
ORIGINAL ARTICLE

Time series forecasting by recurrent product unit neural networks

F. Fernández-Navarro1
• Maria Angeles de la Cruz2

• P. A. Gutiérrez3
•

A. Castaño4
• C. Hervás-Martı́nez3

Received: 8 August 2015 /Accepted: 12 July 2016 / Published online: 22 July 2016

� The Natural Computing Applications Forum 2016

Abstract Time series forecasting (TSF) consists on esti-

mating models to predict future values based on previously

observed values of time series, and it can be applied to

solve many real-world problems. TSF has been tradition-

ally tackled by considering autoregressive neural networks

(ARNNs) or recurrent neural networks (RNNs), where

hidden nodes are usually configured using additive acti-

vation functions, such as sigmoidal functions. ARNNs are

based on a short-term memory of the time series in the

form of lagged time series values used as inputs, while

RNNs include a long-term memory structure. The objective

of this paper is twofold. First, it explores the potential of

multiplicative nodes for ARNNs, by considering product

unit (PU) activation functions, motivated by the fact that

PUs are specially useful for modelling highly correlated

features, such as the lagged time series values used as

inputs for ARNNs. Second, it proposes a new hybrid RNN

model based on PUs, by estimating the PU outputs from the

combination of a long-term reservoir and the short-term

lagged time series values. A complete set of experiments

with 29 data sets shows competitive performance for both

model proposals, and a set of statistical tests confirms that

they achieve the state of the art in TSF, with specially

promising results for the proposed hybrid RNN. The

experiments in this paper show that the recurrent model is

very competitive for relatively large time series, where

longer forecast horizons are required, while the autore-

gressive model is a good selection if the data set is small or

if a low computational cost is needed.

Keywords Time series forecasting � Product unit neural
networks � Recurrent neural networks � Evolutionary neural

networks

1 Introduction

Times series (TS) consist on a succession of data values

chronologically sorted that belongs to a magnitude or

phenomenon that has been sampled at a certain rate. An

example of TS could be the evolution of the maximum

daily temperature, the unemployment rate of a country or

the amplitude of the seismic waves of an earthquake. Time

series is present in most of the science fields like flood

forecasting [1], weather forecasting [2] or energy con-

sumption [3].

Nowadays, TS research is focused on TS analysis (TSA)

and TS forecasting (TSF). The goal of TSA is to extract the

main features and characteristics that describe the

& F. Fernández-Navarro

i22fenaf@uco.es; fafernandez@uloyola.es

Maria Angeles de la Cruz

Maria.Angeles.de.la.cruz@esa.int

P. A. Gutiérrez

pagutierrez@uco.es

A. Castaño

adiel2008@gmail.com

C. Hervás-Martı́nez

chervas@uco.es

1 Department of Quantitative Methods, Universidad Loyola

Andalucia, Seville, Spain

2 Advanced Concepts Team, European Space Research and

Technology Centre (ESTEC), European Space Agency

(ESA), Noordwijk, Netherlands

3 Department of Computer Science and Numerical Analysis,

University of Córdoba, Córdoba, Spain

4 Department of Computer Science, Universidad Politécnica

Salesiana, Quito, Ecuador

123

Neural Comput & Applic (2018) 29:779–791

https://doi.org/10.1007/s00521-016-2494-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2494-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2494-2&domain=pdf
https://doi.org/10.1007/s00521-016-2494-2

underlying phenomena, while the objective of TSF is to

find a function to predict the next value of the time series

using its p lagged values. It is worth mentioning that the

TSA is primordial to reach a good accuracy for TSF, so

TSA is usually applied as a preprocessing step in TSF.

Finally, TSF can be tackled by univariate or multivariate

models. This paper focuses on the former type of models.

Artificial neural networks (ANNs) are a very popular

machine learning (ML) tool used for TSF [4]. Feedforward

neural networks (FFNNs) are the most common and sim-

plest type of ANNs, where the information moves in a

forward direction. For example, the time delay neural

network (TDNN) consists on a FFNN whose inputs are the

delayed values of the TS [5]. Instead, recurrent neural

networks (RNNs) are based on a different architecture

where the information through the system moves consti-

tuting a direct cycle [6]. This cycle can storage information

from previous data in the internal memory of the network,

which can be useful for certain kind of applications. RNNs

have shown competitive performance in several real-world

problems. For example, RNNs based on the method of

penalty functions were proposed to solve the bilevel linear

programming problem [7]. Furthermore, a RNN approach

was also recently proposed to robustly model predictive

control for constrained discrete-time nonlinear systems

with unmodeled dynamics affected by bounded uncertain-

ties [8]. One example of RNN is the long short-term

memory neural network (LSTMNN) [9], whose main

characteristic is the capability of its nodes to remember a

time series value for an arbitrary length of time. Echo state

networks (ESNs) are RNNs whose architecture includes a

random number of neurons whose interconnections are also

randomly decided. This provides the network with a long-

term memory and a competitive generalisation perfor-

mance [10–12]. In this direction, the minimal complexity

which is required for the construction of a competitive

RNN is investigated in [12], concluding that a simple

deterministically constructed cycle reservoir is comparable

to the standard ESN methodology. From the analysis of

ANNs in the context of TSF, it can be derived that one of

the main differences between FFNNs and RNNs lies on

their storage capacity. RNNs have a long-term memory

because of the architecture of the model, whereas the

memory of FFNNs is provided by the lagged terms at the

input of the network.

On the other hand, the parameter estimation algorithm is

also very important when analysing the different proposals.

The more complex the structure of a neural network is, the

more challenging its weight matrix estimation turns. Tra-

ditional backpropagation (BP) algorithms can result in a

very high computational cost, specially when dealing with

complex nonlinear error surfaces [13]. The extreme

learning machine (ELM) is an example of an algorithm that

can estimate the parameters of a FFNN model efficiently

[14]. It is a popular algorithm that determines the hidden

layer parameters randomly and the output layer ones by

using the Moore–Penrose (MP) generalised inverse [15],

providing a better generalisation performance than tradi-

tional gradient-based learning algorithms for some

problems.

This paper is focused on product unit neural networks

(PUNNs) and its application on TSF. The basis function of

the hidden neurons of PUNNs is the product unit (PU)

function, where the output of the neuron is the product of

their inputs raised to real-valued weights. PUNNs are an

alternative to sigmoidal neural networks and are based on

multiplicative nodes instead of additive ones [16]. Durbin

and Rumelhart [16] empirically determined that the infor-

mation capacity of a single product unit (as measured by its

capacity for learning random boolean patterns) is approxi-

mately 3N, compared to 2N for a single summation unit,

where N is the number of inputs to the units. This model has

the ability to express strong interactions between input

variables, providing large variations at the output from small

variations at the inputs. Consequently, it has increased

storage information capability and promising potential for

TSF. However, they result in a highly convoluted error

function, plenty of local minima. This handicap makes

convenient the use of global search algorithms, such as

genetic algorithms [17, 18], evolutionary algorithms [19] or

swarm optimisation algorithms [20], in order to find the

parameters minimising the error function. PUNNs have been

widely used in classification [21] and regression problems

[22], but scarcely applied to TSF, with the exception of some

attempts on hydrological TSA [23, 24]. It is important to

point out that, in TSF, there is an autocorrelation between the

lagged values of the series. In this way, theoretically, PUNNs

should constitute an appropriate model for TSF because they

can easily model the interactions (correlations) between the

lagged values of the time series.

The first goal of this paper is to evaluate the perfor-

mance of autoregressive product unit neural networks

(ARPUNNs) on TSF. The ARPUNN model should yield

high performance for TSF, as it fulfils the requirements that

allow the modelling of TS: ability to express the interac-

tions between inputs and increased storage capability.

However, as mentioned above, long-term memory ANNs

usually obtain better results than FFNNs [25]. For this

reason, a second goal of this work is to propose a hybrid

ANN combining an ARPUNN with a reservoir network

[26] with the objective of increasing the final storage

capability. The short-term memory is provided by the

different lags of the TS included in the input layer, and the

long-term memory is supplied by a reservoir network

included as one of the inputs of the system. The final model

is called recurrent product unit neural network (RPUNN).

780 Neural Comput & Applic (2018) 29:779–791

123

From the point of view of the learning algorithm, the

complex error surface associated with PUs implies serious

difficulties for searching the best parameters minimising

the error function. A hybrid algorithm is proposed in this

work to alleviate these difficulties. It combines the explo-

ration abilities of global search algorithms with the

exploitation ones of local search methods. The covariance

matrix adaptation evolution strategy (CMA-ES) algorithm

[27, 28] is used to calculate the parameter values of the

hidden layer, whereas the weights of the output layer are

determined by means of the MP generalised inverse. CMA-

ES has been successfully applied to estimate the weights of

neural networks with fixed topologies [29]. Recently, the

CMA-ES was also modified to allow the simultaneous

determination of topology and weights in neural networks

[30]. This combination of an EA and a local search method

provides us with a hybrid training of a hybrid model, able

to afford the difficulties of TSF and obtain a competitive

performance. Although some of the previous works also

consider the combination of evolutionary algorithms and

PUNNs [21, 22], both the model structure and the training

algorithm considered in this paper are different and

specifically adapted to TSF.

The model proposed can be seen as a generalisation of

the multiplicative neuron model ANN (MNN-ANN) [31].

MNM has only one neuron in the hidden layer. Therefore,

the problem of determining the number of neurons in

hidden layer is automatically solved when MNM is

employed [32]. Previous works have tackled the estima-

tion of MNN-ANN parameters by cooperative random

learning particle swarm optimisation (CRPSO), PSO,

backpropagation algorithm and genetic algorithms [33].

The model was extended and generalised based on the

concept of generalised mean of all multiplicative inputs

[34]. Furthermore, the recurrent multiplicative neuron

artificial neural network model (RMNM-ANN) was also

proposed recently. The RMN-ANN incorporates not just

AR terms but moving average terms in the model [35].

The model proposed in this paper provides a greater

flexibility for modelling the complex interactions of real-

world time series but also have a higher computational

complexity if it is compared to the standard MNN-ANN

model.

Summarising, the main contributions of this paper are

the following:

• The use of PU basis functions in the field of TSF. PU

basis functions were already investigated in the field of

regression and classification [16, 21, 22]. However,

their mathematical expression makes them specially

interesting for addressing TSF problems (due to their

increased storage capability and their ability to model

correlations in the input space).

• A new hybrid RNN combining reservoir computing

(RC) models (specifically, ESNs) and FFNs with PU

basis functions, with the goal of providing to the model

with a long-term memory.

• The use of the CMA-ES algorithm for the parameter

estimation of the proposed models. Neural networks

based on PU basis functions tend to generate complex

error functions with multiple local minima. The use of

this standard genetic algorithm allows the proposed

models to converge to global minima.

This paper is organised as follows: Sect. 2 describes the

ANN hybrid model proposed in this paper to be applied in

TSF. Section 3 explains the hybrid search algorithm

designed to get the parameters which optimise the error

function. Sections 4 and 5 explain the experiments that

were carried out and the results obtained. Finally, Sect. 6

summarises the conclusions of this work.

2 Models

In this section, we first introduce an ARPUNNmodel, which

is then extended by considering a reservoir to result in the

RPUNN model. The models proposed addressed the TSF

problem. This problem is mathematically formulated as

follows. Let fyngNþp
n¼1 be a TS to be predicted, where N þ p

values are given for training. In this way, the function

f :Rp ! R is estimated from a training set of N patterns,

D ¼ ðX;YÞ ¼ fðxn; ynþpÞgNn¼1 where xn ¼ fyn; . . .; ynþp�2;

ynþp�1g is the vector of input characteristics (p past values of
the TS) taking values in the space X � Rp, and the label,

ynþp, is the value of the TS for the nþ p instant. Both models

are explained in the following subsections.

2.1 Short memory model: autoregressive product

unit neural network (ARPUNN)

This section presents the first model proposed to address

the TSF problem, the so-called ARPUNN. The suggested

architecture is based on considering PUs as the basis

functions for the hidden layer of the network. PUNN

models have the ability to express strong interactions

between the input variables. The model is composed by an

input, hidden and output layers. The input layer has p input

units that correspond to the lagged values of the TS pro-

viding the network with a short memory. The hidden layer

of the network is composed by S PUs, and the output layer

contains only one neuron. A representation of model pro-

posed is shown in Fig. 1.

The final model is linear in the basis function space

together with the initial variables. A similar architecture

Neural Comput & Applic (2018) 29:779–791 781

123

(which is usually referred to as skip-layer connections) was

also considered for classification in previous works for PUs

[36]. The TS value is estimated by bynþp ¼
f ðxn; hÞ : Rp ! R, where the final output of the model is

defined as:

f xn; hð Þ ¼ b0 þ
X
S

s¼1

bsBs xn;wsð Þ þ
X

p

k¼1

akynþp�k; ð1Þ

where bs 2 R denotes the weight of the connection

between the hidden neuron s and the output neuron

(s ¼ 1; 2; . . .; S), leading the structure that provides the

nonlinear contribution of the inputs. The b vector includes

all the parameters connecting the hidden with the output

layer and the bias b ¼ ðb0; b1; b2; . . .; bSÞ 2 RSþ1. The

linear contribution of the inputs is controlled by ak which is

the weight of the connection between the input k and the

output layer (k ¼ 1; 2; . . .; p). The vector a contains all the

parameters connecting the input and the output layer,

a ¼ ða1; a2; . . .; apÞ 2 Rp. Another kind of weights,

ws 2 Rp, represents the connections of the hidden neuron s

and the input layer. The h vector contains the full param-

eter vector (h ¼ fw1;w2; . . .;wS; b; ag). Finally,

Bsðxn;wsÞ : Rp ! R represents the output of the sth PU

basis function, and it is defined as:

Bs xn;wsð Þ ¼
Y

p

i¼1

ynþp�i

� �wis ; s ¼ 1; . . .; Sf g; ð2Þ

where wis 2 R is the weight of the connection between the

ith input node and the sth basis function and ynþp�i denotes

the ith lagged past value of the TS.

2.2 Long memory model: recurrent product unit

neural network (RPUNN)

In this section, the long memory model is presented (called

recurrent product unit neural network, RPUNN). The

RPUNN model reuses the network architecture of the

ARPUNN model. One aspect that should be considered on

TSF is the memory or the amount of information that can

be stored in the network. Traditionally, ANNs with longer

memory have an enhanced performance for TSF [25]. The

main difference between ARPUNN and RPUNN lies in the

inclusion on a new structure as an input, a reservoir net-

work. The reservoir network provides the whole model

with long-term and dynamic memory. The structure of the

RPUNN is depicted in Fig. 2.1

As can be seen, the network inherits the architecture of

ARPUNN with the linear and nonlinear combination of the

inputs described in the previous section. The output layer

contains only one neuron, while the hidden layer of the

network is composed by S neurons with the PU basis

function. The input layer considered has pþ m neurons

that correspond to the p lagged values of the TS plus the m

outputs of the reservoir network. The p lagged values

provide the network with the short memory. The reservoir

part is formed by a set of m nodes, and the output of each of

these nodes is considered as an input to the PUs, providing

Fig. 1 Architecture of the

autoregressive product unit

neural network (ARPUNN)

1 For the sake of clarity, reservoir representation is simplified: there

is a link between each reservoir node and each PU, and all reservoir

nodes receive yt�1 time series value as input. The interconnections

between reservoir nodes are random. Internal connections of the

reservoir are given by j.

782 Neural Comput & Applic (2018) 29:779–791

123

the whole structure with a dynamic memory. The only

input considered for the reservoir is the first lagged value of

the TS. The estimated TS value is defined by the final

output of the model, bynþp ¼ f ðxn; hÞ : Rmþp ! R, as

follows:

f xn; hð Þ ¼ b0 þ
X
S

s¼1

bsBs xn;w
ðnÞ;ws

� �

þ
X

p

k¼1

akynþp�k

ð3Þ

where wðnÞ 2 Rm is the reservoir state vector for time n,

and h ¼ fw1;w2; . . .;wS; b; a; jg represents the set of the

network weights, composed by the vectors b 2 RS and a 2
Rp (previously defined), ws 2 Rmþp, which represents the

connections of the hidden neurons and the input layer,

s ¼ 1; . . .; S, and, finally, the matrix of the connections for

the reservoir network, j 2 Rm�ðmþ2Þ. At last,

Bsðxn;w
ðnÞ;wsÞ : Rmþp ! R represents the basis function

considered in the hidden layer yielding the following

nonlinear output for the model:

Bs xn;w
ðnÞ;ws

� �

¼
Y

p

i¼1

ynþp�i

� �wis
Y

pþm

j¼pþ1

wðnÞ
j

� �wjs

ð4Þ

where s ¼ 1; . . .; S, ws ¼ ðw1s; . . .;wps;wðpþ1Þs; . . .,

wðpþmÞsÞ 2 Rmþp is the hidden layer weight vector, wis 2 R

is the weight of the connection between the input neuron i

and the hidden neuron s, i ¼ 1; . . .; p, and wðpþjÞs is the

weight of the connection between the jth reservoir node

and the hidden neuron s, j ¼ 1; . . .;m. Finally, wðnÞ
j repre-

sents the output of the jth reservoir node at time n, j ¼
1; . . .;m and the corresponding vector is

wðnÞ ¼ wðnÞ
1 ; . . .;wðnÞ

m

n o

.

The reservoir consists of a sparsely connected group of

nodes, where each neuron output is randomly assigned to

the input of another neuron. This allows the reservoir

reproducing specific temporal patterns. All the reservoir

nodes are sigmoidal nodes, as this model is more adequate

in order to keep the long-term memory:

wðnÞ
j ¼ Rj wðn�1Þ; jj

� �

¼ r j0j þ
X
m

i¼1

jijw
ðn�1Þ
i þ jðmþ1Þjyn�1

 !

;
ð5Þ

where rðxÞ ¼ 1=ð1þ expð�xÞÞ is the sigmoidal activation

function and jj is the vector of parameters corresponding to

the jth reservoir neuron

jj ¼ j0j; j1j; . . .; jmj; jðmþ1Þj
� �

;

with mþ 2 elements. As can be observed, self-connections

are allowed. The internal structure of the reservoir is ran-

domly fixed and kept constant during the learning process,

in the same vein than it is done with ESNs [11].

Fig. 2 Architecture of the recurrent product unit neural network (RPUNN)

Neural Comput & Applic (2018) 29:779–791 783

123

3 Parameter estimation

This section discusses the training algorithm proposed to fit

ARPUNN and RPUNN parameters. As stated above,

PUNNs exhibit a highly convoluted error surface, which

can easily make the training algorithm get stuck in local

minima and, in consequence, avoid that the optimum

parameters are obtained. In general, this can be overcome

by using global search algorithms, but instead they can be

slow to reach the global optimum. The method considered

in this work focuses in obtaining a trade-off between both

extremes, which is achieved by a hybrid algorithm. The

parameter set to be optimised in the ARPUNN model is

h ¼ b; a;w1;w2; . . .;wSf g;

which is composed by the set of weights of the hidden layer

nodes (w1;w2; . . .;wS) and the set of weights of the output

layer, b and a. In the case of the RPUNN, it is also required
to estimate the values of the parameters included in the

vector j, i.e. the weights of the reservoir interconnections.

The beginning of the algorithm involves the CMA-ES

method as a global optimisation procedure [27]. CMA-ES

is an evolutionary algorithm for difficult nonlinear non-

convex optimisation problems in continuous domain. The

evolution strategy defined in this algorithm is based on

the use of a covariance matrix that represents the pairwise

dependencies between the candidate values of the vari-

ables to be optimised. The distribution of the covariance

matrix is updated by means of the covariance matrix

adaptation method that attempts to learn a second-order

model of the cost function similar to the optimisation

made in the quasi-Newton methods [37]. The CMA-ES

has several invariance properties and does not require a

complex parameter tuning. In this paper, the uncertainty

is undertaken as proposed in [38] and a subtractive update

of the covariance matrix is done as in [28]. Another

consideration is to adapt only the diagonal of the

covariance matrix for a number of initial iterations, as

stated in [39], leading to a faster learning. The upper and

lower bounds of the parameters are handled as proposed

in [38]. The standard deviation considered in the initial-

isation stage is set to 0.3. For both ARPUNN and

RPUNN models, the target parameters under optimisation

by the CMA-ES algorithm are the weights from the input

layer to the hidden layer fw1;w2; . . .;wSg. The hybrid

algorithm starts by randomly generating the values for

these weights. Although the rest of the weights are needed

to obtain the cost function, they can be analytically cal-

culated by using the MP generalised inverse, as done in

the ELM [15]. This process has to be performed on each

iteration of the CMA-ES algorithm and for each indi-

vidual of the population. Let / ¼ ðb1; . . .; bS; a1; . . .; apÞT

denote the weights of the links connecting hidden and

output layers. The calculation of / can be done by taking

into account that the system is linear if the basis function

space is considered. In this way, the nonlinear system can

be converted into a linear system:

Y ¼ H/; ð6Þ

where H ¼ fhijg (i ¼ 1; . . .;N and j ¼ 1; . . .; Sþ p) rep-

resents the hidden and input layers output matrix: if

j ¼ 1; . . .; S, hij ¼ Bjðxi;wjÞ (for the ARPUNN model) or

hij ¼ Bjðxi;w
ðiÞ;wjÞ (for the RPUNN model); if

j ¼ Sþ 1; . . .; Sþ p, hij ¼ yiþp�j. Finally, the determina-

tion of / can be obtained by finding the least-square

solution of the equation:

/̂ ¼ HyY ð7Þ

where Hy is the MP generalised inverse of the matrix H.

The solution provided by this method is unique, and it has

the smallest norm within all least-square solutions. In

addition, it obtains a high generalisation performance that

decreases the time required to learn the sequence as states

[40].

The parameters of the reservoir for the RPUNN model

are randomly fixed before starting the CMA-ES optimisa-

tion and then kept constant for the whole evolution, given

that, otherwise, the computational cost and the complexity

of the final model would increase significantly. Sparsity is

achieved by randomly setting to 0 a percentage (in our

case, � 90%) of the weights for the connections between

reservoir nodes (i.e. jij ¼ 0, for some randomly selected i

and j values, i ¼ 1; . . .;m, j ¼ 1; . . .;m). The reservoir is

composed of 30 sigmoidal nodes that are not considered in

the value computed as number of hidden neurons (NHNs)

of the experimental part. The spectral radius a is set to 0.5.

The weights of the reservoir are randomly initialised from a

uniform distribution over ½�1; 1�. After this initialisation,

the weights of the reservoir are normalised to a spectral

radius a\1, by scaling them using the factor a=jkmaxj,
where kmax is the largest eigenvalue of the vector of

weights (as suggested in [41]). Finally, isolated reservoir

neurons are not allowed in the model to guarantee the

consistency of the network.

4 Experiments

In order to analyse the performance of the proposed

methods, an experimental study was carried out. The TS

data selected, the metrics considered to evaluate the per-

formance of the models and the algorithms used for com-

parison purposes are described in the following

subsections.

784 Neural Comput & Applic (2018) 29:779–791

123

4.1 Data sets selected

The time series used for the experimental set-up belongs to

the NNGC1, Acont, B1dat, D1dat and Edat forecasting

competitions.2 These data sets were selected based on the

TSF task proposed in [42]. A total of 29 time series

available in the KEEL-data set repository3 [43] have been

considered.

The NNGC1 data sets contain transportation data,

including highway traffic, traffic data of cars in tunnels,

traffic at automatic payment systems on highways, traffic

of individuals on subway systems, domestic aircraft flights,

shipping imports, border crossings, pipeline flows and rail

transportation that are sampled with a weekly, daily or

hourly frequency. Specifically, 24 time series belonging to

this set have been used. In the case of the Acont data set,

only one time series has been used that contains a laser

univariate time record of a single observed quantity,

measured in a physics laboratory experiment. On the other

hand, B1dat is a multivariate data set recorded from a

patient in the sleep laboratory of the Beth Israel Hospital,

in Boston, Massachusetts. The lines in the original data set

file are spaced by 0.5 s. The data set contains three phys-

iological measurements: the first is the heart rate, the sec-

ond is the chest volume (respiration force), and the third is

the blood oxygen concentration (measured by ear oxime-

try). The Edat is a set of measurements of the light curve

(time variation of the intensity) of the variable white dwarf

star PG1159-035 during March 1989, and it was recorded

by the Whole Earth Telescope (a coordinated group of

telescopes distributed around the Earth that permits the

continuous observation of an astronomical object). Finally,

the Ddat is a time series data set generated synthetically by

a computer. Table 1 describes the main features of the time

series used in the experiments.

Following the procedures used in [42], the augmented

Dickey–Fuller [44] test has been applied to the series in

order to consider only stationary series. In addition, lin-

earity test has been performed during the building proce-

dure in order to exclude data sets that exhibit linear

properties. The lag set was adjusted using an uniform

embedding with a constant time lag through adjacent input

channels. Specifically, four lagged values were considered.

Although other alternative embeddings could be consid-

ered [45], this decision was taken to simplify the

experimentation.

Finally, the data sets have been preprocessed to adapt

the inputs to the mathematical characteristics of the PU-

based models: input variables have been scaled in the rank

[0.1, 0.9].4 The experimental design was conducted using a

fivefold cross-validation, with 10 repetitions per each fold.

4.2 Metrics considered for evaluation

The metrics considered in this paper are the mean absolute

percentage error (MAPE) (in the generalisation set,

MAPEG) and the number of hidden nodes (NHN). Given

that all the models consider fully connected neurons, NHN

is a measure of the size of the neural network. Neural

networks are very sensitive to this value (generally, large

networks require a longer processing time [46]).

Table 1 Characteristics of the benchmark data sets, alphabetically

ordered

Data set #Attributes #Patterns

Acont_1_2000 4 1995

B1dat_1_2000 4 1995

B1dat_2_2000 4 1995

D1dat_1_2000 4 1995

Edat_1_1661 4 1655

NNGC1_D1_V1_002 4 1175

NNGC1_D1_V1_003 4 430

NNGC1_D1_V1_004 4 545

NNGC1_D1_V1_005 4 430

NNGC1_D1_V1_006 4 610

NNGC1_D1_V1_007 4 610

NNGC1_D1_V1_008 4 540

NNGC1_D1_V1_009 4 540

NNGC1_D1_V1_010 4 585

NNGC1_E1_V1_001 4 370

NNGC1_E1_V1_008 4 740

NNGC1_E1_V1_009 4 740

NNGC1_E1_V1_010 4 650

NNGC1_F1_V1_001 4 965

NNGC1_F1_V1_002 4 1020

NNGC1_F1_V1_003 4 1735

NNGC1_F1_V1_004 4 1735

NNGC1_F1_V1_005 4 1735

NNGC1_F1_V1_006 4 1735

NNGC1_F1_V1_007 4 895

NNGC1_F1_V1_008 4 895

NNGC1_F1_V1_009 4 895

NNGC1_F1_V1_010 4 895

NNGC1_F1_V1_011 4 895

2 Available at http://www.neural-forecasting-competition.com.
3 Which can be found at http://sci2s.ugr.es/keel/timeseries.php.

4 Scaling the input data to positive values is required to avoid having

complex numbers as output of the basis function. Additionally, the

scaling considered also avoids having inputs equal to zero or one.

Neural Comput & Applic (2018) 29:779–791 785

123

http://www.neural-forecasting-competition.com
http://sci2s.ugr.es/keel/timeseries.php

4.3 Algorithms selected for comparison purposes

In order to evaluate the performance of the RPUNN and

ARPUNN models, they have been compared to some of the

most promising neural networks models for TSF. Aiming

to outline different characteristics of the methods, the

compared methods have been grouped in two sets. The

main objective behind the first set of models is comparing

ARPUNN and RPUNN methods to baseline algorithms.

This set is composed by the following methods:

• The minimum complexity echo state network

(MCESN) [12]. This model is constructed determinis-

tically unlike the standard ESNs. The architecture used

is the simple cycle reservoir (SCR) one due to its

competitive accuracy as reported in [12].

• The nonlinear autoregressive neural network (NARNN)

proposed in [47].

• The standard echo state network (ESN) [26].

• The extreme learning machine method (ELM) [15].

The second set of models is selected with the purpose of

analysing the performance of PU basis functions for TSF.

Due to this, the two models proposed are compared to

ANN models trained with the same algorithm, but con-

sidering other basis functions. The models employed in this

set are:

• The nonlinear autoregressive radial basis function

neural network (NARRBFNN).

• The nonlinear autoregressive sigmoidal neural network

(NARSIGNN).

All the hyperparameters considered in this paper were

estimated by a nested fivefold cross-validation procedure.

The most important hyperparameter was the NHN, and the

corresponding range of possible values considered for model

selection depends on the model in the following manner:

• In the case of the NARNN, NARRBFNN, NARSIGNN,

ARPUNN and RPUNN algorithms, the experiment was

carried out using neural networks with 5, 10, 15 and 20

hidden nodes.

• TheMCESN, ESN and ELM algorithms require a higher

number of hidden neurons that can supply the network

with sufficiently informative random projections

[12, 15]. In this case, neural networks with 10, 20, 50,

100, 150, 200 and 300 hidden nodes were considered.

In order to control the overfitting of the models developed

in this paper, three approaches have been implemented:

• The output weights of the models were determined

through the MP pseudoinverse, ensuring that these

parameters have the smallest norm within all least-

square solutions.

• As previously discussed, the NHN was determined

through a fivefold cross-validation procedure over the

training set.

• Different boundaries for the weights connecting the

input and the hidden layer were considered:

• The hidden layer weights of the ARPUNN and

RPUNN algorithms are initialised randomly within

the interval ½�5; 5�, which is also the boundary

considered for their input weights.

• In the case of the NARRFBNN algorithm, the

boundary established for the centroids of the RBFs,

as well as the limits for input variable normalisa-

tion, were [0.1, 0.9].

• The weights of NARSIGNN and ELM algorithms

were randomly initialised in the interval [0, 1].

The range considered was determined after preliminary

experiments and an analysis of the characteristic of the

basis functions of each model. Furthermore, these bounds

were already tested in the literature for PUNN models in

function approximation and classification problems

[36, 48].

Once the test prediction with a given model has been

done, some considerations have been considered in order to

provide a fair comparison between the different tested

algorithms. The architecture of the ESN and MCESN

methods requires several cycles until a proper predicted

value can be obtained. The first cycles of the model are

used to accommodate for a washout of the arbitrary (ran-

dom or zero) initial reservoir state needed at time 1. For

this reason, part of the first samples of the data set need to

be discarded. In the experiments undertaken, a discard rate

of the 25 % of the first samples of each data set has been

considered. This constraint has been applied to every data

set independently of the method used for TSF, in order to

assure equitable MAPE values.

5 Results

For all of the 29 data series, models were trained, predic-

tions were made on the test set, and the MAPE and NHN

were computed. A ranking has been established (RMAPE

and RNHN) for each method in each data set depending on

the value obtained for MAPE and NHN (R ¼ 1 stands for

the best performing method and R ¼ 8 for the worst one).

The complete table of results has been included in a sep-

arated document.5 Analysing the results obtained for the

MAPE from a descriptive point of view, it can be seen that

the proposed models in this study achieved a considerable

competitive performance. The ARPUNN method obtains

5 http://www.uco.es/ayrna/datasets/MAPEresultsNCAA.

786 Neural Comput & Applic (2018) 29:779–791

123

http://www.uco.es/ayrna/datasets/MAPEresultsNCAA

the best results in 2 out of the 29 data sets considered,

while the improved version of the ARPUNN, the RPUNN,

achieves the best results in 14 out of the 29 data sets tested.

With regard to the NHN metric, it is worth mentioning the

competitive results achieved by the ARPUNN model. This

model yielded the second best ranking for the NHN metric,

being outperformed only by MCESN.

Additionally, Table 2 also reports the averaged results

over all the series for the methods compared (including the

averaged value for the metric and the averaged ranking).

As shown in Table 2, the RPUNN model yielded the best

mean in MAPE (MAPE ¼ 0:1345 and RMAPEG
¼ 2:2758)

followed by the ARPUNN model (MAPE ¼ 0:1400 and

RMAPEG
¼ 3:4827). The minimum NHN is obtained by the

MCESN model with a mean of 11.17 followed by the ESN

model with a mean of 12.06. In terms of NHN ranking, the

best results are obtained by the MCESN model with a 2.86

mean position, followed by the ARPUNN model with a

3.17 mean position. The RPUNN model leads to a NHN of

15.10 and a RNHN of 4.79. After the examination of the

experimental results,6 we can conclude that the RPUNN

model seems to obtain lower error if the data set to be

forecasted is relatively large, because longer forecast

horizons are required (note that the best results for RPUNN

are obtained when large data sets are evaluated). However,

its computational cost is higher than that of ARPUNN (see

the end of this section). On the contrary, the ARPUNN

model is more precise if the data set is relatively small

(shorter memory is required), and it should be selected

when the competitive computational cost is a must. A

boxplot of the results obtained for the ranking of the

MAPEG and NHN is shown in Fig. 3 where it can be

appreciated the performance above mentioned.

The significance of the experimental results was asses-

sed by using nonparametric statistical tests. Following the

methodology recommended by Demsar [49] for this type of

multiple comparisons, we have used Friedman, Nemenyi

and Holm statistical tests. Friedman test checks whether

there are significant differences in the results, while

Nemenyi is used to detect which of all the comparable pairs

are significantly different. Holm test can be applied when a

control method is considered and corrects the statistics for

multiple comparisons. A detailed description of these tests

can be found in Zar’s book [50] and in [51–53]. This kind

of statistical validation has been extensively applied in time

series forecasting [42, 54–56]. The pre-hoc Friedman test

has been performed with the ranking obtained in the MAPE

and NHN of the best models as test variables. The test

shows that the effect of the method used for forecasting is

statistically significant at a significance level of 10 %, as

the confidence interval is C0 ¼ ð0;F0:10 ¼ 1:809Þ and the

F-distribution statistical values are F� ¼ 19:47 62 C0 for

NHN and F� ¼ 17:40 62 C0 for MAPE. Therefore, null

hypothesis is rejected stating that all algorithms perform

equally in mean ranking.

According to the previous rejection results, the Nemenyi

post hoc test has been used in order to compare all the

models to each other. The Nemenyi test analyses the per-

formance of different models considering that a model is

significantly different if its mean rank differs by at least the

critical difference (CD) defined by:

CD ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KðK þ 1Þ
6D

r

ð8Þ

where K and D are the number of models and data sets used

and q is derived from the studentised range statistic divided

by
ffiffiffi

2
p

. The results of the Nemenyi test for a ¼ 0:10 are

shown in Fig. 4, where the CD is shown for MAPE and

NHN, and the mean ranking of each algorithm is repre-

sented in the scale. When the mean rankings of two algo-

rithms differ more than the CD, then significant differences

can be assessed.

The results of the Nemenyi test for a ¼ 0:10 in the case

of the MAPE metric show that the RPUNN model is sig-

nificantly better than the state-of-the-art models considered

in our experiments except ARPUNN and NARNN.

Regarding the NHN parameter, there are no significant

differences between the models that present the best

results: MCESN, ARPUNN, ESN, NARNN and

NARBFNN. The rest of the models present a lower per-

formance due to their complex architecture that requires a

higher NHN.

Generally, the results of the Nemenyi test comparing all

models to each other in a post hoc are not as sensitive as

the approach of comparing all the models to a given one,

that is used as a control method. This is the philosophy

Table 2 Summary of results for MAPE and NHN as the test variables

MAPE NHN

MAPEG RMAPEG
NHN RNHN

MCESN 0.1624 4.82 11.17 2.86

MCESN 0.1624 4.82 11.17 2.86

NARNN 0.1398 3.55 14.37 4.15

NARRBFNN 0.2257 7.41 14.82 4.24

ESN 0.1626 5.17 12.06 3.43

ELM 6.1255 4.89 163.69 7.65

NARSIGNN 0.1493 4.3793 16.58 5.68

ARPUNN 0.1400 3.48 12.65 3.17

RPUNN 0.1325 2.27 15.10 4.79

The best result is in bold face and the second one in italics

6 http://www.uco.es/ayrna/datasets/MAPEresultsNCAA.

Neural Comput & Applic (2018) 29:779–791 787

123

http://www.uco.es/ayrna/datasets/MAPEresultsNCAA

followed by the Holm test presented now. The results of the

Holm test are available in Table 3. The control methods

used for the MAPEG and NHN measures are RPUNN and

MCESN, as they have the best ranking performances,

respectively.

The results given by the Holm test show slightly dif-

ferent results than those obtained with the Nemenyi test. In

the case of the Holm test, it can be appreciated that the

RPUNN model performs significantly better (in MAPE)

than the rest of the models. Regarding the NHN metric, the

MCESN method shows a significant lower complexity than

the RPUNN, NARSIGNN and ELM methods.

Finally, the computational time of the proposed methods

is analysed and compared to that of the algorithms already

presented in the experimental section. The computational

time recorded included the whole training process: cross-

validation, training and test. This time is shown in Table 4.

The number of hyperparameters of each method is decisive

for the final time spent in running the algorithms, given that

they have to be adjusted using a time-consuming cross-

validation process. It is clear that the methods proposed in

this paper (NARRBFNN, NARSIGNN, ARPUNN and

RPUNN) have a higher computational cost, which is

mainly due to the application of the CMA-ES evolutionary

algorithm. From the three autoregressive models

(NARRBFNN, NARSIGNN and ARPUNN), the lowest

time is obtained with sigmoidal nodes, followed by PUs.

The exponentiation of PUs implies a higher computational

time than sigmoidal basis functions, while lower than that

of RBFs. On the other hand, the use of the reservoir

(RPUNN) increases the computational time with respect to

RPUNN.

The application of EAs is a controversial topic in ANN

literature. evolutionary algorithms (EAs) and, in general,

global search algorithms are computationally expensive

especially when compared to local search algorithms, but

the evolution of weights enables ANNs to avoid local

minima in different data sets without human intervention or

multiple repetitions [57], usually leading to better accu-

racy. In any case, ARPUNN and RPUNN are intended for

environments where the training time is not a critical fea-

ture. Searching in a space with very few restrictions allows

more solutions to be explored, but it is also more time-

consuming. The improvement of accuracy obtained for the

different data sets justifies the computational time.

6 Conclusions

This paper proposes two new models of ANNs based on the

use of PUs as a basis function for time series forecasting

(TSF). The interest on the use of PUs arises from its ability

to express strong interactions between input variables, a

(a) (b)

Fig. 3 Boxplot for the average ranking of MAPEG (MAPE over the generalisation set) and NHN over the 29 data sets. a Test variable:

RMAPEG, b Test Variable: RNHN

(a)

(b)

Fig. 4 Ranking test diagrams for the mean generalisation MAPE and

NHN ða ¼ 0:10Þ. a Nemenyi CD diagram comparing the generaliza-

tion MAPEmean rankings of the different methods, b Nemenyi CD

diagram comparing NHN mean rankings ofthe different methods

788 Neural Comput & Applic (2018) 29:779–791

123

feature truly important in TSF where there is autocorrela-

tion between the lagged values of the time series (TS). Two

models of PUNNs have been implemented, the ARPUNN

and the RPUNN, which consists on an enhanced version of

the ARPUNN. The architecture of ARPUNN considers a

short-term memory provided by the lagged values of the

TS, whereas the RPUNN model includes an additional set

of inputs supplied by a reservoir network which provides a

long-term memory to the model. The parameters of the

models were determined by a hybrid learning algorithm

that combines a global and a local search methods (the

CMA-ES algorithm and the use of the MP generalised

inverse, respectively).

TS data sets available in the community have been used

as benchmark test sets. Five baseline algorithms from the

state-of-the-art TSF literature (NARNN, NARRBFNN,

ESN, ELM and NARSIGNN) and one advanced recurrent

neural network model have been used for comparison and

the model performance has been evaluated using the mean

absolute percentage error (MAPE) and the number of

hidden nodes (NHN) measures. Finally, nonparametric

statistical tests have been performed to validate the results

and the models have been compared also in terms of

computational efficiency. The results show that the intro-

duced models present a very good performance in terms of

MAPE and NHN, at the cost of a higher computational

cost.

Some suggestions for future research are the following:

to use the proposed algorithms on other real-world appli-

cations, such as detection of tipping points [58] or stock

market forecasting,7 to investigate the use of other

advanced basis functions such as the generalised radial

basis function [59] in the place of the product unit basis

functions, and to analyse the impact of regularisation

procedures in the models proposed.

References

1. Furquim G, Pessin G, Faiçal B, Mendiondo E, Ueyama J (2015)

Improving the accuracy of a flood forecasting model by means of

machine learning and chaos theory: a case study involving a real

wireless sensor network deployment in brazil. In: Neural com-

puting and applications, pp 1–13. doi:10.1007/s00521-015-1930-

z

2. Arroyo J, Maté C (2009) Forecasting histogram time series with

k-nearest neighbours methods. Int J Forecast 25(1):192–207

3. Arriandiaga A, Portillo E, Sánchez J, Cabanes I, Pombo I (2015)

A new approach for dynamic modelling of energy consumption in

the grinding process using recurrent neural networks. In: Neural

computing and applications, pp 1–16. doi:10.1007/s00521-015-

1957-1

4. Hansen J, Nelson R (1997) Neural networks and traditional time

series methods: a synergistic combination in state economic

forecasts. IEEE Trans Neural Netw 8(4):863–873

5. Sitte R, Sitte J (2000) Analysis of the predictive ability of time

delay neural networks applied to the S&P 500 time series. IEEE

Trans Syst Man Cybern Part C Appl Rev 30(4):568–572

6. Connor J, Martin R, Atlas L (1994) Recurrent neural networks

and robust time series prediction. IEEE Trans Neural Netw

5(2):240–254

7. He X, Li C, Huang T, Li C, Huang J (2014) A recurrent neural

network for solving bilevel linear programming problem. IEEE

Trans Neural Netw Learn Syst 25(4):824–830

8. Yan Z, Wang J (2014) Robust model predictive control of non-

linear systems with unmodeled dynamics and bounded uncer-

tainties based on neural networks. IEEE Trans Neural Netw

Learn Syst 25(3):457–469

9. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780

Table 3 Results of the Holm test considering the MAPEG and NHN

as the test variables

Algorithm z-statistic p value a0Holm

MAPE: RPUNN control method

NARRBFNN	 7.9872 0.0000 0.0142

ESN	 4.5028 1.0E-5 0.0166

ELM	 4.0740 5.0E-5 0.0200

MCESN	 3.9668 7.0E-5 0.0250

NARSIGNN	 3.2699 0.0010 0.0333

NARNN	 1.9834 0.0473 0.0500

ARPUNN	 1.8762 0.060 0.1000

NHN: MCESN control method

ELM	 7.411 0.0000 0.0142

NARSIGNN	 4.3956 1E-5 0.0166

RPUNN	 3.0014 0.0026 0.0200

NARBFNN 2.1442 0.0320 0.0250

NARNN 2.0102 0.0444 0.0333

ESN 0.8844 0.3764 0.0500

ARPUNN 0.4824 0.6294 0.1000

	: Statistical differences were found

Table 4 Average of

computational time results in

seconds (cross-validation,

training and test) for the 29 data

sets considered and all the

methods

Average computational time

MCESN 0.1945

NARNN 0.0412

NARRBFNN 177.9317

ESN 0.2763

ELM 0.0040

NARSIGNN 13.7543

ARPUNN 89.4619

RPUNN 146.7219

7 In these kind of problems small variations in the inputs could

produce large changes in the output of the TS. This situation could be

modelled with the product units basis functions (as they are potential

basis functions).

Neural Comput & Applic (2018) 29:779–791 789

123

http://dx.doi.org/10.1007/s00521-015-1930-z
http://dx.doi.org/10.1007/s00521-015-1930-z
http://dx.doi.org/10.1007/s00521-015-1957-1
http://dx.doi.org/10.1007/s00521-015-1957-1

10. Jaeger H (2002) Adaptive nonlinear system identification with

echo state networks. In: Advances in neural information pro-

cessing systems, pp 593–600

11. Gallicchio C, Micheli A (2011) Architectural and markovian

factors of echo state networks. Neural Netw 24(5):440–456

12. Rodan A, Tino P (2011) Minimum complexity echo state net-

work. IEEE Trans Neural Netw 22(1):131–144

13. Hecht-Nielsen R (1989) Theory of the backpropagation neural

network. In: International joint conference on neural networks

1989 IJCNN. IEEE, pp 593–605

14. Pan F, Zhang H, Xia M (2009) A hybrid time-series forecasting

model using extreme learning machines. In: Second international

conference on Intelligent Computation Technology and

Automation, ICICTA ’09, vol 1, pp 933–936

15. Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning

machine for regression and multiclass classification. IEEE Trans

Syst Man Cybern Part B Cybern 42(2):513–529

16. Durbin R, Rumelhart D (1989) Products units: a computationally

powerful and biologically plausible extension to backpropagation

networks. Neural Comput 1(1):133–142

17. Goldberg DE et al (1989) Genetic algorithms in search, opti-

mization, and machine learning, vol 412. Addison-Wesley,

Reading Menlo Park

18. Li P, Tan Z, Yan L, Deng K (2011) Time series prediction of

mining subsidence based on genetic algorithm neural network. In:

2011 international symposium on computer science and society

(ISCCS), pp 83–86

19. Luque C, Ferran J, Vinuela P (2007) Time series forecasting by

means of evolutionary algorithms. In: IEEE international 2007

parallel and distributed processing symposium, IPDPS 2007,

pp 1–7

20. Cai X, Zhang N, Venayagamoorthy G, Wunsch D (2004) Time

series prediction with recurrent neural networks using a hybrid

PSO–EA algorithm. In: 2004 IEEE international joint conference

on neural networks, 2004. Proceedings, vol 2, pp 1647–1652

21. Martı́nez-Estudillo FJ, Hervás-Martı́nez C, Gutiérrez PA, Martı́-

nez-Estudillo AC (2008) Evolutionary product-unit neural net-

works classifiers. Neurocomputing 72(1–3):548–561

22. Martı́nez-Estudillo AC, Martı́nez-Estudillo FJ, Hervás-Martı́nez

C, Garcı́a-Pedrajas N (2006) Evolutionary product unit based

neural networks for regression. Neural Netw 19(4):477–486

23. Dulakshi AWJ, Karunasingha SK, Li WK (2011) Evolutionary

product unit based neural networks for hydrological time series

analysis. J Hydroinf 13(4):825–841

24. Piotrowski AP, Napiorkowski JJ (2012) Product-units neural

networks for catchment runoff forecasting. Adv Water Resour

49:97–113

25. Sundermeyer M, Oparin I, Gauvain J-L, Freiberg B, Schluter R,

Ney H (2013) Comparison of feedforward and recurrent neural

network language models. In: 2013 IEEE international confer-

ence on acoustics, speech and signal processing (ICASSP), IEEE,

pp 8430–8434

26. Lukoševičius M, Jaeger H (2009) Reservoir computing approa-

ches to recurrent neural network training. Comput Sci Rev

3(3):127–149

27. Hansen N (2006) The CMA evolution strategy: a comparing

review. In: Towards a new evolutionary computation. Studies in

fuzziness and soft computing, vol 192. Springer, Berlin,

pp 75–102

28. Jastrebski G, Arnold D (2006) Improving evolution strategies

through active covariance matrix adaptation. In: IEEE congress

on 2006 evolutionary computation, CEC 2006, pp 2814–2821

29. Heidrich-Meisner V, Igel C (2009) Neuroevolution strategies for

episodic reinforcement learning. J Algorithms 64(4):152–168

30. Moriguchi H, Honiden S (2012) CMA-TWEANN: efficient

optimization of neural networks via self-adaptation and seamless

augmentation. In: Proceedings of the 14th annual conference on

genetic and evolutionary computation. ACM, pp 903–910

31. Gundogdu O, Egrioglu E, Aladag C, Yolcu U (2015) Multi-

plicative neuron model artificial neural network based on gaus-

sian activation function. Neural Comput Appl 27:927–935

32. Yadav R, Kalra P, John J (2007) Time series prediction with

single multiplicative neuron model. Appl Soft Comput

7(4):1157–1163 (Soft computing for time series prediction)

33. Zhao L, Yang Y (2009) PSO-based single multiplicative neuron

model for time series prediction. Expert Syst Appl

36(2):2805–2812 (Part 2)

34. Attia M, Sallam E, Fahmy M (Aug 2012) A proposed generalized

mean single multiplicative neuron model. In: 2012 IEEE inter-

national conference on intelligent computer communication and

processing (ICCP), pp 73–78

35. Egrioglu E, Yolcu U, Aladag C, Bas E (2015) Recurrent multi-

plicative neuron model artificial neural network for non-linear

time series forecasting. Neural Process Lett 41(2):249–258

36. Gutiérrez PA, Segovia-Vargas MJ, Salcedo-Sanz S, Hervás-

Martı́nez C, Sanchı́s A, Portilla-Figueras JA, Fernández-Navarro

F (2010) Hybridizing logistic regression with product unit and rbf

networks for accurate detection and prediction of banking crises.

Omega 38(5):333–344

37. Saini L, Soni M (2002) Artificial neural network based peak load

forecasting using Levenberg–Marquardt and quasi-Newton

methods. IEE Proc Gener Transm Distrib 149(5):578–584

38. Hansen N, Niederberger ASP, Guzzella L, Koumoutsakos P

(2009) A method for handling uncertainty in evolutionary opti-

mization with an application to feedback control of combustion.

IEEE Trans Evolut Comput 13(1):180–197

39. Ros R, Hansen N (2008) A simple modification in CMA-ES

achieving linear time and space complexity. In: Proceedings of

the 10th international conference on parallel problem solving

from nature: PPSN X. Springer, pp 296–305

40. Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning

machine: a new learning scheme of feedforward neural networks.

In: 2004 IEEE international joint conference on neural networks,

2004. Proceedings, vol 2, pp 985–990

41. Ozturk MC, Xu D, Prı́ncipe JC (2007) Analysis and design of

echo state networks. Neural Comput 19(1):111–138

42. Bergmeir C, Triguero I, Molina D, Aznarte J, Benitez J (2012)

Time series modeling and forecasting using memetic algorithms

for regimen-switching models. IEEE Trans Neural Netw Learn

Syst 23(11):1841–1847

43. Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, Garcı́a S (2011)

Keel data-mining software tool: data set repository, integration of

algorithms and experimental analysis framework. Mult Valued

Logic Soft Comput 17(2–3):255–287

44. Said SE, Dickey DA (1984) Testing for unit roots in autore-

gressive-moving average models of unknown order. Biometrika

71(3):599–607

45. Ragulskis M, Lukoseviciute K (2009) Non-uniform attractor

embedding for time series forecasting by fuzzy inference sys-

tems. Neurocomputing 72(10):2618–2626

46. Crone S, Dhawan R (2007) Forecasting seasonal time series with

neural networks: a sensitivity analysis of architecture parameters.

In: International joint conference on neural networks, IJCNN

2007, pp 2099–2104

47. Chow TWS, Leung C (1996) Nonlinear autoregressive integrated

neural network model for short-term load forecasting. IEE Proc

Gener Transm Distrib 143(5):500–506

48. Redel-Macı́as MD, Fernández-Navarro F, Gutiérrez PA, Cubero-

Atienza AJ, Hervás-Martı́nez C (2013) Ensembles of evolution-

ary product unit or RBF neural networks for the identification of

sound for pass-by noise test in vehicles. Neurocomputing

109:56–65

790 Neural Comput & Applic (2018) 29:779–791

123

49. Demsar J (2006) Statistical comparisons of classifiers over mul-

tiple data sets. J Mach Learn Res 7:1–30

50. Zar JH et al (1999) Biostatistical analysis: Pearson Education

India. Prentice Hall City, New Jersey

51. Friedman M (1940) A comparison of alternative tests of signifi-

cance for the problem of m rankings. Ann Math Stat 11(1):86–92

52. Dunn OJ (1961) Multiple comparisons among means. J Am Stat

Assoc 56(293):52–64

53. Hochberg Y, Tamhane AC (1987) Multiple comparison proce-

dures. Wiley, New York

54. Aznarte JL, Alcalá-Fdez J, Arauzo-Azofra A, Benı́tez JM (2012)

Financial time series forecasting with a bio-inspired fuzzy model.

Expert Syst Appl 39(16):12302–12309

55. Adhikari R, Agrawal R (2012) Forecasting strong seasonal time

series with artificial neural networks. J Sci Ind Res 71(10):657

56. Rocha T, Paredes S, de Carvalho P, Henriques J (2013) An

effective wavelet strategy for the trend prediction of physiolog-

ical time series with application to phealth systems. In: 35th

annual international conference of the IEEE engineering in

medicine and biology society (EMBC) (2013). IEEE,

pp 6788–6791

57. Yao X (1999) Evolving artificial neural networks. Proc IEEE

87(9):1423–1447

58. Nikolaou A, Gutiérrez PA, Durán A, Dicaire I, Fernández-

Navarro F, Hervás-Martı́nez C (2015) Detection of early warning

signals in paleoclimate data using a genetic time series segmen-

tation algorithm. Clim Dyn 44(7–8):1919–1933

59. Fernández-Navarro F, Hervás-Martı́nez C, Gutiérrez PA (2013)

Generalised gaussian radial basis function neural networks. Soft

Comput 17(3):519–533

Neural Comput & Applic (2018) 29:779–791 791

123

Neural Computing & Applications is a copyright of Springer, 2018. All Rights Reserved.

	Time series forecasting by recurrent product unit neural networks
	Abstract
	Introduction
	Models
	Short memory model: autoregressive product unit neural network (ARPUNN)
	Long memory model: recurrent product unit neural network (RPUNN)

	Parameter estimation
	Experiments
	Data sets selected
	Metrics considered for evaluation
	Algorithms selected for comparison purposes

	Results
	Conclusions
	References

