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Abstract

In this paper, we consider the challenging problem of finding shared
information in multiple data streams simultaneously. The standard statis-
tical method for doing this is the well-known canonical correlation analysis
(CCA) approach. We begin by developing an online version of the CCA
and apply it to reservoirs of an Echo State Network (ESN) in order to
capture shared temporal information in two data streams. We further
develop the proposed method by forcing it to ignore shared information
that is created from static values using derivative information. We finally
develop a novel multi-set CCA method which can identify shared infor-
mation in more than two data streams simultaneously. The comparative
effectiveness of the proposed methods is illustrated using artificial and real
benchmark data sets.

1 Introduction

In this paper, we consider the problem of extracting common information from
2 or more data streams simultaneously. The standard statistical technique for
identifying common structure in 2 data streams is known as Canonical Correla-
tion Analysis (CCA). We first employ an existing online method for solving the
generalized eigenproblem in order to solve the standard CCA problem. How-
ever, we are interested in extracting canonical information from two streams of
time series.

abbabc ∗ ∗ ∗ cdcdcda ∗ cacdcd
Direction of time −→ (1)

abb ∗ ∗abccd ∗ ∗cdcdaca ∗ ∗ ∗ ∗ ∗ cdcd

Series (1) shows a particular temporal pattern (abbabccdcdcdacacdcd) from an
alphabet of 4 symbols which is to be found in two distinct time series. However
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both series contain stray values which are not part of the pattern (shown by
’*’s in the figure to indicate these are sections whose value we don’t know or
care about). There is a clear and direct relationship between the two time series
but to identify automatically the relevant pattern, we would typically require a
technique such as dynamic time warping [16].

We are interested in a generalization of this problem in which the relation-
ship between the elements of the time series is not as direct as the above but in
fact can be characterized by finding the canonical variates of the two time series.
However as can be seen from the above, a direct method will fail since the corre-
sponding pairs do not necessarily appear at the same time instant. We therefore
use the technique of reservoir computing to get a representation of the time se-
ries which contains information about the history of the time series. Thus, for
example, at position 11 in the time series (1), the partial pattern, abbabccd, will
exist in the reservoir’s representation, albeit mixed with a representation of the
don’t care values, ’*’.

Reservoir computing [17] [8] is a relatively new artificial neural network
technique for processing temporal data. There are two main strands, the Echo
State Network [23] and the Liquid State Machine [22], each of which has a set
of recurrent connections [27], forming the reservoir, which have fixed strength
or weight. In our experiments, we consider the problem of extracting informa-
tion from time series data streams and so we use the activations from two or
more reservoirs, each corresponding to one data stream, as the inputs to our
generalized CCA method. The resulting technique is known as Temporal CCA.

We then, again in an online manner, remove from the data streams, data
which does not change much in the individual streams. We do this using the
derivative information from the data streams, similar to the technique for Slow
Feature Analysis [26]. The resulting method is known as High Variance CCA.
We combine this with the Temporal CCA to create a Temporal High Variance
CCA algorithm.

Finally, we consider the extraction of information from more than 2 data sets
simultaneously: Multi-set CCA. This is easily encompassed by our generalized
eigenproblem method and can be combined with the other techniques to give
Multi-set Temporal High Variance CCA.

2 Background

Canonical Correlation Analysis is a well-known technique since its first formu-
lation [10] used primarily for finding filters between two streams of data in a
way that correlation between those two filters get maximized. This is now a
standard technique in the data analysis repertoire.

One of us has previously been interested in creating online incremental ver-
sions of CCA [6, 7, 14, 25] and very recently Laplacian Eigenmaps [32], often
based on artificial neural networks. Some of these techniques involved minimiz-
ing the squared difference between the outputs of two twinned neural networks
[14], each devoted to one of the data streams. This was done by gradient de-
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scent. This was extended in [25] to gradient descent on the Bregman divergences
between the two data streams; in that paper too, we used reservoirs for pre-
processing but we did not consider time series and the reservoir was used merely
to give a nonlinear representation of the data.

Recently [29] has proposed an adaptive formulation of the classical CCA
algorithm based on matrix manifolds. The authors solved the optimization
problem on matrix manifolds using classical gradient algorithm and designed
the adaptive CCA algorithm based on rationale that the algorithm should be
capable enough to detect the exact time stamp when change occurs in the sub-
space.

An incremental approach based on the recursive least square algorithm have
also been proposed [24] for rank-one CCA problem that can cope with multiple
orthogonal projections using a deflation scheme. The emphasis in this paper is
the extension of CCA to cope with more than two data sets simultaneously; the
authors perform a valuable comparative study of various algorithms but do not
consider kernel CCA nor specific time series adaptations.

Many researchers have contributed in a different manner to further maxi-
mize the correlations by introducing kernels [14, 1], and very recently a temporal
kernel CCA approach was proposed [2] in which a novel method based on ker-
nels were introduced which computes multivariate temporal filters between data
sources containing different dimensionality and temporal resolutions. The core
idea behind using kernels is that the raw data is transformed to get a represen-
tation of the data in an implicit high-dimensional latent space. We say implicit
because usually the actual representation in this space is not used since the
kernel trick enables us to manipulate algorithms by using only the dot product
of the implicit representations i.e. if we know these dot products, we never need
to investigate the actual representations themselves. These methods are espe-
cially useful if we have a relatively small number of high dimensional samples;
it is also useful in that a nonlinear problem in the data space is converted to a
linear problem in the latent space. One problem which is particularly impor-
tant to address in kernel CCA is the problem of overfitting and so some form
of regularization is often employed. An application of kernel CCA is shown in
[9]; this deals with the problem of learning semantics of multimedia content by
combining image and text data. The nature of the data is such that the authors
propose to use a sparse version of KCCA.

Many researchers have also contributed other effective processing techniques
for both textual and numeric data. In [21] the authors have presented a new
framework for effective commonsense reasoning by taking into account a num-
ber of correlation-based similarity measures, including point-wise mutual infor-
mation and emotional affinity. Similarly in [3] the authors have proposed an
ELM-based emotion categorization architecture that is able to remap any con-
cept represented according to the affectivespace into a suitable space defined by
four affective dimensions which includes pleasantness, attention, sensitivity and
aptitude. Both the proposed methods in [21] and [3] shows how an ensemble of
concept-based sentiment analysis and machine learning techniques could emu-
late the cognitive process of affective analogical reasoning; in order to quickly,
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dynamically and effectively infer semantic and sentics associated with natural
language concepts. In [5] and [28] the authors have exploited the standard
extreme learning machine (ELM) [11] method, one of the most popular and
fastest methods used for classification nowadays. In [5] the authors have intro-
duced a novel random projection based model for ELM that helped in reducing
the number of hidden neurons without effecting the generalization performance
in prediction accuracy. Similarly, in [28] the authors have proposed a parent-
offspring progressive learning method that works by separating the data points
into various parts, and then multiple extreme learning machine learn and iden-
tify the clustered parts separately. This helps in improving the generalization
performance, but at the same time decreases the computational efficiency too.

Time Series information have also been considered for finding the tempo-
ral structure in a correlation framework [4, 30]. However [4] considered auto-
correlation within a single data stream rather than correlation between 2 (or
more) data streams. [30] uses an extension of reverse-correlation methods based
on canonical correlation analysis in order to identify the properties of receptive
fields of a group of neurons; they also capture nonlinear stimulus-response re-
lationships using kernel canonical correlation analysis. We will directly attack
the problem of identifying correlations in two or more data streams where each
data stream corresponds to a single time series. As our toy example in Section
1 illustrates, in real data sets we cannot guarantee that the temporal features
of 2 time series march in step and thus we use reservoir activations to maintain
a representation of historical values of the time series.

The remainder of this paper is organized as follows: Section 3 discusses
the method, which we will use for solving eigenproblems. Section 4 reviews
echo state networks. In section 5, we discusses existing CCA for dual streams
by solving the generalized eigenproblem and our new Temporal CCA method.
In Section 6 we further exploited our new Temporal CCA method and derive
new High Variance CCA method (HVCCA) and Temporal High Variance CCA
method. In Section 7 we continue to focus on multiple streams of data and
derive enhanced versions of our Temporal CCA method, High Variance CCA
and Temporal High Variance CCA method for multiple streams of data. Finally
in Section 8 we apply all our newly proposed MCCA-based methods to MNIST
digit dataset and compared the results.

3 Generalized Eigenproblems: incremental so-
lutions

[31] show that one method of finding the maximum eigenvalue of the generalised
eigenproblem

Aw = λBw, (2)

is to iteratively use

∆w = Aw − f(w)Bw,

w = w + η∆w, (3)
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where η is a learning rate or step size. The function f(w) : Rn − {0} → R
satisfies

1. f(w) is locally Lipschitz continuous

2. ∃M1 > M2 > 0 : f(w) > λ1, ∀w :∥ w ∥≥ M1 andf(w) < λn, ∀w : 0 <∥
w ∥≤ M2

3. ∀w ∈ Rn − {0}, ∃N1 > N2 > 0 : f(θw) > λ1, ∀θ : θ ≥ N1 andf(θw) <
λn, ∀θ : 0 ≤ θ ≤ N2 and f(θw) is a strictly monotonically increasing
function of θ in [N1, N2].

where λ1 is the greatest generalised eigenvalue and λn is the least eigenvalue.
Intuitively, what these criteria mean are that

1. The function is rather smooth.

2. It is always possible to find values of wi, i = 1, 2 large enough so that the
functions of the weights exceed the greatest eigenvalue.

3. It is always possible to find values of wi, i = 1, 2 small enough so that the
functions of the weights are smaller than the least eigenvalue.

4. For any particular value ofwi, i = 1, 2, it is possible to multiplywi, i = 1, 2
by a scalar and apply the function to the result to get a value greater than
the greatest eigenvalue.

5. Similarly, we can find another scalar so that, multiplying the wi, i = 1, 2,
by this scalar and taking the function of the result gives us a value less
than the smallest eigenvalue.

6. The function of this product is monotonically increasing between the
scalars defined in 4 and 5.

This method has been used in [6, 7] to perform extensions of canonical cor-
relation analysis. In this paper we have further used this method to extend
canonical correlation analysis and performed multi-set canonical correlation us-
ing our extended approach.

4 Echo State Network

Echo State Network [17] is one of the most popular types in Reservoir Comput-
ing. Echo State Networks are mainly composed of three layers of ’neurons’: an
input layer which is connected with random and fixed weights to the next layer
which forms the reservoir. The neurons of the reservoirs are connected with each
other with a fixed, random, sparse matrix of weights. Normally only 10% of the
weights in the reservoirs are non-zero. The weights from reservoir to the output
neurons are trained using error descent. Only weights from the reservoirs to
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the output are trainable and this makes reservoir really very efficient and easily
trained.

We first define the idea of reservoir. Win indicates the weight from the Nu

inputs u to the Nx reservoir units x, W indicates the Nx ×Nx reservoir weight
matrix, and Wout indicates the (Nx + 1) × Ny weight matrix connecting the
reservoir units to the output units, denoted by y. Typically Nx ≫ Nu. Win is
fully connected with the neurons inside the reservoirs and fixed (i.e the weights
are non-trainable). W is also fixed. Wout is fully connected and the weights are
trainable.

The network’s dynamics are governed by

x(t) = f(Winu(t) +Wx(t− 1)), (4)

where f(.) = tanh(.) and t is the time index. The feed forward stage is given by

y = Woutx. (5)

This is followed by supervised learning of the output weights, Wout. A simple
least mean square method is used for online learning which gives

Wout = Wout + η(ytarget − y)xT , (6)

where η is a learning rate (step size) and ytarget is the target output correspond-
ing to the current input.

In this paper, we will maintain the first two sets of weights fixed but update
the third set, Wout, using methods suggested by canonical correlation analysis.

5 Dual data streams

Consider the problem of extracting information from two data streams simul-
taneously when these data streams contain information about each other which
may be used to assist with on-going information gathering. These methods
may be useful in a number of cases: for example we may be seeing the same
underlying signal through different sensors which will often happen with the
various scans of the human brain and heart. We may be examining the corre-
lation between different signals when there is an underlying hidden reason for
the different signals.

We envisage first the situation where we have two sets of data samples, x1

and x2, which are then passed through a set of weights, w1 and w2, to give
outputs y1 = wT

1 x1 and y2 = wT
2 x2. We will adjust the weights w1 and w2 to

optimise the CCA criterion.
It may be shown that one method [7] of finding the canonical correlation

directions is to solve the generalised eigenvalue problem[
0 Σ12

Σ21 0

] [
w1

w2

]
= ρ

[
Σ11 0
0 Σ22

] [
w1

w2

]
, (7)

where Σij is the covariance matrix between xi and xj .
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Using this formulation we have previously [6] shown that the canonical cor-
relation directions w1 and w2 may be found using

dw1

dt
= Σ12w2 − f(w)Σ11w1,

dw2

dt
= Σ21w1 − f(w)Σ22w2.

Using the fact that Σij = E(xix
T
j ), i, j = 1, 2,where T denotes the transpose,

we derive the instantaneous versions

∆w1 = η(x1y2 − f(w)x1y1),

∆w2 = η(x2y1 − f(w)x2y2),

which was shown to provide a family of networks capable of performing CCA.
However canonical correlation analysis is a linear method. It is more inter-

esting to consider methods by which we may find temporal relationships between
pairs of data sets. We may use the above method but use the reservoir acti-
vations for a pair of related time series and W 1

out and W 2
out in place of w1 and

w2.
We can use the reservoirs to extract information from two data streams

simultaneously: we simply have two reservoirs with fixed weights between inputs
and reservoirs and fixed weights internal to the reservoirs but have two sets of
trainable weights which are simultaneously adjusted so that they learn to predict
each other’s output as shown in figure 1.

Figure 1: Dual Reservoir Streams
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Thus we have simultaneously for paired inputs u1 and u2,

x1(t) = f(W 1
inu1(t) +W 1x1(t− 1)), (8)

x2(t) = f(W 2
inu2(t) +W 2x2(t− 1)),

y1 = W 1
outx1,

y2 = W 2
outx2,

∆W 1
out = η(x1y2 − f(W 1

out)x1y1),

∆W 2
out = η(x2y1 − f(W 2

out)x2y2).

The resulting technique is Temporal CCA though clearly it can be used with
e.g. image data where the relationship between subsequent pixels or lines is
spatial rather than temporal.

5.1 Artificial Data

We illustrate on an artificial data set which has two related sources but the rela-
tion is maximised by discovering a temporal mapping. Let u1 = {u1(1), u1(2)}
and u2 = {u2(1), u2(2)}. Then our artificial data set has

u1(1) = sin(t),

u1(2) = cos(t),

u2(1) = t,

u2(2) = tanh(t), (9)

where t increases from −π to π in steps of 0.01. We created a 2-dimensional
input vector and thus we have 1000 samples. In our experiment the learning
rate was 0.0001 and the number of iterations was 10000. We get a temporal
correlation of 0.85 whereas the standard linear non-temporal value was 0.623
[13].

5.2 Real Data

In order to compare our proposed method with those reported earlier we use
data taken from [19]. The data set consists of 88 students who sat 5 exams,
2 of which were closed book exams while the other 3 were open book exams.
Thus each student comprises a single sample over the two data sets and we
have a two dimensional u1 (the closed book marks) and a three dimensional u2

(the open book marks). Since we are investigating a temporal technique, we
must ensure that the students were presented in a specific order: we used the
average mark over the 5 examinations and sampled the students in descending
order from highest overall mark to lowest. In our experiment, the learning
rate was 0.0001, the size of reservoir was 50 and the number of iterations were
50000. The temporal correlation on student’s data is 0.7687925 whereas the
linear correlation using the standard statistical technique was 0.6630.
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6 Extracting High Variance Features

We have, in a sister paper [18], used the incremental solution of the generalised
eigenproblem on the slow feature analysis criterion [26]. This tries to identify
invariances in a data set and is based on the idea that we wish to find the minimal
eigenvalue of the covariance of a (single stream) data set while maximising the
eigenvalue of the covariance of the derivatives. This suggests a twist to standard
CCA: what we wish is to maximise the cross covariance while keeping constant
the variance within each data stream while simultaneously maximising the rate
of change of variances within each data set. Intuitively this is saying that
we are less interested in correlations which are based on constant values than
correlations which occur when the rate of change is higher.

This is implemented as([
0 Σ12

Σ21 0

] [
w1

w2

]
= ρ

([
Σ11 0
0 Σ22

]
−
[

Σ1̇1 0
0 Σ2̇2

])[
w1

w2

]
,

where Σij is the covariance matrix and Σi̇j is the covariance of derivatives of
the data with respect to time.

This can also be written as[
0 Σ12

Σ21 0

] [
w1

w2

]
= ρ

[
Σ11 − Σ1̇1 0

0 Σ22 − Σ2̇2

] [
w1

w2

]
. (10)

The method of finding canonical correlation directions w1 and w2 would be
then

dw1

dt
= Σ12w2 − f(w)(Σ11 − Σ1̇1)w1,

dw2

dt
= Σ21w1 − f(w)(Σ22 − Σ2̇2)w2.

Using the fact that Σij = E(xix
T
j ), i, j = 1, 2 and that y1 = w1.x1, we may

propose the instantaneous rules

∆w1 = η(x1y2 − f(w)((x1y1)−

(
(
dx1

dt
)(
dx1

dt

T

)

)
w1)),

∆w2 = η(x2y1 − f(w)((x2y2)−

(
(
dx2

dt
)(
dx2

dt

T

)

)
w2)).

In practice, to estimate dx
dt |τ , we used x(τ + 1)− x(τ), where x(τ) is the value

of x at time τ .
We have also tried to minimize the rate of change from both the covari-

ance and cross-covariance between datasets X and Y but only maximizing the
covariance from within the datasets gives better results.

This technique is useful to find CCA for moving objects inside 2 or more
images by extracting only high variance features where the rate of change is
maximum and calculating CCA. This technique we call High Variance CCA,
HVCCA.
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6.1 Real Data

In order to compare our proposed method with those reported earlier we use
the student exam data [19]. The correlation vectors of the new and previous
methods which includes that standard statistical method and the one reported
in [6] are shown in Table 1. The learning rate was 0.0001 and the number of
iterations was 50000.

1
Standard Statistics Maximum Correlation 0.6630
w1(0.0260 0.0518)
w2(0.0824 0.00081 0.0035)

2
Existing Neural Network Maximum Correlation 0.6790
w1 (0.0270 0.0518)
w2 (0.0810 0.0090 0.0040)

3
New Neural Network Maximum Correlation 0.68125
w1 (0.026 0.0518)
w2 (0.0609 0.0084 0.0042)

Table 1: Correlations and Weights of Real Data Experiment

Note that we are not using the reservoir to pre-process the data at this stage
and note also that we are not achieving as high a correlation as previously when
we were using the reservoir: this is only High Variance CCA.

6.2 Real Images

In order to compare our method with those reported earlier we take the data
from two similar images. The datasets will be taken by extracting first 150
pixels from both the images of 150 dimensions each. This means that both
the datasets are of equal length consisting of 150 rows and 150 columns each.
The learning rate was 0.0001 and the number of iterations were 50000. The
experiment is conducted on the previous method reported in [6]. The images
which are used for this particular experiment are shown below. The first 150 ×
150 chunk of pixel data is read from both the images. The results are displayed
in Table 2.

Existing Neural Network Maximum Correlation 0.7833631
High Variance CCA 0.7935415

Table 2: Correlations of Real Image Data Experiment

Note again that we are not using the reservoirs in this section.
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Figure 2: Two Real Images Used in the Experiment

6.3 Temporal High Variance CCA

We may use the above High Variance method but use the reservoir activations
for a pair of related times series and W 1

out and W 2
out in place of w1 and w2.

We illustrate on an artificial data set which has two related sources but the
relation is maximised by discovering a nonlinear mapping. Let u1 = {u1(1), u1(2)}
and u2 = {u2(1), u2(2)}. Then our artificial data set has

u1(1) = sin(t),

u1(2) = cos(t),

u2(1) = t,

u2(2) = tanh(t), (11)

where t increases from −π to π in steps of 0.01. The learning rate was 0.0001
and the number of iterations was 10000. The size of the reservoir is equal to 50.
We get correlations of 0.87 which may be compared with a correlation of 0.85
with the online CCA method of section 5.

7 Multi-Set Canonical Correlation Analysis

Multi-set Canonical Correlation Analysis (MCCA)[12, 20] is a technique through
which we can analyse linear relationship between more (than 2) sets of variables.
It is considered as a generalized extension of CCA in essence.

Consider firstly three variables x1,x2 and x3 the method for finding canonical
correlations of these three variables can be extended for n terms easily. These
three variables are then passed through a set of weights, w1, w2 and w3 to give
outputs y1 = wT

1 x1, y2 = wT
2 x2 and y3 = wT

3 x3.
The criteria for finding Multi-set canonical correlations of three variables

will be to find the greatest eigenvalue of: 0 Σ12 Σ13

Σ21 0 Σ23

Σ31 Σ32 0

 w1

w2

w3

 = ρ

 Σ11 0 0
0 Σ22 0
0 0 Σ33

 w1

w2

w3

 , (12)

where Σij is the covariance matrix between xi and xj .
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The canonical correlation directions w1, w2 and w3 may be found using

dw1

dt
= Σ12w2 +Σ13w3 − f(w)Σ11w1,

dw2

dt
= Σ21w1 +Σ23w3 − f(w)Σ22w2,

dw3

dt
= Σ31w1 +Σ32w2 − f(w)Σ33w3.

As before, we may derive the instantaneous versions

∆w1 = ηx1(y2 + y3 − f(w)y1),

∆w2 = ηx2(y1 + y3 − f(w)y2),

∆w3 = ηx3(y1 + y2 − f(w)y3).

The generalized Multi-set CCA criteria for n terms is given as



0 Σ12 Σ13 ... Σ1n

Σ21 0 Σ23 ... Σ2n

Σ31 Σ32 0 ... Σ3n

. . . . .

. . . . .

. . . . .
Σn1 Σn2 Σn3 ... 0





w1

w2

w3

.

.

.
wn


= ρ


Σ11 0 0 ... 0
0 Σ22 0 ... 0
0 0 Σ33 ... 0
. . . ... .
. . . ... .
0 0 0 ... Σnn





w1

w2

w3

.

.

.
wn


,

(13)
from which we get the obvious generalisation

∆wi = ηxi(
∑
j ̸=i

yj − f(w)yi). (14)

7.1 Artificial Data

We illustrate on an artificial data set which has three related sources but the rela-
tion is maximised by discovering a linear relationship among the three datasets.
Let u1 = {u1(1), u1(2)},u2 = {u2(1), u2(2)} and u3 = {u3(1), u3(2)}. Then our
artificial dataset has

u1(1) = Gaussian Noise (Mean = 0, standard deviation = 0.1)

u1(2) = sin(t) + Gaussian Noise (Mean = 0, standard deviation = 0.1)

u2(1) = 1− (2.6− t) ∗ (2.6− t) + Gaussian Noise (Mean = 0, standard deviation = 0.1)

u2(2) = Gaussian Noise (Mean = 0, standard deviation = 0.1)

u3(1) = −(t− 3) ∗ (t− 2) + Gaussian Noise (Mean = 0 and standard deviation = 0.1)

u3(2) = Gaussian Noise (Mean = 0 and standard deviation = 0.1) (15)

where t increases from 0 to 3.33 in steps of 1
300 i.e. we have a 3 stream data set

12



0 50 100 150 200 250 300 350
−6

−5

−4

−3

−2

−1

0

1
Noise−free signals

sin(t)

1−(2.6−t)(2.6−t) −(t−3)(t−2)

Figure 3: Artificial Noise free signals

of 1000 samples of two dimensional data. The learning rate was 0.0001 and the
number of iterations were 10000. Noise-free versions of the underlying signals of
this dataset are shown in Figure 3. The multi-set correlation among the three
variables is shown in Table 3.

u1 u2 u3

u1 1.0000000 0.3351417 0.4862097
u2 0.3351417 1.0000000 0.8666971
u3 0.4862097 0.8666971 1.0000000

Table 3: Multi-Set Correlations Between u1, u2 and u3

w1 0.01548205 0.7630209

w2 1.05575 0.0176861

w3 0.7339293 0.08696326

Table 4: Weights w1, w2 and w3 of u1, u2 and u3

We note from Table 4 that the parts of each data stream which contain true
covariance information are those which the weights are identifying: the other
dimensions which contain only noise have weight values which are two orders of
magnitude less. The correlations in Table 3 illustrate the very strong correlation
between the first elements in each of the second and third data streams. The
second element of the first data stream contains a signal which is similar to
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these two correlated signals but not so close as they are to each other and hence
the correlation found between signal 1 and the other 2 is somewhat less.

7.2 Temporal MCCA

We consider methods by which we may find non-linear relationships between
pairs of data sets. We may use the above MCCA method but use the reservoir
activations for a pair of related time series and W 1

out, W
2
out and W 3

out in place
of w1, w2 and w3. Since we have three data streams we have three separate
reservoirs and hence three sets of output weights to update. Results are shown
in Table 5.

u1 u2 u3

u1 1.0000000 0.3543267 0.5176265
u2 0.3543267 1.0000000 0.8899055
u3 0.5176265 0.8899055 1.0000000

Table 5: Multi-Set Non-Linear Correlations Between u1, u2 and u3

We see that the use of the reservoirs has given us larger values in the non-
diagonal weights.

7.3 High Variance Multi-Set CCA

The idea remains the same as for multi streams of data but aiming to maximise
the changes within each data stream separately.

The criteria for finding High Variance Multi-set Canonical Correlations of
three variables will be given as:

 0 Σ12 Σ13

Σ21 0 Σ23

Σ31 Σ32 0

 w1

w2

w3

 = ρ

 Σ11 − Σ1̇1 0 0
0 Σ22 − Σ2̇2 0
0 0 Σ33 − Σ3̇3

 w1

w2

w3

 .

(16)
The method of finding High Variance canonical correlation directions w1, w2

and w3 is then

dw1

dt
= Σ12w2 +Σ13w3 − f(w)(Σ11 − Σ1̇1)w1,

dw2

dt
= Σ21w1 +Σ23w3 − f(w)(Σ22 − Σ2̇2)w2,

dw3

dt
= Σ31w2 +Σ32w2 − f(w)(Σ33 − Σ3̇3)w3.
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Using the fact that Σij = E(xix
T
j ), i, j = 1, 2 and that y1 = w1.x1, we may

propose the instantaneous rules

∆w1 = η(x1y2 + x1y3 − f(w)

(
x1y1 −

(
(
dx1

dt
)(
dx1

dt

T

)

))
,

∆w2 = η(x2y1 + x2y3 − f(w)

(
x2y2 −

(
(
dx2

dt
)(
dx2

dt

T

)

))
,

∆w3 = η(x3y1 + x3y2 − f(w)

(
x3y3 −

(
(
dx3

dt
)(
dx3

dt

T

)

))
.

We have used the same artificial datasets for the High Variance approach. Table
6 shows that the High Variance method has produced slightly higher correlations
as compared to the generalized approach. It can be seen more clearly from the
values of the weight vectors shown in Table 7 that the method is ignoring the
noise parts of each data stream and concentrating on the signal parts.

u1 u2 u3

u1 1.0000000 0.3357379 0.5029659
u2 0.3357379 1.0000000 0.8704137
u3 0.5029659 0.8704137 1.0000000

Table 6: Multi-Set Correlations Between u1, u2 and u3

Again we emphasise that these results are without the use of a reservoir.

w1 -0.04771852 0.7397458

w2 1.073291 0.006790616

w3 0.7530229 -0.08743803

Table 7: Weights w1, w2 and w3 of u1, u2 and u3

7.4 Temporal High Variance MCCA

We may follow the above criteria by using reservoir activations to create a new
method by which we can compute High Variance canonical correlations among
multi-set data. It can be seen from the Table 8 that the correlations are a bit
higher with reservoirs as compared to the generalized technique but not as high
as with temporal CCA using the reservoirs.
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u1 u2 u3

u1 1.0000000 0.3443723 0.5158995
u2 0.3443723 1.0000000 0.9183531
u3 0.5158995 0.9183531 1.0000000

Table 8: Multi-Set Non-Linear Correlations Between u1, u2 and u3

8 Comparative Analysis on Real Data

We have used the MNIST data set [15] consisting of 60000 training patterns
containing 0-9 handwritten digits and 10000 test patterns of the same digits
(0-9). Each digit consists of 784 pixels which are of 28× 28 pixels enclosed in a
bounding box. Every digit of the same type is slightly different from every other
in terms of position, size and shape. In order to compute multi-set canonical
correlation using our method we have chosen one digit randomly from every
class (0-9) and find the generalized multi-set canonical correlations between
digits belonging to different classes. The learning rate of our algorithm is 0.0001
and the total number of iterations for learning all set of digits are 100000. We
are displaying a combined comparative results of all the methods related to
MCCA (Multi-set Canonical Correlation Analysis) that we have proposed. The
combined results are shown in Table 9

Figure 4: Ten Digit Used in the Experiment

8.0.1 Discussion

We can see in Table 9, that some figures have a high correlation with each other
e.g. 6 and 8 while others have a lower correlation e.g. 3 and 1. The reasons for
these should be obvious.

In Table 10, we have used 2-tailed t-values to compare the performance of
the various methods, comparing them in pairs: when we write a > b, 99%, we
mean that the improvement in performance of a over b is significant at the
99% confidence level; similarly a < b, 99% means that b improves a with a
significance value greater than the 99% confidence level.

According to the performance measurement chart shown in Table 10, we can
see that the addition of reservoirs to the method always improves the classifi-
cation accuracy with respect to the identification of individual figures. Note

16



that HVMCCA is better than GMCCA (with 99% confidence) but the addition
of reservoirs reverses this. Our conjecture is that the reservoirs themselves are
adding variance though this is a feature which requires further analysis. The
rationale behind deriving all these new methods is to extract selected features
from the data which can further maximize the correlation between two and more
streams in comparison with the previously derived techniques in a completely
unsupervised manner. All the techniques performed consistently well for differ-
ent kinds of data. Temporal CCA is good on numeric time series data. Similarly
High Variance CCA (HVCCA) works well on image data. Temporal High Vari-
ance CCA proves useful to extract time series information from image data. In
other words, each technique is specifically designed to work for a particular kind
of data stream.

9 Conclusion

We have developed an extension of a method to find the canonical correlation
analysis of a data set. In particular we have

1. Used reservoir activations to capture information on temporal or image
data and subsequently used the online weight adaptation algorithm to
create a novel method known as Temporal CCA.

2. We used a technique suggested by the method of Slow Feature Analysis
[26] to ensure that our correlations do not come from static signals.

3. We have developed an online Multi-set CCA method which is computa-
tionally inexpensive.

4. We have combined the above techniques and shown results on real and
artificial data sets.

We have concluded that the generalised online method for finding canonical
correlations is more appropriate for numeric data (our artificial data as well as
the student exam data) whereas the temporal high variance method is more
appropriate for image data sets (MNIST digit data) because in images most of
the time the constant data needs to be ignored.

Future work will concentrate on finding relationships between the derivative
information in 2 or more data sets simultaneously. We will also use a weighted
approach of higher order derivatives on image and temporal time series. We
will also investigate how different structures in reservoirs can help to extract
different information from multiple data streams.
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Method 0 1 2 3 4 5 6 7 8 9

0 GMCCA 1.000 0.571 0.817 0.749 0.693 0.765 0.882 0.851 0.828 0.826
GMCCA(R) 1.000 0.903 0.979 0.957 0.942 0.966 0.979 0.982 0.965 0.986
HVMCCA 1.000 0.641 0.876 0.842 0.825 0.856 0.855 0.927 0.875 0.925

HVMCCA(R) 1.000 0.759 0.934 0.955 0.974 0.973 0.954 0.961 0.961 0.989

1 GMCCA 0.571 1.000 0.705 0.566 0.135 0.735 0.431 0.792 0.714 0.599
GMCCA(R) 0.903 1.000 0.866 0.816 0.822 0.841 0.896 0.910 0.854 0.906
HVMCCA 0.641 1.000 0.721 0.719 0.292 0.795 0.518 0.743 0.795 0.564

HVMCCA(R) 0.759 1.000 0.697 0.723 0.679 0.742 0.697 0.746 0.747 0.749

2 GMCCA 0.817 0.705 1.000 0.779 0.314 0.632 0.785 0.704 0.876 0.592
GMCCA(R) 0.979 0.866 1.000 0.981 0.935 0.987 0.971 0.973 0.987 0.982
HVMCCA 0.876 0.721 1.000 0.839 0.553 0.767 0.793 0.798 0.886 0.707

HVMCCA(R) 0.934 0.697 1.000 0.903 0.928 0.888 0.917 0.867 0.926 0.939

3 GMCCA 0.749 0.566 0.779 1.000 0.387 0.747 0.736 0.724 0.934 0.601
GMCCA(R) 0.957 0.816 0.981 1.000 0.919 0.978 0.957 0.956 0.989 0.953
HVMCCA 0.955 0.723 0.903 1.000 0.944 0.987 0.935 0.961 0.981 0.954

HVMCCA(R) 0.955 0.723 0.903 1.000 0.944 0.987 0.935 0.961 0.981 0.954

4 GMCCA 0.693 0.135 0.314 0.387 1.000 0.594 0.505 0.636 0.367 0.826
GMCCA(R) 0.942 0.822 0.935 0.919 1.000 0.943 0.957 0.944 0.932 0.941
HVMCCA 0.825 0.292 0.553 0.595 1.000 0.744 0.674 0.748 0.558 0.913

HVMCCA(R) 0.974 0.679 0.928 0.944 1.000 0.958 0.975 0.937 0.947 0.972

5 GMCCA 0.765 0.735 0.632 0.747 0.594 1.000 0.631 0.844 0.733 0.878
GMCCA(R) 0.967 0.841 0.987 0.978 0.943 1.000 0.962 0.963 0.989 0.967
HVMCCA 0.855 0.795 0.767 0.872 0.745 1.000 0.714 0.903 0.846 0.901

HVMCCA(R) 0.973 0.742 0.888 0.987 0.958 1.000 0.951 0.962 0.966 0.969

6 GMCCA 0.882 0.431 0.785 0.736 0.505 0.631 1.000 0.611 0.802 0.576
GMCCA(R) 0.979 0.896 0.971 0.957 0.957 0.962 1.000 0.985 0.967 0.976
HVMCCA 0.855 0.518 0.793 0.722 0.674 0.714 1.000 0.737 0.799 0.723

HVMMCA(R) 0.975 0.697 0.917 0.935 0.975 0.951 1.000 0.951 0.958 0.959

7 GMCCA 0.851 0.792 0.704 0.724 0.636 0.844 0.611 1.000 0.815 0.874
GMCCA(R) 0.982 0.910 0.973 0.956 0.944 0.963 0.985 1.000 0.973 0.987
HVMCCA 0.927 0.743 0.798 0.914 0.748 0.903 0.737 1.000 0.914 0.917

HVMCCA(R) 0.954 0.746 0.867 0.961 0.937 0.962 0.951 1.000 0.965 0.943

8 GMCCA 0.828 0.714 0.876 0.934 0.367 0.733 0.802 0.815 1.000 0.628
GMCCA(R) 0.965 0.854 0.987 0.989 0.932 0.989 0.967 0.973 1.000 0.969
HVMCCA 0.875 0.795 0.886 0.955 0.558 0.846 0.799 0.914 1.000 0.764

HVMCCA(R) 0.961 0.747 0.926 0.981 0.948 0.966 0.958 0.965 1.000 0.945

9 GMCCA 0.826 0.599 0.592 0.601 0.826 0.878 0.576 0.874 0.628 1.000
GMCCA(R) 0.986 0.906 0.983 0.953 0.941 0.967 0.976 0.987 0.969 1.000
HVMCCA 0.925 0.564 0.707 0.787 0.913 0.901 0.723 0.917 0.764 1.000

HVMCCA(R) 0.989 0.749 0.939 0.954 0.973 0.969 0.959 0.943 0.945 1.000

Table 9: Multi-Set Correlations Between digit 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9. GMCCA(Generalized Multi-Set Canonical Correlation Analysis), GM-
CCA(R)(Generalized Multi-Set Canonical Correlation Analysis with Reservoir),
HVMCCA(High Variance Multi-Set Canonical Correlation Analysis), HVM-
CCA(R)(High Variance Multi-Set Canonical Correlation Analysis with Reser-
voir).
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GMCCA-GMCCA(R) < 99 %
HVMCCA-GMCCA > 99 %

HVMCCA(R)-GMCCA > 99 %
GMCCA(R)-HVMCCA > 99 %

GMCCA(R)-HVMCCA(R) > 99 %
HVMCCA(R)-HVMCCA > 99 %

Table 10: Performance Measurement. Paired-wise Comparison with a confi-
dence interval of 99 %
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