

Yang, S., Wong-Lin, K., Andrew, J., Mak, T. and McGinnity, T. M. (2018) A

neuro-inspired visual tracking method based on programmable system-on-chip

platform. Neural Computing and Applications, 30(9), pp. 2697-2708.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/147256/

Deposited on: 05 September 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/147256/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

 1

 1

 2

 A Neuro-inspired Visual Tracking Method Based on 3

Programmable System-on-chip Platform 4
 5

Shufan Yang*1, KongFatt Wong-Lin*2, James Andrew1 , Terrence Mak3, T Martin McGinnity4, 6

1School of Mathematics and Computer Science, University of Wolverhampton 7

2Intelligent Systems Research Centre, University of Ulster, UK 8

3Department of Electronics and Computer Science, University of Southampton, UK 9

4. School of Science and Technology, Nottingham Trent University, UK 10

 11

*Corresponding author: 12

 *Shufan Yang, School of Mathematics and Computer Science, Faculty of Science and 13

Engineering, City Campus, Wolverhampton Phone: (+44) 01902-518-594, email: 14

s.yang@wlv.ac.uk. 15

 16

 17

Acknowledgements: SY was supported by the Early Research Scheme Reward from 18

University of Wolverhampton and National High Technology Research and Development 19

Program from China. KFW-L and SY were supported by ASUR (1014-C4-Ph1-071). 20

 21

Running title: A Neuro-inspired Visual Tracking Model 22

 23

 24

 25

 26

 27

 28

Manuscript Click here to download Manuscript NeuralComputingDraft-
Final.docx

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/ncaa/download.aspx?id=203279&guid=88262bbb-f639-40d7-a95d-ec8dda433171&scheme=1
http://www.editorialmanager.com/ncaa/download.aspx?id=203279&guid=88262bbb-f639-40d7-a95d-ec8dda433171&scheme=1
http://www.editorialmanager.com/ncaa/viewRCResults.aspx?pdf=1&docID=9707&rev=2&fileID=203279&msid={AADE7DA1-3BBD-42DC-A89F-AA0DFCC0FA56}

 2

 29

ABSTRACT 30

Using programmable system-on-chip to implement computer vision functions poses many 31

challenges due to highly constrained resources in cost, size and power consumption. In this 32

work, we propose a new neuro-inspired image processing model and implemented it on a 33

system-on-chip Xilinx Z702c board. With the attractor neural network model to store the 34

object’s contour information, we eliminate the computationally expensive steps in the curve 35

evolution re-initialization at every new iteration or frame. Our experimental results 36

demonstrate that this integrated approach achieves accurate and robust object tracking, when 37

they are partially or completely occluded in the scenes. Importantly, the system is able to 38

process 640 by 480 videos in real-time stream with 30 frames per second using only one 39

low-power Xilinx Zynq-7000 system-on-chip platform. This proof-of-concept work has 40

demonstrated the advantage of incorporating neuro-inspired features in solving image-41

processing problems during occlusion. 42

Keywords: Visual object tracking, mean-shift, level set, attractor neural network model, 43

occlusion, system-on-chip 44

1. INTRODUCTION 45

Due to the advantages offered by embedded devices for computational intensive applications, 46

many algorithms in image processing are implemented in such hardware [1-4]. Nevertheless, 47

one of the biggest challenges is to implement image processing algorithms onto rigid 48

resource constraints with low cost and high computationally efficiency. For instance, a 49

visual tracking using an optical flow algorithm has been optimised for VLIW DSP 50

architectures [3]. However, it only achieves 5 fps in 200 MHz. A Particle filter based 51

multiple objects tracking has been implemented on an FPGA [4]. But those implementations 52

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 3

are not suitable for general platform due to high power consumption and the requirement for 53

expensive hardware resources. 54

Besides the rigid resource constraints in the programmable system-on-chip platform, the 55

visual tracking is a difficult task, especially when objects are partially or wholly occluded 56

in the visual field [5]. These occlusion issues in the object tracking are generally addressed 57

using some forms of prediction or estimation methods [6]. For example, a common approach 58

in visual tracking is to assume a constant motion or acceleration to project the position of 59

object from previous frame to a new position during occlusion [7]. However, in realistic 60

scenarios those assumptions are often violated due to cluttered background (e.g. similar 61

colors of target and background) and dynamical changes of objects’ shape during occlusion 62

[7]. 63

Visual systems in humans and animals, in general, can easily deal with such issues. Hence, 64

it would be interesting to incorporate neuro-inspired features, especially into the 65

programmable system-on-chip platform, to exploit their advantages. For example, attention-66

modulated coordinate systems that used in the visual tracking can modulate, enhance, retain 67

and predict relevant visual information of the object [8 -10]. In a practical example, García 68

et al. (2013) used the commercial Kinect camera incorporated with a human/animal-like 69

inhibition of return behavior for detecting unknown visual objects in an office environment. 70

However, visual object tracking in occlusion and cluttered environments still remains 71

unsolved, especially with low-power hardware devices. 72

 73

In this work, we incorporate a neural network model with traditional computer vision 74

algorithms to solve the occlusion and cluttered scene issues in visual scenes. The neural 75

network model will be conveniently utilized in the form of a specialized function block 76

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 4

within the system-on-chip platform for real-time computation (see below). In particular, an 77

attractor neural network model is integrated with the mean-shift based object tracking 78

algorithm and the level-set active contour method. The mean-shift method is used to 79

calculate image density for tracking vectors while the level-set active contour method is for 80

mapping the object’s contour [11-12]. The attractor state of the neural field model is used to 81

retain the current contour in the object’s absence and provides fast convergence in the 82

subsequent frame/iteration. Our integrated prototype model primarily has the advantage of 83

employing a dynamical neural network to avoid the initialization process of the curve 84

evolution and allow fast convergence, hence improving computational efficiency while 85

reducing power consumption. 86

 87

2. MATERIALS AND METHODS 88

During the visual object tracking tasks, two major processes are involved: occlusion 89

detection and occlusion handling. Occlusion is detected when parts of the object features are 90

obscured and not visible. Specifically, if the distance between two objects is decreasing and 91

the size of one object is changing dramatically, the latter is considered as an occluded object 92

(see Section 3.2 for more details). During the occlusion handling stage, the attractor neural 93

network is used to alleviate occlusion issues, which is integrated with a mean-shift visual 94

tracking method and a level-set active contour method. 95

Traditional mean-shift tracker suffers inaccurate representation of objects due to the 96

constancy of the kernel bandwidth, which can result in an inaccurate representation. A new 97

target location in the current frame is calculated using the mean-shift procedure, which 98

computes the translational offset of the target location in each frame [12], which can lead to 99

more inaccuracy when occlusion happens. To overcome such inaccuracy in the presence of 100

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 5

total occlusion, we combine the level-set based active contour and color histogram as an 101

object representation. This is because the level-set based active contour and feature 102

abstraction can effectively control topological changes, which is important for tracking 103

moving objects in cluttered scenes. However, the curve evolution needs to be re-initialized 104

at every new iteration or frame, which is computationally expensive. To overcome this, an 105

attractor state of the neural network is used to retain the contour information and hence 106

allows rapid convergence of the level-set based active contour in the new frame. In other 107

words, the attractor property in the network dynamics can be used to “store” the location of 108

an occluded object over time to track it. The initialization process will be switched on only 109

when the neural network model is not in its attractor state. Overall, our proposed integrated 110

approach maintains the advantage of convenient implementation of the mean-shift method 111

while solving occlusion problems in the object visual tracking at a low computational cost. 112

 113

2.1 Basic mean-shift tracking method 114

Before occlusion, the average size of the object’s contour is calculated based on the visual 115

object features using commonly used mean-shift algorithm for the object tracking [10]. The 116

mean-shift procedure is employed to calculate a new target location in current frame based 117

on the location of the target in the previous frame. The mean-shift framework described here 118

follows to the implementation in Comaniciu et al. (2000) [13]. 119

 120

Mean-shift is an algorithm to track objects whose appearance is defined by histograms. In 121

the context of tracking, A target model Q is defined using a set of data point Q(x) in 122

Euclidean space that describes the tracking object’s associated colour. In this work, the color 123

histograms are used as a feature space [12]. The Bhattacharya coefficient is used as a 124

similarity measure to calculate mean-shift vectors. The bin size of histograms of oriented 125

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 6

gradients is 6. To incorporate image scaling with camera zooming, 4 different scales are 126

computed using adjacent histograms. Therefore the overall value for a target model is 24 (6 127

× 4). Q(x) denotes the kernel density estimator, as defined by: 128

Q(x) = 1/24 ∑ K(
𝑥i−L

h
)24

i=1 (1) 129

where xi represents pixel i’s value in the current frame; L is the coordinates of the center of 130

the region of interest. h is the scale window that defines the scale of the targeted object, i.e. 131

the number of pixels will be considered in the localization process. This density function 132

K(.) determines the weight of nearby points for re-estimating of the mean density value. In 133

Comaniciu et al. (2000)’s work, K(.) is the Epanechnikov kernel and is defined by [14]. 134

 135

K (x) = {2 ∗
1
π⁄ (1 − x) x < 1

o x ≥ 1
 (2) 136

 137

The translation offset of the mean-shift vector ∆x is computed by the following: 138

∆x = [
∑ 𝑥𝑖K(‖(𝑥i−𝑥0)/R‖

2n
i=1)

∑ K(‖(Xi−X0)/R‖
2n

i=1)
] − 𝑥 (3) 139

where K(.) is a radially symmetric kernel as descripted in equation (2). The bandwidth R 140

defines the tracked object region. The weight at pixel xi is estimated assuming it follows a 141

uniform distribution. The new position in the current frame is calculated by the mean-shift 142

vector iteration according to Equation (3). 143

 144

2.2 Level-set based active contour 145

The traditional mean-shift requires a targeted object to be a rigid shape, such as a circle or a 146

rectangle. However, the mean-shift tracking approach can suffer from inaccuracy of object 147

representations [12], because it does not entirely represent the object shape and may contain 148

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 7

non-object regions as part of the tracking object. Although some researchers have used 149

deformation or similarity parameters techniques, those approaches were only used for 150

tracking the affine parameters and unable to handle local deformation of the objects, 151

especially when occlusion occurs [15]. 152

 In this work, we adapt the level-set based active contour approach into the object tracking. 153

The level set method that was originally proposed by Sethian and Osher (1999) [17]. It was 154

used to implement object segmentation by evolving a closed contour to the object’s 155

boundary [18-19]. Implicit level set function ∅(x) encodes the signed distances of the pixels 156

x from the tracking object boundary. The object’s region is implicitly defined as the zero 157

crossings in the level set grid. In this manner, the level set can change its topology of object 158

contour while maintaining the form of a graph. Evolution of the contour is governed by 159

computing the regional energy: curve evolution is first performed globally (Figure 1 (A)), 160

and then locally modified each iteration until close to the desired object’s boundary (Figure 161

1(B)). In order to derive a density estimator in the mean-shift tacking, Equation (2) has been 162

modified to: 163

K (x) = {
1/n(∑ ∅(𝐸(𝐶, 𝑐1, 𝑐2))𝑛

𝑖=1) x < 1
o x ≥ 1

 (4) 164

Mumford and Shah (1989) first proposed a method of segmenting the image into 165

nonverlapping regions using an energy function. In our work, a special case of Mumford-166

Shah model is used to solve minimisation problem during segmentation, followed up the 167

Chan and Vese (2002)’s approach. We assume that image consists of two regions that can 168

be approximated using piecewise-constant intensities. For image Q(x), the energy function 169

is : 170

E(C, c1, c2) = ∫ U(x)|Q(x) − 𝑐1|2
inside(C)

dx + ∫ U(x)|Q(x) − 𝑐2|2
outside(C)

dx + |C| (5) 171

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 8

where C is the approximated contour for the image Q(x); inside(C) denotes the inner region 172

of contour C, and outside (C) denotes the outer region of the contour. The first term and 173

second term in Equation (5) are used to bring the contour close to the image intensity 174

distribution (Figure 1B), while the third term is a constraint term and smoothness of the 175

contour. C1 and C2 represent the average value of the pixel inside C and outside C 176

respectively. U(x) has localization property for fast curve evolution (See section 3 for 177

details). 178

 179

Figure 1. A schematic representation of implementing the level-set method for recovering 180

occlusion in a visual space. (A) The initial curve is indicated by a red circle, which is defined 181

by the average image density function. The region of dark blue represents the target object 182

to be tracked. (B) The curve then evolves and gets closer to the boundary of the tracked 183

object. (C) A shaded region represents the occluding object. The black curve is the curve 184

evolution using a level-set approach. The orange curve is restored using the signed level-set 185

function based on the attractor state of the neural network. 186

 187

2.3 Occlusion handing using neural network dynamics 188

Traditional mean-shift tracking method does not consider occlusion effects and the 189

inaccurate target model can easily lead to tracking failures. As illustrated in Figure 1(C), 190

during occlusion, a completed boundary curve of the occluded object cannot be obtained. 191

Here, we propose to model the non-rigid changes in the object’s shape using an attractor 192

neural network, which encodes the history of the object’s contour. 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 9

 194

After an occlusion is detected, an attractor neural network is employed to rapidly capture 195

and then maintain the state of the tracked object’s boundary over time. In our method, the 196

energy function used in this model is integrated with the attractor states of neural network 197

to make fast convergence for the occluded object. Also, the energy function of the curves 198

can avoid the re-initialization process if the neural network is already in the attractor states. 199

Hence, the computational efficiency is greatly improved. Consequently, computational 200

power consumption can be reduced. 201

 202

A standard neural network to discriminate and store sensory information over time was used 203

[20, 21]. These types of recurrent networks are also called attractor neural networks, and 204

under certain conditions, their dynamics can encode and store information (attractor state) 205

in the absence of the external stimulus. This typically requires the network architecture to 206

consist of short-range excitatory and long-range inhibitory lateral connections [22]. In 207

particular, the strong short-range recurrent excitation allows localized and activated neural 208

activity to be sustained when the stimulus is removed. 209

As shown in Figure 2(A), we demonstrate an example using three neural populations in the 210

network model. Let 𝐴𝑒𝑥𝑐1(𝑥, 𝑡) and 𝐴𝑒𝑥𝑐2(𝑥, 𝑡) are excitatory variables at position x with a 211

time t. 𝐴𝑖𝑛ℎ(𝑥, 𝑡) is inhibitory variables at position x , which can be described, respectively, 212

by [22] 213

𝜏𝑒𝑥𝑐
𝜕𝐴𝑒𝑥𝑐1(𝑥,𝑡)

𝜕𝑡
= −𝐴𝑒𝑥𝑐1(𝑥, 𝑡) + 𝐹𝑖𝑛ℎ(𝑥, 𝑡) + 𝐼𝑒𝑥𝑡1 (6) 214

𝜏𝑒𝑥𝑐
𝜕𝐴𝑒𝑥𝑐2(𝑥,𝑡)

𝜕𝑡
= −𝐴𝑒𝑥𝑐2(𝑥, 𝑡) + 𝐹𝑖𝑛ℎ(𝑥, 𝑡) + 𝐼𝑒𝑥𝑡2 (7) 215

𝜏𝑖𝑛ℎ
𝜕𝐴𝑖𝑛ℎ(𝑥,𝑡)

𝜕𝑡
= −𝐴𝑖𝑛ℎ(𝑥, 𝑡) + 𝐹𝑒𝑥𝑐1(𝑥, 𝑡) + 𝐹𝑒𝑥𝑐2(𝑥, 𝑡) (8) 216

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 10

where 𝐼𝑒𝑥𝑡1 and 𝐼𝑒𝑥𝑡2 are the external inputs to the excitatory neural population 𝐴𝑒𝑥𝑐1 and 217

𝐴𝑒𝑥𝑐2. 𝜏𝑒𝑥𝑐 and 𝜏𝑖𝑛ℎ are time constants of the corresponding neural population, respectively. 218

𝐹𝑒𝑥𝑐1 , 𝐹𝑒𝑥𝑐2 and 𝐹𝑖𝑛ℎ are the input-output functions to the excitatory and inhibitory 219

population, which can be described by 220

𝐹𝑒𝑥𝑐1(𝑥, 𝑡) = ∫ 𝐽𝑖𝑒(𝑥 − 𝑥́)𝐴𝑒𝑥𝑐1(𝑥́, 𝑡) − 𝐽𝑒𝑒(𝑥 − 𝑥́)𝐴𝑖𝑛ℎ(𝑥́, 𝑡) 𝑑𝑥́𝛺
 (9) 221

𝐹𝑒𝑥𝑐2(𝑥, 𝑡) = ∫ 𝐽𝑒𝑖(𝑥 − 𝑥́)𝐴𝑒𝑥𝑐2(𝑥́, 𝑡) − 𝐽𝑒𝑒(𝑥 − 𝑥́)𝐴𝑖𝑛ℎ(𝑥́, 𝑡) 𝑑𝑥́𝛺
 (10) 222

𝐹𝑖𝑛ℎ(𝑥, 𝑡) = ∫ 𝐽𝑖𝑒(𝑥 − 𝑥́)𝐴𝑒𝑥𝑐1(𝑥́, 𝑡) + 𝐽𝑒𝑖(𝑥 − 𝑥́)𝐴𝑒𝑥𝑐2(𝑥́, 𝑡) − 𝐽𝑒𝑒(𝑥 − 𝑥́)𝐴𝑖𝑛ℎ(𝑥́, 𝑡) 𝑑𝑥́𝛺
 (11) 223

where the integration is over the 2-dimensional space Ω. The J′s are the synaptic coupling 224

strengths which depend on the relative spatial distance x to 𝑥́. Specifically, 𝐽𝑖𝑒 represents 225

the coupling strength from the excitatory neural population 𝐴𝑒𝑥𝑐1 to the inhibitory neuronal 226

population, while 𝐽𝑒𝑖 represents the coupling strength from the excitatory neural population 227

𝐴𝑒𝑥𝑐2 to the inhibitory neuronal population. While 𝐽𝑒𝑒 represents the coupling strength from 228

the inhibitory neuronal to excitatory neural population. Note that we have ignored self-229

inhibition within the inhibitory population. For simplicity, we allow the input-output 230

functions F′s to be of threshold-linear type, and the τ′s to be the same for both excitatory 231

and inhibitory populations. The exponential convergence towards the attractor state requires 232

the following conditions to be satisfied: 233

 234

1 < 2 𝐽𝑒𝑒 √𝐽𝑖𝑒 𝐽𝑒𝑖 (12) 235

0.075 < 𝐽𝑖𝑒 𝐽𝑒𝑖 < 1 (13) 236

When the model exhibits persistent activity behavior, i.e. maintenance of the signal even in 237

the absence of the presented stimulus (Figure 2 (B)), the neural activity is larger than 238

baseline activity (zero) and the conditions (12-13) and bi-stable steady state solution can be 239

obtained by solving
dAexc1(x,t)

dt
= 0. . Conceptually, Equation (12) means that the self-240

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 11

excitation Jee needs to be sufficiently strong, while Equation (13) means that intermediate 241

level of recurrent inhibition is required to suppress unwanted activations, generating a 242

temporary “storage” behavior. The upper bound in Equation (13) is to prevent overly strong 243

inhibition that eliminates any stimulus-based activation. 244

 245

When an occlusion is detected, the cue stimulus is first provided to population Aexc1, resulting 246

in an increase in activity 𝐴𝑒𝑥𝑐1 and then sustained. When the occlusion of the tracking object 247

is detected, the cue stimulus is activated, causing 𝐴𝑒𝑥𝑐2 to increase and then sustained, while 248

𝐴𝑒𝑥𝑐1 is suppressed, due to inhibition. This is necessary to permit both locations of the 249

targeted object to be tracked and maintained over successive frames. 250

 251

 252

Figure 2. A simplified attractor neural network model to illustrate persistent activity for 253

temporary memory storage. (A) For simplicity, the neural network considered here contains 254

only 3 neural populations. The inhibitory connections are denoted by dash lines and 255

excitatory connections by bold lines. (B) Sample persistent neural activities over time. The 256

pulse input stimulus to the excitatory population 𝐴𝑒𝑥𝑐1 is provided from 5 to 20ms. When 257

input stimulus is removed from the 2ms time point, the population activities relax into 258

another albeit lower steady state or attractor. Note that although stimulus input (1) is 259

received by population 𝐴𝑒𝑥𝑐1, 𝐴𝑖𝑛ℎ is also activated. 260

(A) (B)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 12

During curve evolution, we define Foutx as an attractor state in the neural network that stores 261

the outer boundary of contour from the previous frame, while Finx is another attractor state 262

that stores the inner boundary of contour in the previous frame. C is the approximated 263

detected region from the previous frame. As an illustration, in a one-dimensional case, the 264

following region-evolving algorithm defined localisation property U(x) in the x direction 265

(the algorithm for y direction is similar) as defined by: 266

 267

𝑈(x) =

{

1 if x is outside C but not inside Finx
3 if x is inside Foutx
−3 if x is outside Finx
 −1 if x is inside C but not inside Finx
0 otherwise

 268

Here, we choose the values of ±3 and ±1 as signed distances, which depends on the relative 269

position of the initial contours to the target object. In this work, the normalized neural 270

population activities and the associated states of curve evolution for this example are shown 271

in Table 1. 272

Table 1 Normalized neural population activities and the associated value of level-set 273

function 274

Normalize population

activity in Aexc1

The value of level

set function

Normalize

population activity

in Aexc2

The value of level

set function

0 ~ 0.25 1 0 ~ 0.25 3

0.25 ~ 1 -1 0.25 ~ 1 -3

 275

 276

 277

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 13

2.4 General steps for object tracking 278

 279

In practice, given a pre-defined target model, our proposed algorithm can be summarised in 280

the following steps: 281

 282

1. Initialise the location of the target in the current frame based on its location in the previous 283

frame. 284

2. Compute iterations of curve evolution for each object at an initial curve. 285

3. Activate neural network when occlusion is detected. 286

4. If the activity of neural network is in the attractor state, the curvature of target object will 287

be computed based on this attractor state. Otherwise, there is no occlusion and the curvature 288

of the target object will be calculated as usual. In this case, the neural network is not involved. 289

5. Compute the mean-shift vector using calculated weighted colour histogram of target 290

object. 291

6. If the region of interest and centre of mass are similar, stop the evolution and return to 292

step 1. 293

 294

2.5 The System-on-Chip implementation 295

 296

We employ a customized parallel architecture to implement our efficient object-tracking 297

algorithm. The logical partitioning of the system is divided into software and hardware 298

blocks performing video capture, subtracting background, generating active contour and 299

modeling dynamical neural network. The system-on-chip design is partitioned into 300

computational blocks with interconnection communication channels for performing data 301

manipulation. This partition enhances the chances of corrected operation when the different 302

parts of the algorithm are merged, while allowing new algorithm development to commence 303

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 14

in parallel with a hardware development. The following describes the architecture and 304

design flow using a Xilinx Zynq-702 evaluation board. The FPGA design process follows a 305

similar approach to our previous work [23]. The source code of this project can be down 306

loaded from open source repository github (https://github.com/WOLVS/). 307

 308

2.5.1 Design flow 309

We used one ARM Cortex-A9 core (at 667MHz) to implement image acquisition. Another 310

processor core serves interrupts from the programmable logic. The programmable logic 311

system partitioned into computational blocks with interconnected communication channels 312

for performing data manipulation. This partition enhances the chances of corrected 313

operations when different parts of algorithm are merged, while allowing new algorithms 314

development to commence in parallel with a hardware development. It is essential to explore 315

various visual tracking methods and feature abstractions in parallel in order to develop an 316

efficient integrated system. As show in Figure 3, the process starts with checking the image 317

boot load from a flash memory, then loading all the libraries for video decoding. 318

 319

 320

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 15

 Figure 3. Design flow for ARM and Programmable IP integrate 321

2.5.2 Programmable IP implementation 322

As shown in Figure 4 (A), the foreground objects from the input frame are detected and are 323

computed using the image density mean shift method. The frame counter is used to facilitate 324

pipeline calculations. The Bhattacharyya coefficient is calculated in the mean-shift module 325

and the new location is calculated after iterations using the loop box (see Figure 4(B) for 326

more details). The attractor neural network block is used to keep the boundary of curve 327

evolution at a given time period, and preserves the contour of the object during partial and 328

full occlusion. For on-line debugging purpose, the command interpreter is designed to assist 329

the tracking with interfaces for setting up pre-defined feature spaces of the targeted object. 330

Thus, the “set” instruction sets the frame store to write back from memory and the “delay” 331

instruction inserts a delay enabling screen effect that allows user to observe contour 332

evolution during processing while the “relocate” instruction writes back entries in the frame 333

store. 334

 335

Figure 4. Block diagram of object tracking (A) Block diagram of the proposed method in 336

system view. (B) Loopbox design for running multiple iterations in five pipelines design. 337

(A)
(B)

(C)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 16

(C) Attractor neural network implementation: Communication protocol between the 338

attractor neural network and level-set and mean-shift module 339

Figure 4(C) depicts the dynamical neural network block diagram. The NN module is used 340

to mode the attractor neural network. The βFN and rFN are the input currents for two 341

excitatory neuron populations; the rMN is the input current for the inhibitory neuron. U(x) 342

and F (x) are initial contour starting points; P(c0) is the initiate mass density for the mean-343

shift system. Q(c) and P(c) are generated the mass densities for the mean vectors. 344

The system design block diagram can be found in Figure 5 (A) and Figure 5 (B) shows the 345

floor-planning of the SOC data fusion platform. The neural network processing unit is 346

located in between the two processing stages, in such a way that they are used as a fence to 347

prevent a single data transfer from corrupting, show as the red fence in Fig.5. The dark blue 348

fence is data acquisition and the light blue part is for HDMI interfaces. The neural network 349

module and image processing modules are physically near to the processing stages with 350

which they share most of their connections, lead to short paths and ultimately high stable 351

clock frequency (200MHZ)). 352

 353

 354

Figure 5 (A)Block Diagram of overall system with HDMI module included for 355

visulasation. Image_0 module is the core module for neural network processing (B) 356

XC702 SOC floor-planning. 357

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 17

3. RESULTS 358

This section presents three realistic experiments, which are used to test the ability of the 359

system to correctly handle occluded object. Our hardware implementation test two 360

resolution inputs: VGA resolution 640 by 480 (VGA) video and 1024 by 768 (XGA) video. 361

The incoming video frames are processed, using our integrated model in a system-on-chip 362

platform, within three main stages: (1) image data preparation; (2) active contour evolution 363

combined with attractor neural network; and (3) update mean vectors. 364

3.1 Hardware resource analysis 365

 366

The implementation of the dynamic neural network with standard floating-point arithmetic 367

units on FPGA is rather straightforward. A summary of the resource usage for the whole 368

design is shown in Figure 6. The first column shows the type of hardware resources, and 369

each row shows the total number of logical resources used. A memory controller used in this 370

design consisted of single bidirectional 128-bit port configuration and two additional FIFO 371

buffers (1025 words deep). Using this module a constant data flow at the level of 30 frames 372

per second achieved with the image resolution of 640 by 480. The maximum operating 373

frequency of whole design was 200MHz, which is more than enough for processing video 374

stream (pixel clock rate of 25 MHz). 375

 376

Since the visual tracking system needs to access large data inside loops, the power 377

consumption of this system is largely contributed by data transfer and memory access 378

operations. The data operation consumes much less power than memory access. Our method 379

minimizes the off-chip memory access using attractor neural network, since intermediate 380

data can be represented by population efficiency and redundant memory access are reduced. 381

Power consumption of the whole programmable IP reported by Xilinx XPower Analyzer for 382

the device (On-Chip) was 0.03 W [24]. 383

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 18

 384

 385

 Table 1 Hardware resource usages and comparison 386

3.2 Occlusion detection 387

During occlusion, visual features of the occluded object are not observed and the object’s 388

contour is recovered by an attractor state of the recurrent neural network. Figure 6 shows an 389

occlusion recovery example, where one synthetic object occludes a person. Before the 390

occlusion (Figure 6(A)), contour evolution is based on visual features and the object’s 391

contour is complete. 392

 393

 394

Figure 6. A synthetic object is occluding a walking person. (A) The first image of a sequence 395

of images. (B) A synthetic object is the occluding object. The white box next to the image 396

shows the extracted objects. 397

 398

(A) (B)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 19

Figure 6(B) shows an occlusion example, where a synthetic object (black rectangle) 399

occludes a walking person. During occlusion, the evolution using the visual feature results 400

in an incomplete contour. The moving person and the synthetic block are two objects 401

labelled as A and B. When the size of object A is dramatically changed while the size of 402

object B is remained, we label object B as occluding object A. The Euclidean distance 403

between the two objects A and B is labelled as 𝐷𝐴,𝐵 . The current size of object A is ∅𝐴
𝑡 . The 404

average size of object A is ∅𝐴
𝑎𝑣𝑒 . Occlusion detection is calculated using the value 405

1

exp(−|𝐷𝐴,𝐵|)+1
×

∅𝐴
𝑡

∅𝐴
𝑎𝑣𝑒 ; if this value is less than 0.25, we assume that object A is occluded. 406

Figure 6(B) demonstrates the correct extraction of the two objects. 407

 408

3.3 Moving objects with partial and full occlusion 409

Our focus is on the tracking of occluded objects where occlusions may be present and the 410

camera may not necessarily be stationary. However, there are not many openly available 411

datasets with these characteristics [26]. Hence, we conduct the experiment using two case 412

studies: walking person and children playing. Note that the popular pedestrian’s video clips 413

in the Caltech database [26] would be too challenging for this work, of which one of 414

objectives is for prototyping. This is mainly due to the detection module with weak response 415

to illumination changes as well as the dramatic changed in size of people in the video clips 416

(see Section 2). 417

 418

 419

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 20

 420

Figure 7. Tracking of object in a multiple people walking sequence with total occlusion. 421

Under each image is labelled the frame number. The video clips can be viewed at the 422

following link (https://www.youtube.com/watch?v=Kq5dxpiYyjs). 423

 424

A multiple people walking sequence is illustrated in Figure 7. In this scene, partial 425

occlusions occur repeatedly and there is total occlusion towards the end of the sequence 426

before the person reappears. Hence, the detected region can be dramatically changed and 427

even disappeared altogether. When the mean shift tracker fails to generate the mean vector, 428

the curve evolution needs to be restarted and many computational steps are involved. In 429

Figure 8, the results of tracking integrated with the attractor neural network can correctly 430

depict the active contour of moving persons during partial occlusion by recovering its hidden 431

parts (frames 45, 63, 72, and 81, in Figure 7). During total occlusion, the (yellow) curve 432

predicts and evolves to locate the moving object in the preceding frame even if the real 433

object is fully concealed (frames 54 and 90, in Figure 7). Significant partial occlusion and 434

total occlusion also occur in the sequence. During total occlusion, the bottom-up feature 435

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.youtube.com/watch?v=Kq5dxpiYyjs

 21

abstraction guides the contour evolution. After total occlusion the person is detected 436

although the detected shape is not exactly the same as the object’s contour. 437

 438

3.4 Comparison 439

 440

Sometimes the contour shape of the tracked object can be occluded or undergo profile 441

variation, as shown in the above experiment. There are two challenges that make the scene 442

an interesting example for object tracking. The first challenge is when a section of the 443

contour is occluded unpredictably. The other challenge is a cluttered scene, in the sense that 444

the moving object and the background have a similar random texture. A cluttered scene 445

makes distinguishing between background and foreground difficult. A traditional mean-shift 446

algorithm alone might not be able to track this particular type of scenario since the prior 447

colour is computed inaccurately due to the cluttered scene [12]. 448

 449

Figure. 8 shows a realistic example of occlusion. In this scene, two children were playing, 450

and partial occlusions occurred repeatedly. When occlusion occurs, there is less relevant 451

information available to the model’s visual inputs for tracking. However, our model is still 452

able to track the targeted object by inferring from the geometric contour in the previous 453

frames (Figure 8 (A)). In particular, the attractor neural network model is able to sustain the 454

significant deformation occurring over time to enable the continuity of tracking. These 455

combined mechanisms present considerable benefit when the occluded object is highly 456

mobile. In comparison, the particle filter, which is one of the most common geometric 457

models for tracking, is not as effective and robust in generating the same object 458

representation [12]. The results are shown in Figure 8 (B). The poor accuracy of the particle 459

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 22

filter may be because it uses only the energy function to weight particles and evolve the 460

curve over time. 461

 462

 463

 464

Figure 8. Tracking children playing to test for object tracking with occlusion. (A) By 465

constraining the curve to retain a similar shape between consecutive frames, the tracked 466

object with partial occlusion was maintained even in the presence of a similar (colour) object 467

in the same frame. (B) Tracking method using particle filter, in which the tracked object was 468

unintentionally switched to a similar object that has occluded the originally tracked object. 469

(The particle filter experiment here used 35 particles.) 470

An important issue of visual tracking that often comes up in practice is that of the algorithm’s 471

computational efficiency. We compare the computational efficiency of our proposed method 472

with the basic mean-shift tracking method [11] and particle filter method [12]. This is 473

achieved by computing the average computational time used to track one frame of video. 474

Table 2 shows the running time for the three methods in the system-on-chip platform. The 475

particle filter method outperforms the tradition mean-shift method because the mean-shift 476

method uses local max/min density value and minimise the distance in the current frame. It 477

(A) (B)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 23

is noted that our proposed integrated method requires less computational cost compared to 478

the other two methods; about 10% lesser than the basic mean-shift method and 20% lesser 479

than the particle filter method. 480

 481

Table 2 Comparison of computational efficiency in terms of averaging time required to track 482

one frame with 1024 by 768 (XGA format) and 640 by 480 (VGA format). 483

Video Proposed method

(s)

Mean-shift

method (s)

Particle filter

method (s)

Multiple people walking scene 1024 by

768 (Figure 8)

1.115 1.235 1.345

Children’s playing scene 1024 by 768

(Figure 9)

0.731 0.812 0.936

Multiple people walking scene 640 by 480

(Figure8)

0.038 0.041 0.045

Children’s playing scene 640 by

480(Figure 9)

0.033 0.036 0.039

 484

4. DISCUSSION 485

There has been significant scientific debate regarding the appropriate incorporation of 486

biological approaches to address computer image processing. Typically, neurobiologically 487

realistic computational models are computationally costly [27]. In this paper, we strike a 488

compromise between biologically inspired and efficient computation by adopting an 489

attractor neural field model to the traditional computer vision method of curve evolution, 490

allowing for a reduction in curve evolution iterations during object occlusion situations, and 491

hence improving computational efficiency. Specifically, we have used traditional mean-shift 492

tracking and level-set methods to track the contour of a moving person, and when partial or 493

total occlusion occurs, the attractor states of a neural field model can store the contour 494

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 24

information in visual space to refine the evolution of the curve and preserve the object 495

contour in the subsequent frame. This eliminated the computationally expensive re-496

initialization of the curve evolution at every new iteration or frame. Importantly, the system 497

is able to process, in real-time using only one low-power Xilinx Zynq-7000 system-on-chip 498

platform. Overall, our proof-of-concept work has successfully demonstrated the advantage 499

of incorporating neuro-inspired features in efficiently solving image-processing problems. 500

 501

Despite the positive results demonstrated in this work, there remain some limitations to our 502

approach. For on-chip implementation, slow memory speed limits the feed-in frame rates in 503

our system. Our current implementation also could not handle scenes with objects 504

undergoing dynamical scale change (e.g. due to camera’s zooming) and unpredictable 505

motion (e.g. sharp turns and sudden stops). Furthermore, the basic idea of the background 506

updating we have implemented is based on the assumption that the pixel value of 507

background changes slower than those of the tracked objects. In many realistic scenarios, it 508

is a valid assumption. However, tracking non-uniform color object can potentially become 509

challenging. These issues will be addressed in the future, and extended methods can then be 510

implemented on the challenging pedestrian datasets such as the Caltech pedestrian datasets. 511

 512

In this work, although we have only adopted a neural field model with basic attractor features, 513

in future work, we can extend it to other more complex visual tasks using more dynamic 514

neural field capabilities. For example, our present work can easily be extended to more 515

complex visual search or visual motor control paradigms [28]. By equipping the neural field 516

model with adaptive mechanisms, it can produce anticipative and enhanced tracking 517

capabilities especially on time-varying stimuli. Also, our framework can be expanded into 518

multiple object tracking. With multiple objects to be tracked simultaneously, multiple nodes 519

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 25

can be added for multiple regions of occluded object. It should be noted that in this work, 520

we have assumed that the tracked object is not moving out of the frame and the first image 521

has the tracking object already in the visual scene. 522

 523

To summarize, we have successfully integrated traditional mean-shift tracking and level-set 524

methods with an attractor neural field model, and solved, as proof-of-concept, various 525

occlusion problems during tracking moving objects. It opens up the opportunity of providing 526

low-power neuro-inspired system-on-chip platform for the challenging visual object 527

tracking application. 528

 529

 530

REFERENCES 531

1. Malamas, E. N., Petrakis, E. G., Zervakis, M., Petit, L., & Legat, J. D. (2003). A survey 532

on industrial vision systems, applications and tools. Image Vis. Comput., 21(2), 171-188. 533

2. Nikitakis, A., Papaioannou, S. and Papaefstathiou, I. (2013). A novel low-power 534

embedded object recognition system working at multi-frames per second. ACM 535

Transactions on Embedded Computing Systems (TECS), 12(33), pp.39-58 536

3. Díaz, J., Ros, E., Pelayo, F., Ortigosa, E. M., & Mota, S. (2006). FPGA-based real-time 537
optical-flow system. Circuits and Systems for Video Technology, IEEE Transactions on, 538

16(2), 274-279. 539
 540
4. Jin, J., Lee, S., Jeon, B., Nguyen, T. T., & Jeon, J. W. (2013). Real-time multiple object 541

centroid tracking for gesture recognition based on FPGA. In: Proceedings of the 7th 542
International Conference on Ubiquitous Information Management and Communication, 543
article 80. 544
 545

5. Nguyen, H. T., & Smeulders, A. (2004). Tracking aspects of the foreground against the 546
background. In Computer Vision-ECCV 2004 (pp. 446-456). Springer Berlin Heidelberg. 547

 548

6. Lee, B. Y., Liew, L. H., Cheah, W. S., & Wang, Y. C. (2014). Occlusion handling in 549
videos object tracking: A survey. In IOP Conference Series: Earth and Environmental 550
Science (Vol. 18, No. 1, p. 012020). IOP Publishing. 551

 552

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 26

7. Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. ACM Computing 553

Surveys (CSUR), 38(4), 13. 554

8. Yantis, S., & Johnson, D. N. (1990). Mechanisms of attentional priority. Journal of 555

Experimental Psychology : Human Perception and Performance. 556

9. Frintrop, S., Rome, E., & Christensen, H. I. (2010). Computational visual attention 557

systems and their cognitive foundations: A survey. ACM Trans. Appl. Percept., 7(1). 558

10. García, G. M., Frintrop, S., & Cremers, A. B. (2013). Attention-Based Detection of 559

Unknown Objects in a Situated Vision Framework. KI-Künstliche Intelligenz, 27(3), 267-560

272. 561

11. Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space 562

analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(5), 603-619. 563

12. Perez, P., Vermaak, J., & Blake, A. (2004). Data fusion for visual tracking with particles. 564

In: Proceedings of the IEEE, 92(3), 495-513. 565

13. Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for human 566

detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE 567
Computer Society Conference on (Vol. 1, pp. 886-893). IEEE. 568
 569

14. Epanechnikov, V.A. (1969). "Non-parametric estimation of a multivariate probability 570
density". Theory of Probability and its Applications 14: 153–158. doi:10.1137/1114019. 571

 572

15. Han M., Xu W. and Gong Y. (2004) An algorithm for multiple object trajectory tracking. 573

In: Proceedings of the IEEE Computer Society Conference, 1: 864-871. 574

16. Chan, T. E., & Vese, L. A. (2001). A level set algorithm for minimizing the Mumford-575

Shah functional in image processing. In Variational and Level Set Methods in Computer 576

Vision, 2001. Proceedings. IEEE Workshop on (pp. 161-168). IEEE. 577

17. Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: 578

algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 579
79(1), 12-49. 580
 581
 582
18. Mendi, E., & Milanova, M. (2010). Contour-based image segmentation using selective 583

visual attention. Journal of Software Engineering and Applications, 3(08), 796. 584
 585

19. Cremers, D. (2006). Dynamical statistical shape priors for level set-based tracking. IEEE 586

Trans. Pattern Anal. Mach. Intell., 28(8), 1262-1273. 587

20. Cremers, D. (2013). Shape Priors for Image Segmentation. In: Shape Perception in 588

Human and Computer Vision, pp. 103-117, Springer, London. 589

 590

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 27

21. Rutishauser, U., & Douglas, R. J. (2009). State-dependent computation using coupled 591

recurrent networks. Neural computation, 21(2), 478-509. 592

 593

22. Johnson, J. S., Spencer, J. P., Luck, S. J., & Schöner, G. (2009). A dynamic neural field 594

model of visual working memory and change detection. Psychol. Sci., 20(5), 568-577. 595

23. Yang S., McGinnity T. M., and Wong-Lin, K. (2012). Adaptive Proactive Inhibitory 596

Control for Embedded Real-time Applications. Front. Neuroeng. 5:10. doi: 597

10.3389/fneng.2012.00010. 598

24. Xilinx, 2014 Xilinx Xpower Analyzer [Online]. Available: <www.xilinx.com/products>. 599

25. Cehovin, L., Kristan, M., & Leonardis, A. (2013). Robust visual tracking using an 600

adaptive coupled-layer visual model. IEEE Trans. Pattern Anal. Mach. Intell., 35(4), 941-601

953. 602

26. Dollár, P., Wojek, C., Schiele, B., & Perona, P. (2009, June). Pedestrian detection: A 603

benchmark. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE 604
Conference on (pp. 304-311). IEEE. 605
 606

 607
27. Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., ... & Wiskott, 608

L. (2013). Deep hierarchies in the primate visual cortex: What can we learn for computer 609
vision?. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8), 1847-610
1871. 611

 612
 613

28. Fung, C. C., Wong, K. Y., Wang, H., & Wu, S. (2012) Dynamical synapses enhance 614

neural information processing: gracefulness, accuracy, and mobility. Neural Comput., 24: 615

1147-1185. 616

 617

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

