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Abstract Cluster analysis plays an important role in decision making process for
many knowledge-based systems. There exist a wide variety of different approaches
for clustering applications including the heuristic techniques, probabilistic models,
and traditional hierarchical algorithms. In this paper, a novel heuristic approach
based on big bang-big crunch algorithm is proposed for clustering problems. The
proposed method not only takes advantage of heuristic nature to alleviate typical
clustering algorithms such as k-means, but it also benefits from the memory based
scheme as compared to its similar heuristic techniques. Furthermore, the perfor-
mance of the proposed algorithm is investigated based on several benchmark test
functions as well as on the well-known datasets. The experimental results shows
the significant superiority of the proposed method over the similar algorithms.

Keywords Evolutionary Algorithms · Big Bang-Big Crunch Algorithm ·
Clustering · Unsupervised Learning

1 Introduction

Unsupervised learning can be considered as an important category of machine
learning techniques to uncover the interesting hidden patterns from the dataset.
Unsupervised learning methods can be generally divided into clustering, dimen-
sionality reduction, image segmentation, object recognition, and text mining tech-
niques [1]. One of the most common unsupervised learning methods is clustering.
Clustering is the task of assigning a set of objects, usually vectors in a multidi-
mensional space, into clusters in such a way that the objects in the same cluster
are more similar to each other than to those in other clusters [2]. Cluster analy-
sis has attracted attention of many researchers in different fields, including data
mining [3], sequence mining [4], image processing [5], feature selection techniques
[6], spatial data analysis [3], bioinformatics [7,8], marketing [3], city planning [3],
and earthquake studies [3].
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Due to not well-defined nature of clustering problems and growing importance
of clustering in a variety of different fields, lots of clustering approaches have
emerged. Since clustering problem is NP-hard by its nature [9], meta-heuristic
methods are proper tools to deal with this issue. Among many studies in meta-
heuristic approaches for clustering, one can mention clustering algorithm based
on tabu search [10], genetic algorithms [11], ant colony [12], particle swarm op-
timization [13], and bee colony [14]. Meta-heuristic methods also make use of a
computationally efficient clustering algorithm and seek to find better results. One
common approach which can easily be used along with meta-heuristic techniques
is k-means algorithm [15]. The k-means is one of the well-known clustering meth-
ods. In spite of its simplicity and efficiency, it suffers from serious problems such
as sensitivity to the initial position of cluster centers, empty clusters occurrence,
and trapping in local optima. As a result, k-means can be prevented from finding
global optimum.

There exists many nature inspired algorithms for solving complex optimization
problems which are used extensively in research works and technological settings
including a variety of particle swarm optimization, PSO, based approaches [16,
17,18], ant colony based method for unsupervised learning [19], algorithms which
have emerged from human interactions [20,21], water cycle chaotic behavior [22],
and human body systems [23].

One of the well-known models in theoretical physics is the Big Bang theory for
illustration of the universe existence and its evolution from the past known his-
torical spans over its large-scale evolution. A novel optimization algorithm named
Big Bang-Big Crunch algorithm(BB-BC) based on these theories is first initiated
in [24] which have been applied in many works including economic power systems
[25,26] and signal processing [27]. On the one hand, the BB-BC algorithm has been
started from theoretical concepts of cosmological physics. On the other hand, the
BB-BC algorithm outperforms a wide category of evolutionary algorithms which
are very sensitive to initial solutions. Due to its modification of the initial solution
in the process of the algorithm, BB-BC is aimed at achieving the optimal solu-
tion. Thus, BB-BC could be selected as a proper choice for a variety of different
optimization and intractable problems.

While the BB-BC are used in several works, it suffers from disadvantages such
as slow convergence speed and trapping in local optimum solutions available in
most of the optimization problems [28]. The problem of converging to local opti-
mum solutions occurred for the BB-BC approach due to greedily looking around
the best ever found solutions. Due to its explorative nature, BB-BC lacks a splen-
did exploitation factor. Such optimization strategies should have a mechanism to
make a trade-off between exploration and exploitation.

In this paper a new heuristic clustering algorithm is developed. We designed
memory enriched BB-BC(ME-BB-BC) algorithm to solve the aforementioned draw-
backs of the traditional BB-BC method. The proposed algorithm takes advantages
of typical BB-BC algorithm and enhances it with the proper balance between ex-
ploration and exploitation factors. Proposed approach not only is capable of per-
forming clustering task but it could also be used for other general optimization
problems. Results on benchmark evaluation functions and real benchmark datasets
indicate that ME-BB-BC outperforms significantly the typical BB-BC method and
other meta-heuristic algorithms.
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The remainder of the paper is structured as, Section 2 presents the cluster anal-
ysis. The related BB-BC algorithm is given in Section 3. The proposed approach
based on BB-BC algorithm is introduced in Section 4 and is evaluated and ana-
lyzed on benchmark functions in Section 5. Section 6 is devoted to fundamentals
of clustering using the proposed algorithm. Experimental results of the proposed
clustering approach are illustrated in Section 7. Finally Section 8 concludes the
paper with suggestions for future works.

2 Cluster analysis

Clustering is the procedure of dividing a set of objects each explained by a vector
of attributes into a finite number of clusters in a way that based on similarity func-
tions, objects in the same cluster will be similar to each other and different from
the objects in other clusters. The k-means is a computationally efficient clustering
method which has been widely used [3]. While it is proved that the process of the
algorithm will always converge [29], k-means does not guarantee to find an optimal
solution. The algorithm is also essentially sensitive to the primary cluster centers.
Moreover, k-means also suffers from the occurrence of empty clusters during its
iterations. If there is a cluster with no instance, k-means is unable to update that
cluster centroids.

The procedure of k-means is as follows. First, k-means assigns initial values to
centroids and then it continues for several iterations. In each iteration, k-means
create clusters by assigning all data points to their nearest centroids and then
substitute the mean of each cluster for its centroid. As stopping criterion, the
number of iteration can be determined a priori or iterations continue until there
is no changes in centroids. Also, a combination of these two criteria is possible.

The essential aim of a clustering algorithm, such as k-means, is to discover
a proper assignment of data points to clusters and find an arrangement of µk

vectors in a manner that sum of the squares of the distances of each data point to
its nearest centroid is least. For every data point xn, a corresponding set of binary
indicators such as rn,k ∈ {0, 1} is presented. Where k ∈ {1, . . . ,K} describes which
of the K clusters, the data point xn falls into. So if data point xn is assigned to
cluster k then rn,k = 1, and rn,j = 0 for j ∈ {1, . . . ,K|j 6= k}. Therefore, an
objective function can be characterized as equation 1, which represents the sum
of the squares of the distances of each data point to its assigned cluster(vector
µk). So the final goal is to find values for the rn,k and µk in such a way that F is
minimized [30].

F =

N∑

n=1

K∑

k=1

rn,k × (||Xn − µk||
2) (1)

3 An overview of Big Bang-Big Crunch optimization algorithm

There exist many theories about how the universe evolved at the first place, and
the two famous theories in this regard are namely Big bang and Big crunch, BB-
BC theories. Erol and Eksin [24] made use of these theories and introduced the
BB-BC optimization algorithm. According to this theory, due to dissipation, Big
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Bang phase creates randomness along with disorder, while in the Big Crunch
phase the randomly created particles will be drawn into an order. Big Bang-Big
Crunch algorithm (BB-BC) starts with the big bang phase through the generation
of random points around an initially chosen point and it tries to shrink the created
points into a single optimized one through the center of mass in the big crunch
phase. Finally, after repeating the two phases for a limited number of times, the
algorithm converges to an ideal solution.

Similar to other evolutionary algorithms [31], this method has a candidate
solution where some new particles are randomly distributed around it based on a
uniform manner throughout the search space. The random nature of the Big Bang
is associated with the energy dissipation or transmission from an ordered state
to a disordered state i.e. transmission from a candidate solution to a set of new
particles(solution candidates).

The Big Bang phase is pursued by the Big Crunch phase. In this phase the new
random distributed particles are drawn into an order via the center of mass. After
a sequentially repetitions of Big Bang and Big Crunch steps, the distribution of
randomness during Big Bang phase becomes more and more smaller and finally
the algorithm converges to a solution. The process of calculating the center of mass
is according to equation (2).

x
c
j =

∑N
j=1

xi
j

fi

∑N
j=1

1

fi

, for i = 1, 2, . . . , N (2)

where xc
j is the j-th component of the center of mass, xi

j is the j-th component

of i-th candidate, f i is fitness value of the i-th candidate, and finally N is the
number of all candidates. It should be noted that in the optimization problems,
fitness(f) of each candidate solution is calculated based on general fitness function
of the optimization problem, (specially for clustering applications the equation (4)
is used in this paper). The algorithm then generates new population of particles
according to equation (3).

x
i,new
j = x

c
j + r ×

(xmax
j − xmin

j )

1 + k
(3)

where x
i,new
j is the new value of j-th component of the i-th particle x, r is

a random number with a standard normal distribution, and k is the iteration
index. Also xmax

j and xmin
j are maximum and minimum acceptable values for xj .

Algorithm 1 shows the pseudo code of the Big Bang-Big Crunch Algorithm.

4 The proposed algorithm

In this section first we introduce the proposed algorithm and describe the impor-
tant elements of the algorithm in Subsection 4.1. Then sensitivity analysis of the
proposed method is investigated through benchmark functions in Subsection 4.2.
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Algorithm 1 Big Bang Big Crunch Algorithm

Input: fitness function, number of stars
Output: output of optimization problem
1: Initialisation:
2: starting point = Generate a random starting point with respect to range constraints.
3: num of stars = number of stars
4: dim = dimension of solution
5: repeat

6: Big Bang Phase: ⊲ create mass around starting point
7: for i = 1 to num of stars do

8: for j = 1 to dim do

9: mass[i, j] = generate a star based on (3)
10: end for

11: end for

12: Big Crunch Phase:
13: c.o.m = calculate center of mass based on (2)
14: starting point = c.o.m ⊲ update
15: until max number of iterations or convergence

4.1 The description of proposed method

Exploration and exploitation are two important components of evolutionary algo-
rithms. In order to act successfully, each search algorithm needs to provide a good
trade-off between these two factors. Exploration is the process of searching new
solution regions of the search space, exploitation on the other hand is to search in
the neighborhood of previously found solutions. As an example of exploration in
the BB-BC algorithm equation (3) seeks to search in the new solution regions by
randomly dispatching points in solution space. It can be observed from the cycles
of the BB-BC algorithm, that it greedily drops the current center of mass in favor
of a better one at the end of each big bang and big crunch cycle.

Although the BB-BC algorithm explores the solution space greatly, it suffers
from lack of proper and effective exploitation. Because of the total exploration of
the search space to compute the center of masses in each iteration, the efficiency of
the algorithm is sensitive to these points in each step. Moreover, it is more likely
to have some local solutions in the previously computed center of masses through
the process of the algorithm. If we can use these points in an efficient manner,
they could yield us to more robust and better results versus the original BB-BC
algorithm.

To make use of earlier found centers of masses and enhancing the exploitation of
the algorithm, a memory with limited size is added to the process of the algorithm
in an smart vein to propose a new approach entitled as Memory Enriched Big

Bang Big Crunch, ME-BB-BC. We describe the stages of the ME-BB-BC and its
procedure in the following paragraph.

At the end of each big bang and big crunch cycles, the calculated center of mass
will be stored in the memory. Initially it is assumed that all of the saved centers of
masses in the memory are good points for generating the particles forming the new
center of masses. Furthermore, if the memory gets full during the algorithm, the
worst solution will be substituted by the new center of mass based on the fitness
of the currently saved solutions.

We enhance the particle generation based on a probabilistic random walk man-
ner in such a way that the adjustable parameter α is considered as the selection
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Algorithm 2 Memory Enriched BB-BC

Input: fitness function, memory size, number of stars
Output: output of optimization problem
1: Initialization:
2: starting point = Generate a random starting point with respect to range constraints.
3: solution memory = memory with size memory size

4: num of stars = number of stars
5: dim = dimension of solution
6: α = 0.1 ⊲ memory selection rate
7: repeat

8: Big Bang Phase: ⊲ create mass around starting point
9: for i = 1 to num of stars do

10: for j = 1 to dim do

11: if rand(0, 1) <= α then

12: idx = rand([1, ...,memory size])
13: mass[i, j] = solution memory[idx, j] ⊲ select from memory
14: else

15: mass[i, j] = generate a star based on (3)
16: end if

17: end for

18: end for

19: Big Crunch Phase:
20: c.o.m = calculate center of mass based on (2)
21: if solution memory is not full then
22: add c.o.m into solution memory

23: else

24: worse = find worse solution in solution memory

25: if fitness(c.o.m) > fitness(worse) then

26: remove worse from the solution memory

27: add c.o.m into solution memory

28: end if

29: end if

30: starting point = c.o.m ⊲ update
31: α = α+ 0.01 × α ⊲ update
32: until max number of iterations or convergence

probability of the solutions in the memory and 1 − α is the probability for the
total search space. Hence, the good aspects of the dimensions of the points in the
memory are utilized in the proposed method. Moreover, the weight probabilities
are linearly increased as algorithm goes by to consider more importance on the
memory points. This exploitation refinement idea is similar to the decreasing val-
ues of pitch adjustment rate in harmony search algorithm [32] and inertia weight
in PSO algorithm [33]. Such strategy results in better performance of the meta-
heuristic algorithms, due to the fact of more exploration at beginning and more
exploitative at the end in the search space of the algorithm [31].

The details of the proposed algorithm is presented in Algorithm 2. It describes
the modified big bang phase and big crunch phases of our method. The algorithm
initially depends on the max number of iterations, α, memory size, and number of
stars, lines 1-6 initialize these parameters. Lines 8-18 are devoted to the modified
Big Bang phase of the proposed algorithm in which random particles around start-
ing point are generated based on (3) or selected from the solution memory, in lines
19-20 center of mass is calculated according to (2). Furthermore, in lines 21-29 the
proposed algorithm checks the solution memory and saves the new center of mass
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to memory. At the end of the algorithm, lines 30-31 update the parameters of the
proposed method.

Based on the pseudo code of the ME-BB-BC, the computational complexity of
the algorithm is O(r× (n+ s)), where r is the total iterations of the algorithm, n
is the number of stars, and s is the complexity of finding the worst solution in the
memory. Since the dim (the dimension of optimization problem) is highly less than
the r and s parameters, it is skipped in the complexity analysis of the algorithm.
While the computational complexity of the proposed approach is slightly more
than the traditional BB-BC method, O(r × n), the proposed method yields to
significant improvement versus the earlier one.

4.2 Analysis of the proposed algorithm

We initially investigate the sensitivity of the ME-BB-BC algorithm to its ad-
justable parameter α. Then, the rate of convergence of the algorithm and its
behavior on dealing with this major issue are discussed aligned with the other
well-known meta-heuristic methods through several benchmark functions.

The adjustable parameters of the proposed approach are num of stars, deter-
mining how vast the exploration factor should be considered and α, the balancing
probability between exploration and exploitation stages of the algorithm. On the
one hand, more increase the value of num of stars leads more exploration the
space of solutions and achieving to probably more optimal solutions. On the other
hand, more exploration of the solution space affects heavily on the time complexity
of the algorithm. We have applied the value of the parameter num of stars to 200
based on empirical experiments and recommended settings in related works based
on the trade of between the exploration of solution space and time complexity of
the ME-BB-BC method.

The parameter α is initiated with small values in the beginning stages of the
algorithm and is grown to larger amounts at the subsequent stages of the algorithm

(a) Levy (b) Rastrigin

Fig. 1: The sensitivity analysis of the ME-BB-BC algorithm to adjustable param-
eter α on (a) Levy, (b) Rastrigin functions.
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to balance between exploration and exploitation of the search strategy. Moreover,
we have designed a careful sensitivity analysis over adjustable parameter α based
on Levy and Rastrigin benchmark functions. The details of the results could be
observed in Figure 1. Increasing the parameter α generally results in better fitness
values which is satisfied for both of Levy and Rastrigin functions with the 50
assumed dimension as observed in Sub-Figures 1a and 1b.

One of the general problems with the evolutionary algorithms is the slow rate
of convergence. The ME-BB-BC algorithm contains a solution memory, and ad-
justable parameters α and num of stars to balance the rate of exploration and
exploitation via using the solution memory where the rate of convergence of the
algorithm depends on these two stages. We have compared the convergence of the
proposed approach with the PSO, Grey Wolf Optimizer GWO [34], BB-BC tech-
niques in Figure 2 based on the number of iterations versus the value of fitness
function through four benchmark functions, Rastrigin, Sphere, Levy, and Step. The
obtained results in Sub-Figures 2a, 2b, 2c and 2d indicate that the ME-BB-BC
algorithm has better rate of convergence than the other algorithms and the de-
creasing pattern of the ME-BB-BC approach proves its less sensitivity to local
optimums.
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Fig. 2: Comparison of the results of the ME-BB-BC method with the PSO, GWO,
and BBBC algorithms on (a) Rastrigin, (b) Sphere, (c) Levy, and (d) Step bench-
mark functions.



Title Suppressed Due to Excessive Length 9

Table 1: Specifications of Benchmark Functions

Function Equation Range Solution

Rastrigin

n∑

i=1

(x2
i − 10cos(2πxi) + 10) [-5.12, 5.12] [0, . . . , 0]

Step

n∑

i=1

([xi + 0.5])2 [-100, 100] [0, . . . , 0]

Sphere

n∑

i=1

x2
i [-100, 100] [0, . . . , 0]

Rosenbrock
n−1∑

i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2) [-30, 30] [0, . . . , 0]

Zakharov

n∑

i=1

x2
i + (

n∑

i=1

0.5ixi)
2 + (

n∑

i=1

0.5ixi)
4 [-5, 10] [0, . . . , 0]

Levy

sin2(πw1) +

n−1∑

i=1

(wi − 1)2[1 + 10sin2(πwi + 1)]

+(wn − 1)2[1 + sin2(2πwn)],where

wi = 1 +
xi − 1

4
, for all i = 1, . . . , d

[-15, 30] [0, . . . , 0]

Dixon Price (x1 − 1)2 +
n∑

i=2

i(2x2
i − xi−1)

2 [-10, 10] [0, . . . , 0]

5 The evaluation of the proposed approach

To evaluate the ME-BB-BC, initially, a bunch of benchmark functions is used.
Table 1 shows the benchmark functions where the optimal solution for all of them
is zero. Furthermore, to more investigate the proposed algorithm and check the
robustness of its results, statistical tests are performed on the obtained results.

The proposed algorithm is compared to Genetic Algorithm(GA),Particle Swarm
Optimization(PSO), Grey Wolf Optimizer(GWO), and original BB-BC algorithm.
Each algorithm has been run 50 times for each benchmark function and average,
best and standard deviation of costs has been reported. In this study, the dimension
of the benchmark functions is set to 50 and the maximum number of iterations
is 100. Table 2 shows the experimental results. The ME-BB-BC has performed
the optimization task efficiently as compared to the other methods based on the
cost function evaluation metrics. Moreover, lower standard deviation pointed us
that the optimization algorithm converges to close results in different runs of the
algorithm.

The nonparametric Friedman’s statistical test is used to the 30 different runs
of the proposed algorithm on Rosenbrock, Rastrigin, Sphere, and Step benchmark
function with 50 dimension to investigate whether there exist significant differences
among results or not. Table 3 presents output from Friedman’s test. Application of
Friedman’s test indicates that there is no statistically significant difference between
the obtained results over the different runs of the proposed algorithm.

To further investigate the results of the proposed algorithm, t-test was applied
in order to point out the difference between results of the ME-BB-BC and GWO,
as best algorithm among other heuristic methods, Table 4 presents the t-test com-
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Table 2: (B)est, (A)verage, and (S)tandard Deviation of Algorithms on benchmark
functions for 50 consecutive run of each algorithm.

Function V Proposed GA PSO GWO BB-BC

Rastrigin
B 39.18 51.33 78.11 40.94 269.79
A 49.51 69.84 147.88 85.41 364.19
S 6.13 7.35 28.45 34.33 45.53

Step
B 64.00 1308.00 94.00 65.00 98.00
A 108.62 2420.50 244.64 155.20 323.14
S 20.47 403.50 79.47 73.14 163.69

Sphere
B 47.10 1716.86 74.23 50.14 72.12
A 69.77 2433.84 202.69 111.36 304.27
S 12.62 431.79 50.84 57.68 200.23

Rosenbrock
B 245.41 472156.77 3021.37 247.13 251.41
A 504.23 975412.12 10188.67 1152.74 1413.61
S 114.52 252115.63 4047.98 766.93 1099.13

Zakharov
B 52.01 426.34 121.20 72.21 172.47
A 100.65 586.10 243.32 179.05 349.08
S 33.82 54.32 80.58 59.31 99.23

Levy
B 0.51 23.85 8.25 1.07 18.12
A 0.95 33.68 50.82 4.50 195.45
S 0.21 6.85 33.58 2.80 31.74

Dixon Price
B 5.15 3904.74 65.24 5.30 9.67
A 12.34 9823.17 156.23 19.10 54.24
S 2.04 2922.37 59.50 9.04 34.20

pare of ME-BB-BC algorithm versus GWO algorithm over Rosenbrock, Rastrigin,
Sphere, and Step benchmark functions. These results indicate that there is a sig-
nificance difference between results of the ME-BB-BC and GWO algorithm.

Table 3: Results of the non-parametric Friedman’s statistical test

Benchmark Function Significance

Rosenbrock 0.38
Rastrigin 0.49
Sphere 0.71
Step 0.33

Table 4: Results of the t-test between ME-BB-BC algorithm and GWO algorithm

Benchmark Function p-value

Rosenbrock 0.042
Rastrigin 0.031
Sphere 0.015
Step 0.013
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6 Clustering using ME-BB-BC

Due to the finding the interesting patterns from the dataset in the clustering sit-
uations, the meta-heuristic techniques are used extensively to uncover the hidden
clusters from the dataset. Some advantages of these algorithms to perform cluster-
ing task can be mentioned such as less sensitivity to the initial starting points, re-
duction of the amount of computation, and discover clusters with arbitrary shapes
[35].

In this paper memory enriched big bang-big crunch algorithm proposed for
clustering task. Besides, to improve the traditional clustering algorithms like k-
means method, the proposed approach performs the clustering task in an efficient
way. The proposed clustering algorithm operates in a four main steps that each
will be illustrated in the following.

1. Starting Point: The proposed algorithm starts with an initial answer as a
starting point of the procedure. This answer consists of a vector of centers gen-
erated randomly in the range of allowable values. The example of a candidate
solution for a clustering problem is given in Figure 3.

�
�

�
�

�

� �� � �
�

� �� � �
�

�
�

�

� �� � �
�

�

Fig. 3: The candidate centers for clustering where k is the no. of clusters and each
sample of data has d attributes.

2. Big Bang process: The initial solution is given to the Big Bang phase of the
proposed algorithm to generate the particles in the solution space.

3. Evaluation: The generated particles around the starting point should be
tested based on equation (4) as follows,

Fitness =

N∑

n=1

K∑

k=1

In,k(dn)× (||dn − BCk||
2) (4)

where the dn is the n-th row of the dataset, BCk is the center of the k-th
cluster derived from the Big Bang phase of the algorithm, and In,k(dn) equals
to 1 if dn belongs to k-th cluster and 0 otherwise.

4. Big Crunch process: In this phase, the proposed algorithm compute the
center of the mass of randomly generated particles and use it as starting point
of the algorithm in the next step.

If the stopping criteria of the algorithm are satisfied including reaching the
maximum number of iterations, or fixed centers during consecutive iterations, the
proposed algorithm will stop and the best solution among all solutions is reported.
Otherwise, above steps will be repeated until the stopping conditions are satisfied.
The details are presented in Algorithm 3.
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Algorithm 3 The proposed clustering method based on memory enriched BB-BC
Algorithm

Input: fitness function, memory size, number of stars, number of clusters
Output: optimal cluster centers
1: Initialisation:
2: solution memory = memory with size memory size

3: dim = dimension of clusters
4: k = number of clusters
5: centers = (c11, . . . , c

dim
1 , . . . , c1

k
, . . . , cdim

k
) ⊲ randomly generate clusters centers with

respect to variable range limitations
6: α = 0.1 ⊲ memory selection rate
7: num of stars = number of stars
8: repeat

9: Big Bang Phase: ⊲ create mass around starting point
10: for i = 1 to num of stars do

11: for j = 1 to dim do

12: if rand(0, 1) <= α then

13: idx = rand([1, ...,memory size])
14: mass[i, j] = solution memory[idx, j] ⊲ select from memory
15: else

16: mass[i, j] = generate a star based on equ. 3
17: end if

18: end for

19: end for

20: for each star ∈ mass do

21: mass fitness[star] = fitness(star) based on equ. 1
22: end for

23: Big Crunch Phase:
24: c.o.m = calculate center of mass (equ. 2)
25: if solution memory is not full then
26: add c.o.m into solution memory

27: else

28: worse = find the worst solution in solution memory

29: if fitness(c.o.m) > fitness(worse) then

30: remove worse from the solution memory

31: add c.o.m into solution memory

32: end if

33: end if

34: centers = c.o.m ⊲ update
35: α = α+ 0.01 × α ⊲ update
36: until max number of iterations or convergence

7 Experimental results

The proposed algorithm on several standard datasets is examined where the de-
scription of the dataset are given in the Subsection 7.1. Then the obtained results
are presented and discussed in Subsection 7.2.

7.1 Standard datasets

The proposed method is experimentally evaluated using several standard datasets,
including Iris, Wine, CMC, and Vowel. These datasets have been employed in
many works and can be achieved from UCI Machine Learning Repository [36].
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The properties of the datasets are summarized in Table 5. The detail for each of
these datasets is as follows.

Table 5: summarized characteristic of real datasets

Dataset #Objects #Features #Clusters

Iris 150 4 3(50, 50, 50)
Wine 178 13 3(59, 71, 48)
CMC 1473 9 3(629, 334, 510)
Vowel 871 3 6(72, 89, 172, 151, 207, 180)
Glass 214 9 6(70, 76, 17, 13, 9, 29)
Cancer 638 9 2(444, 239)

– Iris: This dataset contains 150 instances of iris plants, with 4 attributes and
is divided to 3 categories each cluster contains 50 objects.

– Wine: This data is the consequences of investigation of wines developed in the
same area in Italy yet got from three unique cultivars. The analysis determines
the amounts of 13 constituents found in each of the 3 sorts of wines. This
dataset contains investigations of 178 instances.

– CMC: This dataset is a subset of the 1987 National Indonesia Contraceptive
Prevalence Survey. The instances are married women who were either not preg-
nant or don’t know whether they were or not. The issue is to foresee the present
preventative technique decision of a woman considering her demographic and
financial attributes. This dataset contains 1473 items with 9 attributes and 3
clusters.

– Vowel: The Vowel dataset comprises of 871 Indian Telugu vowel sounds. There
are 6 overlapping classes and 3 features. Vowel dataset contains samples with
low, medium and high dimensions.

– Glass: Glass dataset has 214 instances with 9 features. The dataset has 6
unique clusters of different sort of windows.

– Cancer: Wisconsin Breast Cancer Dataset has 683 samples with 9 traits. ma-
lignant and benign are two clusters which instances of this dataset falls into.

7.2 Results

The proposed algorithm is compared to the Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), original Big Bang-Big
Crunch algorithm (BB-BC) and k-means algorithm. It should be noted that all
algorithms have been implemented in MATLAB and their parameters are being set
according to their reference paper. Each algorithm has been run for 50 consecutive
times on system with Windows 7, 4 Gigabyte of RAM and core i5 2.66 GHz
processor. Table 6 presents best, average and standard deviation of different runs
of applying these algorithms for given datasets. According to equation 1, the lowest
the value of fitness function is, the better the clustering quality will be. By all it
means the lower value for sum of cluster distance is more desirable. Lower standard
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deviation indicates that the optimization algorithm converges to close results in
different runs of the algorithm. The experimental results have shown us better
performance of the ME-BB-BC algorithm as compared to the other methods.

Table 6: (B)est, (A)verage, and (S)tandard Deviation of Algorithms on real world
clustering datasets for 50 consecutive run of each algorith.

Dataset V Proposed GA PSO GWO BB-BC KMeans

Iris
B 96.60 96.72 96.65 97.10 96.91 97.32
A 96.75 97.30 96.81 120.12 97.23 98.86
S 0.21 0.47 0.21 11.28 0.82 6.11

Wine
B 16292.20 16294.16 16292.79 16292.52 16363.96 16555.67
A 16293.12 16301.55 16293.74 16297.23 17013.95 17684.44
S 0.69 8.53 1.02 3.86 880.99 930.98

CMC
B 5532.25 5536.20 5532.49 5548.27 5852.47 5542.18
A 5532.49 5543.04 5533.96 5571.98 6213.94 5543.69
S 0.26 3.97 3.93 14.91 584.78 1.57

Vowel
B 148983.31 149382.97 148970.79 150030.76 169551.16 149383.99
A 149440.43 151001.32 149461.66 150430.72 194489.91 154259.91
S 452.01 1479.30 501.79 445.37 24402.14 4215.43

Glass
B 213.16 223.512 222.55 218.35 440.31 214.24
A 227.00 239.33 247.36 241.85 664.18 229.34
S 10.09 7.45 10.45 11.22 68.93 14.29

Cancer
B 2964.39 2966.44 2967.96 2968.28 4142.24 2986.96
A 2964.45 2970.55 2980.00 3000.14 5472.48 2988.22
S 0.03 3.00 18.92 26.57 624.84 0.51

Furthermore, to statistically investigate the obtained results and analyze the
robustness of results of the proposed algorithm over different runs of the algo-
rithm, non-parametric Friedman’s test is applied to the 30 different runs of the
proposed clustering approach on clustering datasets. Table ?? presents output of
Friedman’s test. Application of Friedman’s test indicates that there is no statisti-
cally significant difference between the obtained results over the different runs of
the proposed clustering algorithm.

Table 7: Results of the non-parametric Friedman’s statistical test

Dataset Significance

Iris 0.98
Glass 0.99
CMC 0.99
Vowel 0.99
Glass 0.69
Cancer 0.99

Also the k-means algorithm can be combined with meta-heuristic algorithms
for clustering applications. In this regard, we have designed a hybrid clustering
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Table 8: (B)est, (A)verage, and (S)tandard Deviation of Algorithms on real world
clustering datasets for 50 consecutive run of each algorithm.

Dataset V ME-BB-BC kMEBB

Iris
B 96.60 96.66
A 96.75 97.41
S 0.21 0.51

Wine
B 16292.20 16292.21
A 16293.12 16262.30

S 0.69 0.22

CMC
B 5532.25 5532.15

A 5532.49 5532.25

S 0.26 0.15

Vowel
B 148983.31 148990.80
A 149440.43 149445.96
S 452.01 450.21

Glass
B 213.16 214.21
A 227.00 226.65

S 10.09 10.43

Cancer
B 2964.39 2964.87
A 2964.45 2965.24
S 0.03 0.10

algorithm based on a slight change in the ME-BB-BC algorithm aligned with k-
means named as kMEBB where the step 3 of the original algorithm in Section 6
is modified by applying the typical k-means procedure before the final evaluation
stage for further improvement of the generated solutions of the Big Bang phase.

We compare the performance of the ME-BB-BC algorithm with the hybrid
kMEBB algorithm on the datasets in Table 5. Based on the obtained results in
Table 8, ME-BB-BC performs equally or better than kMEBB on these datasets.
These results reassured us that the ME-BB-BC can be regarded as a proper choice
for clustering applications among other meta-heuristic techniques.

8 Conclusion and future work

In this paper, via a memory enriched approach aligned to the classical BB-BC algo-
rithm, we are succeeded to enhance significantly its efficiency versus other standard
meta-heuristic approaches for benchmark optimization functions and also cluster-
ing applications. Not only the deficiencies of the BB-BC method were alleviated
through the smart way of using the memory of previously created solutions, but
also these solutions were combined with newly candidate ones in a probabilistic
random walk manner to improve the exploitation and exploration of the pro-
posed method. Furthermore, this algorithm has been applied for clustering aims.
To evaluate the performance of the proposed algorithm, the experimental results
were compared with other similar data clustering algorithms. Implementation re-
sults on benchmark functions and clustering datasets showed us the superiority of
the proposed algorithm over other algorithms. There exist different directions to
extend the proposed evolutionary algorithm for future works as the following.
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– A hybrid clustering algorithm of big bang-big crunch and k-means which im-
proves shortcomings of the k-means method.

– The investigation of the proposed method aligned with statistical model based
clustering algorithms. The learning parameters of the model based clustering
paradigm are usually approximated through an iterative procedure named as
Expectation Maximization (EM ) algorithm [1]. While EM suffers from slow
rate convergence, the ME-BB-BC approach would alleviate this major problem
as a future work on this field.

– The proposed algorithm can also be used for multi objective optimization.
– Application of ME-BB-BC in technical settings such as power dispatch systems.
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