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Abstract

This paper considers a scheduling problem with general job-dependent learning curves and

controllable processing times on a single machine. The objective is to determine the optimal

compressions of the processing times and the optimal sequence of jobs so as to minimize some

total cost functions, which consist of regular and non-regular functions and the processing time

compressions. It shows that the problem can be solved by an assignment problem, and thus can

be solved in polynomial time. Some extensions of the problem are also given.

Keywords: Scheduling; Single machine; Controllable processing times; job-dependent learning

curves

1 Introduction

In many branches of industry engineering, logistics and supply chains management, there arise

scheduling problems. Pinedo [1] introduced scheduling problems and solving algorithms. Shen et al.

[2] reviewed multi-objective dynamic job shop scheduling problems. Khalid and Yusof [3] discussed

scheduling problem in flexible manufacturing system. Traditional scheduling models and problems

assumed that the processing times of jobs were fixed constant. However, in many realistic problems,

the processing times of jobs may be subject to change due to learning effect and/or controllable pro-

cessing times (resource allocation) phenomena. In some practical cases, the jobs’ processing times

are controllable by allocating resources, such as additional energy, manpower, money, catalysts, or

overtime, to the job operations (Shabtay and Steiner [4]). Reviews of research on scheduling models

and problems with learning effects could be found in Biskup [5] and Janiak et al. [6]. Wang and

Wang [7] discussed single machine multiple common due dates scheduling problem with learning

effects. Their objective function was to minimize the total penalty for all jobs. They showed that
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with the consideration of learning effect to jobs’ processing times the problem was polynomially

solvable. Wang and Wang [8] studied single machine common due-window assignment scheduling

problem with learning effect and deteriorating jobs. Their objective function was to minimize costs

that associated with the window location, window size, earliness and tardiness. They proved that

this problem was polynomially solvable under the proposed model. Wang et al. [9] addressed

single machine scheduling and due window assignment problem with learning effect. The objec-

tive function was to minimize costs for the window size, window location, earliness, tardiness, and

makespan. They showed that the problem was polynomially solvable under the proposed model

for the slack (SLK) and unrestricted (DIF) due date assignment methods. Wang and Zhang [10]

discussed the permutation flowshop problems. Jobs’ processing times considered position-weighted

learning effects. The objective function was to minimize the weighted sum of makespan and total

completion time. They proposed heuristic algorithms to solve them and analyzed the worst-case

error bound. Shabtay and Steiner [4] and Janiak et al. [11] reviewed research on scheduling models

and problems with controllable processing times (resource allocation). Yang et al. [12] consid-

ered multiple due windows assignment scheduling problems and controllable processing times on

a single machine. The objective function was to minimize a total cost function, which consists of

the processing time compressions, the due windows related costs, the earliness, and the tardiness.

They proved that for the case when the number of jobs assigned to each due window was given in

advance, the problem can be solved in polynomial time. Yin et al. [13] investigated single machine

due window assignment and scheduling with a common flow allowance and controllable processing

times (resource allocation). They considered five versions of the problem that differ in terms of

the objective function and processing time function being used and pointed out structural prop-

erties of the optimal schedules. They also proposed polynomial time solution algorithms for these

problems. Chang et al. [14] studied unrelated parallel machine scheduling problems considering

controllable processing times (resource allocation) and rate-modifying activities. They examined

the linear resource allocation model and the convex resource allocation model. The objective was

to minimize the cost function containing the resource allocation plus the total completion time

and the cost function containing the resource allocation plus the total machine load, respectively.

They formulated these problems as assignment problems and thus can be solved in a polynomial

time algorithm. More recent papers considered scheduling jobs with learning effects and control-

lable processing times. Wang et al. [15] considered the following models with learning effect and

controllable processing times:

pj = tjr
a − bjuj
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and

pj =

(
tjr

a

uj

)k

, where a ≤ 0 is the job-dependent learning factor of job Jj , k ≥ 0, and uj is the amount of resource

that can be allocated to job Jj . For two cost functions (containing makespan, total completion

(waiting) time, total absolute differences in completion (waiting) times and total resource cost)

minimization, they provided a polynomial time algorithm respectively. Yin and Wang [16] consid-

ered the learning effect and controllable processing times model, i.e., the actual processing time of

job Jj scheduled in the rth position is pj = (tj − xj)r
a, where tj is the normal processing time

of Jj , xj is the compression of the processing time of job Jj . For two goals, namely minimizing a

cost function containing makespan, total completion time, total absolute differences in completion

times, and total compression cost and minimizing a cost function containing makespan, total wait-

ing time, total absolute differences in waiting times, and total compression cost, they proved that

the problem can be solved in polynomial time. Lu et al. [17] considered the general models with

Wang et al. [15], i.e.,

pj = tjr
aj − bjuj

and

pj =

(
tjr

aj

uj

)k

,

where aj ≤ 0 is the job-dependent learning factor of job Jj , k ≥ 0, and uj is the amount of resource

that can be allocated to job Jj . For two due date assignment methods (i.e., the common (CON) due

date, and the slack (SLK) due date), they proved that these problems can be solved in polynomial

time respectively. Liu and Feng [18] considered two-machine no-wait flowshop scheduling with

learning effect and convex resource-dependent processing times. Li et al. [19] considered the

same models with Lu et al. [17], they proved that a single-machine slack due window assignment

scheduling problem (i.e. all jobs have slack due window (SLKW)) can be solved in polynomial

time. Li et al. [20] considered the following model with learning effect, deterioration effect and

controllable processing times: pj =

((
tj
uj

)k

+ bt

)
ra, where a ≤ 0 is the job-dependent learning

factor of job Jj, k ≥ 0, t ≥ 0 is the start time of job Jj , b ≥ 0 is the common deterioration rate and

uj is the amount of resource that can be allocated to job Jj. For two cost functions (containing

makespan, total completion (waiting) time, total absolute differences in completion (waiting) times

and total resource cost) minimization, they provided a polynomial time algorithm respectively.

In the real life, the phenomena of learning effects and resource allocation may happen simul-

taneously. For example, during the production of a chemical compound, the workers will be more

familiar with operating the machines through experience accumulation, which reflects learning
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effects. On the other hand, the processing time of a chemical compound may be changed by in-

creasing the amount of catalysts, which involves extra cost. Compressing jobs may be rational and

possible when the additional costs is compensated by the gains from job completion at an earlier

time(Wang et al. [15], Yin and Wang [16]). To minimize the total cost, the scheduler need to

consider learning effect and controllable processing times and determine the optimal job sequence

and resource allocation. Considering these factors, this paper extends the results of [16], by con-

sidering a more general learning effect and controllable processing times model that includes the

one given in [16] as a special case. Notations and assumptions of the problem are given in section

2. Optimal algorithms for several regular and non-regular objective functions are given in section

3. Some extensions are presented in section 4. A test example is given in section 5. Section 6 gives

the conclusions.

2 Notations and problem assumptions

The following notations will be used throughout the paper:

n: The number of jobs;

[r]: The job scheduled in the rth position;

Jj : The job j, j = 1, 2, . . . , n;

tj: The normal (basic/non-compressed) processing time of Jj;

t′j: The compressed processing time of Jj, which considers learning effect and/or resource

allocation;

dj : The due date of job Jj ;

vj : The per time unit cost associated with the compression below tj of the processing time of

job Jj ;

mj = tj − t′j: The maximum reduction in processing time of job Jj ;

xj : The compression of the processing time of job Jj , which can take any value in [0,mj ];

pj: the actual processing time of job Jj in position r in a sequence, i.e., pj = (tj −xj)r
aj , where

aj ≤ 0 is a learning factor for job Jj ;

Cj : The completion time of job Jj ;

Wj : The waiting time of job Jj, where Wj = Cj − pj;

Ej : The earliness time of job Jj , where

Ej = max{0, dj −Cj};

Tj : The tardiness time of job Jj , where Tj = max{0, Cj − dj};

Cmax : The makespan of all jobs, that is,

4
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Cmax = max{Cj |j = 1, 2, . . . , n};∑n
j=1Cj: The total completion times;∑n
j=1Wj: The total waiting times;∑n
i=1

∑n
j=i |Cj − Ci|: The total absolute differences in completion times;∑n

i=1

∑n
j=i |Wj −Wi|: The total absolute differences in waiting times;

α: The per unit time earliness penalty, α > 0;

β: The per unit time tardiness penalty, β > 0;

γ: The per unit time due date penalty, γ > 0;

Consider a set of n independent jobs J = {J1, J2, . . . , Jn} to be processed on a single machine.

All jobs are ready for processing at time zero and no job preemption (splitting) is allowed. The

machine is available at time zero and can handle at most one job at a time. Biskup [21] considered

the learning effect model pj = tjr
a, where a ≤ 0 is a learning factor for all jobs. Mosheiov

and Sidney [22] considered the job-dependent learning effect model pj = tjr
aj , where aj ≤ 0 is

a learning factor for job Jj . Yin and Wang [16] considered the learning effect and controllable

processing times model pj = (tj − xj)r
a. This paper considers a general job-dependent learning

effect and controllable processing times model

pj = (tj − xj)r
aj , 0 ≤ xj ≤ mj = tj − t′j; j, r = 1, 2, . . . , n. (1)

For a given schedule π = (J1, J2, . . . , Jn), let Cj = Cj(π) denote the completion time of job Jj .

The objective is to determine the optimal compressions of the processing times x = (x1, x2, . . . , xn)

and the optimal sequence of jobs π so as to minimize the following cost functions:

Z(π, x) = δρ + (1− δ)

n∑
j=1

vjxj, (2)

where ρ ∈ {Cmax,
∑

Cj ,
∑

Wj ,
∑n

i=1

∑n
j=i |Cj−Ci|,

∑n
i=1

∑n
j=i |Wj−Wi|,

∑n
j=1(αEj+βTj+γdj)}

and 0 ≤ δ ≤ 1. In the remaining part of the paper, all the problems considered will be denoted by

using the three-field notation scheme (Graham et al. [23]).

3 A unified analysis for single machine scheduling problems

Panwalkar et al. [24] introduced the common (CON) due date assignment method, for which

all jobs are assigned the same due date, i.e., dj = d for j = 1, 2, . . . , n.

Adamopoulos and Pappis [25] considered the slack (SLK) due date assignment method, for

which all jobs are given an equal flow allowance according to the following equation, dj = pj + q

for j = 1, 2, . . . , n, where q ≥ 0 is a decision variable.
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Seidmann et al. [26] studied the unrestricted (DIF) due date assignment method, for which

each job can be assigned a different due date with no restrictions.

Lemma 1 (Panwalker et al. [24], Adamopoulos and Pappis [25] and Seidmann et al. [26]) For

the problem 1|pj = (tj − xj)r
aj |

∑n
j=1(αEj + βTj + γdj), there holds the following properties:

1) There exists an optimal schedule π∗ without any machine idle time between the starting time

of the first job and the completion time of the last job. Furthermore, the first job in the schedule

starts at time zero.

2) For the CON model, there exists an optimal schedule with the property that d equal to C[k∗],

where

k∗ = max

{⌈
n(β − γ)

α+ β

⌉
, 0

}
(3);

For the SLK model, there exists an optimal schedule with the property that q coincide with the

completion times of the (k∗ − 1)th, where k∗ is given by Eq. (3);

For the DIF model, the optimal due date assignment strategy is defined as follows: if γ ≥ β

then set d∗[j] = 0; otherwise, set d∗[j] = C[j].

3) The optimal total costs can be written as:
∑n

j=1(αEj + βTj + γdj) =
∑n

j=1 ωjp[j], where the

positional weight of position j in the schedule is given by ωj = min{nγ+(j− 1)α, (n+1− j)β} for

the CON method; by ωj = min{nγ+jα, β(n−j)} for the SLK method; by ωj = min{β, γ}(n+1−j)

for the DIF method.

Similarly, for ρ ∈ {Cmax,
∑

Cj ,
∑

Wj ,
∑n

i=1

∑n
j=i |Cj − Ci|,

∑n
i=1

∑n
j=i |Wj −Wi|}, we have

ρ =
n∑

j=1

ωjp[j], (4)

where ωj = 1 for Cmax, ωj = (n−j+1) for
∑n

j=1Cj, ωj = (n−j) for
∑n

j=1Wj, ωj = (j−1)(n−j+1)

for
∑n

i=1

∑n
j=i |Cj − Ci| (Kanet [27]), ωj = j(n − j) for

∑n
i=1

∑n
j=i |Wj −Wi| (Bagchi [28]),

Substituting Eqs (1) and (4) into (2), we have

Z(π, x) = δ

n∑
j=1

ωjp[j] + (1− δ)

n∑
j=1

v[j]x[j]

=

n∑
j=1

δωjt[j]j
a[j] +

n∑
j=1

[(1 − δ)v[j] − δωjj
a[j] ]x[j]. (5)

From (5), for any sequence, the optimal resource allocation of a job in a position with a negative

(1 − δ)v[j] − δωjj
a[j] should be its upper bound on the amount of resource m[j], and the optimal

resource allocation of a job in a position with a positive (1 − δ)v[j] − δωjj
a[j] should be 0. If
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(1 − δ)v[j] − δωjj
a[j] = 0, then the optimal resource allocation of the job in this position may be

any value between 0 and m[j]. These can be written in the notational form as follows:

x∗[j] =

⎧⎪⎪⎨
⎪⎪⎩

m[j], if (1− δ)v[j] − δωjj
a[j] < 0,

x[j] ∈ [0, ū[j]], if (1− δ)v[j] − δωjj
a[j] = 0,

0, if (1− δ)v[j] − δωjj
a[j] > 0,

(6)

From (6), we can obtain the optimal resource allocation for any given optimal sequence. In order

to determine the optimal sequence for the problem 1|pj = (tj−xj)r
aj |δρ+(1−δ)

∑n
j=1 vjxj, where

ρ ∈ {Cmax,
∑

Cj,
∑

Wj,
∑n

i=1

∑n
j=i |Cj−Ci|,

∑n
i=1

∑n
j=i |Wj−Wi|,

∑n
j=1(αEj+βTj+γdj)}, we for-

mulate the problem 1|pj = (tj−xj)r
aj |δρ+(1−δ)

∑n
j=1 vjxj, ρ ∈ {Cmax,

∑
Cj ,

∑
Wj ,

∑n
i=1

∑n
j=i |Cj−

Ci|,
∑n

i=1

∑n
j=i |Wj −Wi|,

∑n
j=1(αEj + βTj + γdj)} as an assignment problem.

Let

λjr =

⎧⎨
⎩

δωrtjr
aj , if (1− δ)vj − δωrr

aj ≥ 0,

δωrtjr
aj + [(1− δ)vj − δωrr

aj ]mj , if (1− δ)vj − δωrr
aj < 0.

(7)

Furthermore, let xjr be a 0/1 variable such that xjr = 1 if job Jj is scheduled in position r, and

xjr = 0, otherwise. As in Biskup [21], the problem 1|pj = (tj − xj)r
aj |δρ + (1 − δ)

∑n
j=1 vjxj can

be formulated as the following assignment problem:

min
n∑

j=1

n∑
r=1

λjrxjr (8)

subject to

n∑
j=1

xjr = 1, r = 1, 2, . . . , n,

n∑
r=1

xjr = 1, j = 1, 2, . . . , n,

xjr = 0 or 1, j, r = 1, 2, . . . , n.

For any given r (r=1,2,. . . ,n),
∑n

j=1 xjr = 1 means only one job can be processed in the rth

position. For any given j (j=1,2,. . . ,n),
∑n

r=1 xjr = 1 means job Jj can be processed in only one

position.

Recall that solving an assignment problem of size n requires an effort of O(n3) time (Papadim-

itriou and Steiglitz [29]).

From Lemma 1 and the above analysis, for the problem 1|pj = (tj−xj)r
aj |δρ+(1−δ)

∑n
j=1 vjxj ,

where ρ ∈ {
∑n

j=1(αEj + βTj + γd) (the CON method),
∑n

j=1(αEj + βTj + γq) (the SLK method),∑n
j=1(αEj + βTj + γdj) (the DIF method)}, we can propose the following optimization algorithm:
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Algorithm 1.

Step 1. Calculate k∗ = max
{⌈

n(β−γ)
α+β

⌉
, 0
}
.

Step 2. For the CON method, calculate the λjr by using ωr = min{nγ + (r − 1)α, (n + 1− r)β};

For the SLK method, calculate the λjr by using ωr = min{nγ + rα, β(n− r)};

For the DIF method, calculate the λjr by using ωr = min{β, γ}(n + 1− r).

Step 3. Solve the assignment problem (8) to determine the optimal job sequence.

Step 4. Compute the optimal compression x∗[j] by (6).

Step 5. Compute the optimal processing times p∗[j] by (1).

Step 6. For the CON method, set the optimal due date d∗ = C[k∗]. For the SLK method, set

the optimal slack q∗ = C[k∗−1]. For the DIF method, if γ ≥ β then set d∗[j] = 0; otherwise, set

d∗[j] = C[j].

Theorem 1 The problem 1|pj = (tj−xj)r
aj |δρ+(1−δ)

∑n
j=1 vjxj , where ρ ∈ {Cmax,

∑
Cj ,

∑
Wj ,∑n

i=1

∑n
j=i |Cj − Ci|,

∑n
i=1

∑n
j=i |Wj −Wi|,

∑n
j=1(αEj + βTj + γdj)} can be solved in O(n3) time

by Algorithm 1.

Proof The correctness of the Algorithm 1 follows from above analysis. Steps 1, 2, 4, 5 and 6

require O(n) time and Step 3 requires O(n3) time. Thus the total computational complexity of

Algorithm 1 is O(n3). �

4 Extensions

4.1 Extensions 1

Similar to the proof of Section 3, the proposed model is extended by a large set of scheduling

problems where the objective function can be expressed by using positional penalties, i.e.,

ρ =
n∑

j=1

ωjp[j], (9)

where ωj is a position, job-dependent penalty for any job schedule in the jth position. For examples:

The multiple common due date assignment scheduling

Let D1 ≤ D2 ≤ . . . ≤ Dm denote the m due dates and let Ii denote the set of jobs assigned

to due date Di for i = 1, 2, . . . ,m. The multiple common due date assignment problem (Chand

and Chhajed [30], Dickman et al. [31], Wang and Wang [7]) is to determine the optimal D =

{D1,D2, . . . ,Dm}, I = {I1, I2, . . . , Im} and a schedule π to minimize

Z(D, I, π) =
m∑
i=1

∑
j∈Ii

(αEj + βTj + γDi) (10)
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and dj = Di for j ∈ Ii.

Three due window assignment problems

Let [d1j , d
2
j ] be the due-window of job Jj such that d1j ≤ d2j , where d1j and Sj = d2j − d1j is the

starting time and the due window size of job Jj , respectively. The due window assignment problem

is to determine the optimal starting time of due dates d1 = (d11, d
1
2, . . . , d

1
n), the due window sizes

S = (S1, S2, . . . , Sn), the optimal compressions of the processing times x = (x1, x2, . . . , xn) and a

schedule π to minimize

Z(d1, S, x, π) =
n∑

j=1

(αEj + βTj + γd1j + δSj) (11)

where Ej = max{0, d1j − Cj} and Tj = max{0, Cj − d2j} are the earliness and the tardiness of job

Jj , j = 1, 2, . . . , n. Three more commonly used methods are as follows:

(a) The common due window assignment method (CONW), i.e., d1j = d, D = d2j − d1j (Liman

et al. [32], and Wang and Wang [8]).

(b) The slack due window assignment method (SLKW), i.e., d1j = pj+q1, d
2
j = pj+q2 (Mosheiov

and Oron [33], Mor and Mosheiov [34], and Wang et al. [9]).

(c) The unrestricted due window assignment method (DIFW), in which each job can be assigned

a different due window with no restrictions (Seidmann et al. [26] and Wang et al. [9]).

The multiple common due window assignment scheduling

Let di and wi (i = 1, 2, . . . ,m) denote the due window starting time and the due window

finishing time of the ith due window and Ii denote the set of jobs assigned to the ith due window,

Si be the size of the ith due window, Si = wi − di. The multiple common due window assignment

problem (Yang et al. [12]) is to determine the optimal d = (d1, d2, . . . , dm}, S = (S1, S2, . . . , Sm),

I = {I1, I2, . . . , Im} and a schedule π to minimize

Z(d, S, I, π) =

m∑
i=1

∑
j∈Ii

(αEj + βTj + γdi + δSi). (12)

These extensive problems can be formulated as assignment problems and thus can be solved in

a polynomial time.

4.2 Extensions 2

In the real chemical compound production process, learning effect may reduce the jobs’ process-

ing time. However, the processing time can not be reduced without limitation. We need a bound

to limit the processing time. Wang et al. [35] considered the following truncated job-dependent
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learning effect model, i.e., pj = tj max{raj , B}, where 0 < B < 1 is a truncation parameter for

all jobs. Similar to the proof of Section 3, the proposed model can be extended by the following

model:

pj = (tj − xj)max{raj , B}, (13)

and all the results can be obtained for the model pj = (tj − xj)max{raj , B}.

5 An example

For the common (CON) due date assignment problem 1|pj = (tj−xj)r
aj |Z(π, x) =δ

∑n
j=1(αEj+

βTj + γd) + (1− δ)
∑n

j=1 vjxj, the computational process is illustrated by the following example.

Example 1. Let α = 8, β = 10, γ = 5, δ = 0.6. Consider a problem containing n =6 jobs. The

parameters for each job as given in Table 1. Now we can solve the CON due date assignment

problem 1|pj = (tj − xj)r
aj |δ

∑n
j=1(αEj + βTj + γd)}+ (1− δ)

∑n
j=1 vjxj as follows:

Step 1. Calculate k∗ = max
{⌈

n(β−γ)
α+β

⌉
, 0
}
= max

{⌈
6(10−5)
8+10

⌉
, 0
}
= 2.

Step 2. For the CON method, ω1 = 30, ω2 = 38, ω3 = 40, ω4 = 30, ω5 = 20, ω6 = 0, the λjr values

can be calculated by using (7) and are given in Table 2.

Step 3. The costs of solution for the assignment problem (8) are highlighted in bold in Table 2 and

the optimal schedule is π∗= (J5, J2, J4, J1, J3, J6).

Step 4. The optimal compression x∗[j] obtained by (6) are x∗5 = 15, x∗2 = 9, x∗4 = 14, x∗1 = 0, x∗3 =

0, x∗6 = 0.

Step 5. The optimal processing times p∗[j] obtained by (1) are

p∗5 = (24− 15) ∗ 1−0.1 = 9, p∗2 = (16 − 9) ∗ 2−0.15 = 6.3088,

p∗4 = (20− 14) ∗ 3−0.3 = 4.3153, p∗1 = 14 ∗ 4−0.25 = 9.8995,

p∗3 = 18 ∗ 5−0.2 = 13.0460, p∗6 = 25 ∗ 6−0.35 = 13.3533.

Step 6. For the CON method, d∗ = C[k∗] = C[2]. The optimal solution is Z(π∗, x∗)= 285.0000 +

254.8663 + 212.3068 + 148.4924 + 130.4603 + 66.76626 = 1097.89206.

Table 1. The data of Example 1

Jj 1 2 3 4 5 6

tj 14 16 18 20 24 25

t′j 8 7 10 6 9 10

mj 6 9 8 14 15 15

aj -0.25 -0.15 -0.2 -0.3 -0.1 -0.35

vj 28 30 25 18 20 28
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Table 2. The λjr of Example 1

j \ r 1 2 3 4 5 6

1 204.0000 211.8163 205.5737 148.4924 93.62364 44.7260

2 240.0000 254.8663 253.7298 194.9406 125.6824 61.14589

3 250.0000 265.4046 260.5483 204.6217 130.4603 62.89444

4 216.0000 218.5968 212.3068 185.3779 123.4068 58.41907

5 285.0000 309.5486 311.2725 267.5243 204.3216 100.3151

6 360.0000 359.0710 340.3906 230.8396 142.3313 66.76626

6 Conclusions

This paper studied single machine scheduling problems considering a more general learning

effect and controllable processing times model, that is, 1|pj = (tj − xj)r
aj |δρ + (1 − δ)

∑n
j=1 vjxj .

ρ ∈ {Cmax,
∑

Cj,
∑

Wj,
∑n

i=1

∑n
j=i |Cj−Ci|,

∑n
i=1

∑n
j=i |Wj−Wi|,

∑n
j=1(αEj+βTj+γdj)}. It also

gives some extensions of these problems. These problems can be formulated as assignment problem

and thus can be solved in a polynomial time. The problems and the algorithms’ complexity are listed

in Table 3. In the future, we may consider scheduling problem involving controllable processing

times and deteriorating effect. We may extend the corresponding results to the case aj > 0 (i.e.,

aging effect, see Janiak et al. [6]) and discuss whether the proposed algorithms can be applied to

this case. We plan to extend the problems to multiple machine scheduling problems.
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