment 
also has not positive effect on the AUC values as shown 
in Table 2 and Fig. 13. 

3. Although the proposed systems 1 and 2 use a 
combination of three classifiers, they have approximately 
the same execution time as the Basic 3 system. This is 
due to the reduction of time in the feature extraction 
stage. 

4. The multiband noise removal technique increases the 
execution time of the third proposed system, in such a 
way that it is the double of the execution time of the 
second proposed system. Nevertheless, it is worth noting 
that the noise removal function has not been optimized 
for speed. 

5. Although the proposed systems require more processing 
time, this is still small (less than 2 sec.) so these systems 
can be used in real-time applications. 

 

VIII.  CONCLUSIONS AND FUTURE WORK 

In this paper, a text-independent speaker recognition system 
for the verification task is proposed. The system is based on 
the combination of different acoustic features (MFCC, BFCC, 
PLP, and RASTA-PLP) to avoid the weak points of using 
each one individually. Besides, to achieve the optimal 
performance of the system, the combination of three 
classifiers (linear SVM, RBF SVM, and LR) is proposed in 
order to increase the generalization and learning abilities of 
the single classifiers. The combination of the classifiers is 
performed through a parallel structure using the OR voting 
rule method. The experiments were done firstly using clean 
speech. In this case, the performance of the system was very 
high (AUC around 98%). Secondly, the system was tested in 
noisy conditions with eight different types of noises and three 
SNR values. These experiments showed the success of the 
proposed system in comparison to other six basic ones. To 
enhance the results more, a second system using MFCC, 
BFCC and RASTA-PLP with higher dimensionality and the 
combination of classifiers is also presented. The performance 
of this second proposed system was better than either the 
basic systems or the first proposed one in noisy conditions. 
 
Finally, in order to achieve better results in the presence of 
noise, the inclusion of a multiband noise removal technique as 
a preprocessing stage to the second proposed system was 
done. With this modification, an important improvement in 

the performance of the whole system was attained for all the 
noise types at all the SNR levels considered. The average 
improvement was more than 15% absolute in comparison to 
the basic systems with low feature dimensionality and around 
7%-8% absolute compared to the second proposed one. This 
system could be used efficiently in real-time applications 
because it presents high performance together to an acceptable 
processing time. 
 
Future work will be directed towards trying to optimize this 
system for reducing its execution time, especially in the noise 
removal stage. After that, the application of the proposed 
system to speaker identification tasks will be addressed. 
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