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 29 

ABSTRACT  30 

Using programmable system-on-chip to implement computer vision functions poses many 31 

challenges due to highly constrained resources in cost, size and power consumption.  In this 32 

work, we propose a new neuro-inspired image processing model and implemented it on a 33 

system-on-chip Xilinx Z702c board. With the attractor neural network model to store the 34 

object’s contour information, we eliminate the computationally expensive steps in the curve 35 

evolution re-initialization at every new iteration or frame.  Our experimental results 36 

demonstrate that this integrated approach achieves accurate and robust object tracking, when 37 

they are partially or completely occluded in the scenes. Importantly, the system is able to 38 

process 640 by 480 videos in real-time stream with 30 frames per second using only one 39 

low-power Xilinx Zynq-7000 system-on-chip platform. This proof-of-concept work has 40 

demonstrated the advantage of incorporating neuro-inspired features in solving image-41 

processing problems during occlusion. 42 

Keywords: Visual object tracking, mean-shift, level set, attractor neural network model, 43 

occlusion, system-on-chip 44 

1. INTRODUCTION  45 

Due to the advantages offered by embedded devices for computational intensive applications, 46 

many algorithms in image processing are implemented in such hardware [1-4]. Nevertheless, 47 

one of the biggest challenges is to implement image processing algorithms onto rigid 48 

resource constraints with low cost and high computationally efficiency. For instance, a 49 

visual tracking using an optical flow algorithm has been optimised for VLIW DSP 50 

architectures [3]. However, it only achieves 5 fps in 200 MHz.  A Particle filter based 51 

multiple objects tracking has been implemented on an FPGA [4]. But those implementations 52 
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are not suitable for general platform due to high power consumption and the requirement for 53 

expensive hardware resources. 54 

Besides the rigid resource constraints in the programmable system-on-chip platform, the 55 

visual tracking is a difficult task, especially when objects are partially or wholly occluded 56 

in the visual field [5]. These occlusion issues in the object tracking are generally addressed 57 

using some forms of prediction or estimation methods [6]. For example, a common approach 58 

in visual tracking is to assume a constant motion or acceleration to project the position of 59 

object from previous frame to a new position during occlusion [7]. However, in realistic 60 

scenarios those assumptions are often violated due to cluttered background (e.g. similar 61 

colors of target and background) and dynamical changes of objects’ shape during occlusion 62 

[7].  63 

Visual systems in humans and animals, in general, can easily deal with such issues. Hence, 64 

it would be interesting to incorporate neuro-inspired features, especially into the 65 

programmable system-on-chip platform, to exploit their advantages. For example, attention-66 

modulated coordinate systems that used in the visual tracking can modulate, enhance, retain 67 

and predict relevant visual information of the object [8 -10]. In a practical example, García 68 

et al. (2013) used the commercial Kinect camera incorporated with a human/animal-like 69 

inhibition of return behavior for detecting unknown visual objects in an office environment. 70 

However, visual object tracking in occlusion and cluttered environments still remains 71 

unsolved, especially with low-power hardware devices.  72 

 73 

In this work, we incorporate a neural network model with traditional computer vision 74 

algorithms to solve the occlusion and cluttered scene issues in visual scenes. The neural 75 

network model will be conveniently utilized in the form of a specialized function block 76 
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within the system-on-chip platform for real-time computation (see below). In particular, an 77 

attractor neural network model is integrated with the mean-shift based object tracking 78 

algorithm and the level-set active contour method. The mean-shift method is used to 79 

calculate image density for tracking vectors while the level-set active contour method is for 80 

mapping the object’s contour [11-12]. The attractor state of the neural field model is used to 81 

retain the current contour in the object’s absence and provides fast convergence in the 82 

subsequent frame/iteration. Our integrated prototype model primarily has the advantage of 83 

employing a dynamical neural network to avoid the initialization process of the curve 84 

evolution and allow fast convergence, hence improving computational efficiency while 85 

reducing power consumption. 86 

 87 

2. MATERIALS AND METHODS 88 

During the visual object tracking tasks, two major processes are involved: occlusion 89 

detection and occlusion handling. Occlusion is detected when parts of the object features are 90 

obscured and not visible. Specifically, if the distance between two objects is decreasing and 91 

the size of one object is changing dramatically, the latter is considered as an occluded object 92 

(see Section 3.2 for more details). During the occlusion handling stage, the attractor neural 93 

network is used to alleviate occlusion issues, which is integrated with a mean-shift visual 94 

tracking method and a level-set active contour method.  95 

Traditional mean-shift tracker suffers inaccurate representation of objects due to the 96 

constancy of the kernel bandwidth, which can result in an inaccurate representation. A new 97 

target location in the current frame is calculated using the mean-shift procedure, which 98 

computes the translational offset of the target location in each frame [12], which can lead to 99 

more inaccuracy when occlusion happens. To overcome such inaccuracy in the presence of 100 
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total occlusion, we combine the level-set based active contour and color histogram as an 101 

object representation. This is because the level-set based active contour and feature 102 

abstraction can effectively control topological changes, which is important for tracking 103 

moving objects in cluttered scenes. However, the curve evolution needs to be re-initialized 104 

at every new iteration or frame, which is computationally expensive. To overcome this, an 105 

attractor state of the neural network is used to retain the contour information and hence 106 

allows rapid convergence of the level-set based active contour in the new frame. In other 107 

words, the attractor property in the network dynamics can be used to “store” the location of 108 

an occluded object over time to track it. The initialization process will be switched on only 109 

when the neural network model is not in its attractor state. Overall, our proposed integrated 110 

approach maintains the advantage of convenient implementation of the mean-shift method 111 

while solving occlusion problems in the object visual tracking at a low computational cost.  112 

 113 

2.1 Basic mean-shift tracking method 114 

Before occlusion, the average size of the object’s contour is calculated based on the visual 115 

object features using commonly used mean-shift algorithm for the object tracking [10]. The 116 

mean-shift procedure is employed to calculate a new target location in current frame based 117 

on the location of the target in the previous frame. The mean-shift framework described here 118 

follows to the implementation in Comaniciu et al. (2000) [13]. 119 

  120 

Mean-shift is an algorithm to track objects whose appearance is defined by histograms. In 121 

the context of tracking, A target model Q is defined using a set of data point Q(x) in 122 

Euclidean space that describes the tracking object’s associated colour. In this work, the color 123 

histograms are used as a feature space [12]. The Bhattacharya coefficient is used as a 124 

similarity measure to calculate mean-shift vectors. The bin size of histograms of oriented 125 
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gradients is 6.  To incorporate image scaling with camera zooming, 4 different scales are 126 

computed using adjacent histograms. Therefore the overall value for a target model is 24 (6 127 

× 4). Q(x) denotes the kernel density estimator, as defined by: 128 

Q(x) = 1/24 ∑ K(
𝑥i−L

h
)24

i=1                                            (1) 129 

where xi represents pixel i’s value in the current frame; L is the coordinates of the center of 130 

the region of interest. h is the scale window that defines the scale of the targeted object, i.e. 131 

the number of pixels will be considered in the localization process. This density function 132 

K(.) determines the weight of nearby points for re-estimating of the mean density value. In 133 

Comaniciu et al. (2000)’s work, K(.) is the Epanechnikov kernel  and is defined by [14]. 134 

 135 

K (x) =  {2 ∗
1
π⁄ (1 − x)  x < 1

o                           x ≥ 1
                                     (2) 136 

 137 

The translation offset of the mean-shift vector ∆x is computed by the following: 138 

∆x =  [
∑ 𝑥𝑖K(‖(𝑥i−𝑥0)/R‖

2n
i=1 )

∑ K(‖(Xi−X0)/R‖
2n

i=1 )
] − 𝑥                                            (3) 139 

where K(.) is a radially symmetric kernel as descripted in equation (2). The bandwidth R 140 

defines the tracked object region.  The weight at pixel xi is estimated assuming it follows a 141 

uniform distribution. The new position in the current frame is calculated by the mean-shift 142 

vector iteration according to Equation (3).  143 

 144 

2.2 Level-set based active contour 145 

The traditional mean-shift requires a targeted object to be a rigid shape, such as a circle or a 146 

rectangle. However, the mean-shift tracking approach can suffer from inaccuracy of object 147 

representations [12], because it does not entirely represent the object shape and may contain 148 
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non-object regions as part of the tracking object. Although some researchers have used 149 

deformation or similarity parameters techniques, those approaches were only used for 150 

tracking the affine parameters and unable to handle local deformation of the objects, 151 

especially when occlusion occurs [15].  152 

    In this work, we adapt the level-set based active contour approach into the object tracking. 153 

The level set method that was originally proposed by Sethian and Osher (1999) [17]. It was 154 

used to implement object segmentation by evolving a closed contour to the object’s 155 

boundary [18-19]. Implicit level set function ∅(x) encodes the signed distances of the pixels 156 

x from the tracking object boundary.  The object’s region is implicitly defined as the zero 157 

crossings in the level set grid.  In this manner, the level set can change its topology of object 158 

contour while maintaining the form of a graph. Evolution of the contour is governed by 159 

computing the regional energy: curve evolution is first performed globally (Figure 1 (A)), 160 

and then locally modified each iteration until close to the desired object’s boundary (Figure 161 

1(B)). In order to derive a density estimator in the mean-shift tacking, Equation (2) has been 162 

modified to: 163 

K (x) =  {
1/n(∑ ∅(𝐸(𝐶, 𝑐1, 𝑐2))𝑛

𝑖=1 )  x < 1
o                           x ≥ 1

                                                                 (4) 164 

Mumford and Shah (1989) first proposed a method of segmenting the image into 165 

nonverlapping regions using an energy function. In our work, a special case of Mumford-166 

Shah model is used to solve minimisation problem during segmentation, followed up the 167 

Chan and Vese (2002)’s approach. We assume that image consists of two regions that can 168 

be approximated using piecewise-constant intensities. For image Q(x), the energy function 169 

is : 170 

E(C, c1, c2) =  ∫ U(x)|Q(x) − 𝑐1|2
inside(C)

dx + ∫ U(x)|Q(x) − 𝑐2|2
outside(C)

dx + |C|             (5) 171 
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where C is the approximated contour for the image Q(x); inside(C) denotes the inner region 172 

of contour C, and outside (C) denotes the outer region of the contour. The first term and 173 

second term in Equation (5) are used to bring the contour close to the image intensity 174 

distribution (Figure 1B), while the third term is a constraint term and smoothness of the 175 

contour. C1 and C2 represent the average value of the pixel inside C and outside C 176 

respectively. U(x) has localization property for fast curve evolution (See section 3 for 177 

details).  178 

 179 

Figure 1. A schematic representation of implementing the level-set method for recovering 180 

occlusion in a visual space. (A) The initial curve is indicated by a red circle, which is defined 181 

by the average image density function. The region of dark blue represents the target object 182 

to be tracked. (B) The curve then evolves and gets closer to the boundary of the tracked 183 

object. (C) A shaded region represents the occluding object. The black curve is the curve 184 

evolution using a level-set approach. The orange curve is restored using the signed level-set 185 

function based on the attractor state of the neural network.  186 

 187 

2.3 Occlusion handing using neural network dynamics 188 

Traditional mean-shift tracking method does not consider occlusion effects and the 189 

inaccurate target model can easily lead to tracking failures. As illustrated in Figure 1(C), 190 

during occlusion, a completed boundary curve of the occluded object cannot be obtained.  191 

Here, we propose to model the non-rigid changes in the object’s shape using an attractor 192 

neural network, which encodes the history of the object’s contour.  193 
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 194 

After an occlusion is detected, an attractor neural network is employed to rapidly capture 195 

and then maintain the state of the tracked object’s boundary over time. In our method, the 196 

energy function used in this model is integrated with the attractor states of neural network 197 

to make fast convergence for the occluded object. Also, the energy function of the curves 198 

can avoid the re-initialization process if the neural network is already in the attractor states. 199 

Hence, the computational efficiency is greatly improved. Consequently, computational 200 

power consumption can be reduced.  201 

 202 

A standard neural network to discriminate and store sensory information over time was used 203 

[20, 21].  These types of recurrent networks are also called attractor neural networks, and 204 

under certain conditions, their dynamics can encode and store information (attractor state) 205 

in the absence of the external stimulus. This typically requires the network architecture to 206 

consist of short-range excitatory and long-range inhibitory lateral connections [22]. In 207 

particular, the strong short-range recurrent excitation allows localized and activated neural 208 

activity to be sustained when the stimulus is removed.  209 

As shown in Figure 2(A), we demonstrate an example using three neural populations in the 210 

network model. Let 𝐴𝑒𝑥𝑐1(𝑥, 𝑡) and 𝐴𝑒𝑥𝑐2(𝑥, 𝑡) are excitatory variables at position x with a 211 

time t.  𝐴𝑖𝑛ℎ(𝑥, 𝑡)   is inhibitory variables at position x , which can be described, respectively, 212 

by [22]  213 

𝜏𝑒𝑥𝑐
𝜕𝐴𝑒𝑥𝑐1(𝑥,𝑡)

𝜕𝑡
= −𝐴𝑒𝑥𝑐1(𝑥, 𝑡) + 𝐹𝑖𝑛ℎ(𝑥, 𝑡) + 𝐼𝑒𝑥𝑡1                              (6) 214 

𝜏𝑒𝑥𝑐
𝜕𝐴𝑒𝑥𝑐2(𝑥,𝑡)

𝜕𝑡
= −𝐴𝑒𝑥𝑐2(𝑥, 𝑡) + 𝐹𝑖𝑛ℎ(𝑥, 𝑡) + 𝐼𝑒𝑥𝑡2                                                      (7) 215 

𝜏𝑖𝑛ℎ
𝜕𝐴𝑖𝑛ℎ(𝑥,𝑡)

𝜕𝑡
= −𝐴𝑖𝑛ℎ(𝑥, 𝑡) + 𝐹𝑒𝑥𝑐1(𝑥, 𝑡) + 𝐹𝑒𝑥𝑐2(𝑥, 𝑡)                                          (8) 216 
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where 𝐼𝑒𝑥𝑡1  and 𝐼𝑒𝑥𝑡2 are the external inputs to the excitatory neural population 𝐴𝑒𝑥𝑐1 and 217 

𝐴𝑒𝑥𝑐2. 𝜏𝑒𝑥𝑐 and 𝜏𝑖𝑛ℎ are time constants of the corresponding neural population, respectively. 218 

𝐹𝑒𝑥𝑐1  , 𝐹𝑒𝑥𝑐2  and 𝐹𝑖𝑛ℎ  are the input-output functions to the excitatory and inhibitory 219 

population, which  can be described by 220 

𝐹𝑒𝑥𝑐1(𝑥, 𝑡) = ∫ 𝐽𝑖𝑒(𝑥 − 𝑥́)𝐴𝑒𝑥𝑐1(𝑥́, 𝑡) − 𝐽𝑒𝑒(𝑥 − 𝑥́)𝐴𝑖𝑛ℎ(𝑥́, 𝑡) 𝑑𝑥́𝛺
                             (9) 221 

𝐹𝑒𝑥𝑐2(𝑥, 𝑡) = ∫ 𝐽𝑒𝑖(𝑥 − 𝑥́)𝐴𝑒𝑥𝑐2(𝑥́, 𝑡) − 𝐽𝑒𝑒(𝑥 − 𝑥́)𝐴𝑖𝑛ℎ(𝑥́, 𝑡) 𝑑𝑥́𝛺
                               (10) 222 

𝐹𝑖𝑛ℎ(𝑥, 𝑡) = ∫ 𝐽𝑖𝑒(𝑥 − 𝑥́)𝐴𝑒𝑥𝑐1(𝑥́, 𝑡) + 𝐽𝑒𝑖(𝑥 − 𝑥́)𝐴𝑒𝑥𝑐2(𝑥́, 𝑡) − 𝐽𝑒𝑒(𝑥 − 𝑥́)𝐴𝑖𝑛ℎ(𝑥́, 𝑡) 𝑑𝑥́𝛺
 (11) 223 

where the integration is over the 2-dimensional space Ω.  The J′s are the synaptic coupling 224 

strengths which depend on the relative spatial distance x to  𝑥́. Specifically, 𝐽𝑖𝑒 represents 225 

the coupling strength from the excitatory neural population 𝐴𝑒𝑥𝑐1  to the inhibitory neuronal 226 

population, while 𝐽𝑒𝑖 represents the coupling strength from the excitatory neural population 227 

𝐴𝑒𝑥𝑐2 to the inhibitory neuronal population. While 𝐽𝑒𝑒 represents the coupling strength from 228 

the inhibitory neuronal to excitatory neural population. Note that we have ignored self-229 

inhibition within the inhibitory population. For simplicity, we allow the input-output 230 

functions F′s to be of threshold-linear type, and the τ′s to be the same for both excitatory 231 

and inhibitory populations. The exponential convergence towards the attractor state requires 232 

the following conditions to be satisfied:  233 

 234 

1 < 2 𝐽𝑒𝑒 √𝐽𝑖𝑒 𝐽𝑒𝑖            (12) 235 

0.075 < 𝐽𝑖𝑒 𝐽𝑒𝑖 < 1      (13) 236 

When the model exhibits persistent activity behavior, i.e. maintenance of the signal even in 237 

the absence of the presented stimulus (Figure 2 (B)), the neural activity is larger than 238 

baseline activity (zero) and the conditions (12-13) and bi-stable steady state solution can be 239 

obtained by solving 
dAexc1(x,t)

dt
= 0. . Conceptually, Equation (12) means that the self-240 
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excitation Jee needs to be sufficiently strong, while Equation (13) means that intermediate 241 

level of recurrent inhibition is required to suppress unwanted activations, generating a 242 

temporary “storage” behavior. The upper bound in Equation (13) is to prevent overly strong 243 

inhibition that eliminates any stimulus-based activation.  244 

 245 

When an occlusion is detected, the cue stimulus is first provided to population Aexc1, resulting 246 

in an increase in activity 𝐴𝑒𝑥𝑐1 and then sustained. When the occlusion of the tracking object 247 

is detected, the cue stimulus is activated, causing 𝐴𝑒𝑥𝑐2 to increase and then sustained, while 248 

𝐴𝑒𝑥𝑐1 is suppressed, due to inhibition. This is necessary to permit both locations of the 249 

targeted object to be tracked and maintained over successive frames.  250 

 251 

 252 

Figure 2. A simplified attractor neural network model  to illustrate persistent activity for 253 

temporary  memory storage. (A) For simplicity, the neural network considered here contains 254 

only 3 neural populations. The inhibitory connections are denoted by dash lines and 255 

excitatory connections by bold lines. (B) Sample persistent neural activities over time. The 256 

pulse input stimulus to the excitatory population  𝐴𝑒𝑥𝑐1 is provided from 5 to 20ms. When 257 

input stimulus is removed from the 2ms time point, the population activities relax into 258 

another albeit lower steady state or attractor. Note that although stimulus input (1) is 259 

received by population 𝐴𝑒𝑥𝑐1,  𝐴𝑖𝑛ℎ is also activated.  260 

(A) (B) 
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During curve evolution, we define Foutx as an attractor state in the neural network that stores 261 

the outer boundary of contour from the previous frame, while Finx is another attractor state 262 

that stores the inner boundary of contour in the previous frame. C is the approximated 263 

detected region from the previous frame. As an illustration, in a one-dimensional case, the 264 

following region-evolving algorithm defined localisation property U(x) in the x direction 265 

(the algorithm for y direction is similar) as defined by:  266 

 267 

𝑈(x) =  

{
 
 

 
 
1    if x is outside C but not inside Finx
3                                   if x is inside Foutx
−3                                 if x  is  outside   Finx
 −1     if x is inside C but not inside  Finx
0                                           otherwise

 268 

Here, we choose the values of  ±3 and ±1 as signed distances, which depends on the relative 269 

position of the initial contours to the target object. In this work, the normalized neural 270 

population activities and the associated states of curve evolution for this example are shown 271 

in Table 1.  272 

Table 1 Normalized neural population activities and the associated value of level-set 273 

function 274 

Normalize population 

activity in Aexc1 

The value of level 

set function 

Normalize 

population activity  

in Aexc2 

The value of level 

set function 

0 ~ 0.25 1 0 ~ 0.25 3 

0.25 ~ 1 -1 0.25 ~ 1 -3 

  275 

  276 

 277 
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2.4 General steps for object tracking 278 

 279 

In practice, given a pre-defined target model, our proposed algorithm can be summarised in 280 

the following steps: 281 

 282 

1. Initialise the location of the target in the current frame based on its location in the previous 283 

frame.  284 

2. Compute iterations of curve evolution for each object at an initial curve.  285 

3. Activate neural network when occlusion is detected.  286 

4. If the activity of neural network is in the attractor state, the curvature of target object will 287 

be computed based on this attractor state. Otherwise, there is no occlusion and the curvature 288 

of the target object will be calculated as usual. In this case, the neural network is not involved.  289 

5. Compute the mean-shift vector using calculated weighted colour histogram of target 290 

object. 291 

6. If the region of interest and centre of mass are similar, stop the evolution and return to 292 

step 1.  293 

 294 

2.5 The System-on-Chip implementation 295 

 296 

We employ a customized parallel architecture to implement our efficient object-tracking 297 

algorithm. The logical partitioning of the system is divided into software and hardware 298 

blocks performing video capture, subtracting background, generating active contour and 299 

modeling dynamical neural network. The system-on-chip design is partitioned into 300 

computational blocks with interconnection communication channels for performing data 301 

manipulation. This partition enhances the chances of corrected operation when the different 302 

parts of the algorithm are merged, while allowing new algorithm development to commence 303 
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in parallel with a hardware development. The following describes the architecture and 304 

design flow using a Xilinx Zynq-702 evaluation board. The FPGA design process follows a 305 

similar approach to our previous work [23]. The source code of this project can be down 306 

loaded from open source repository github (https://github.com/WOLVS/). 307 

  308 

2.5.1 Design flow 309 

We used one ARM Cortex-A9 core (at 667MHz) to implement image acquisition. Another 310 

processor core serves interrupts from the programmable logic. The programmable logic 311 

system partitioned into computational blocks with interconnected communication channels 312 

for performing data manipulation. This partition enhances the chances of corrected 313 

operations when different parts of algorithm are merged, while allowing new algorithms 314 

development to commence in parallel with a hardware development. It is essential to explore 315 

various visual tracking methods and feature abstractions in parallel in order to develop an 316 

efficient integrated system. As show in Figure 3, the process starts with checking the image 317 

boot load from a flash memory, then loading all the libraries for video decoding.  318 

 319 

 320 
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                    Figure 3. Design flow for ARM and Programmable IP integrate 321 

2.5.2 Programmable IP implementation 322 

As shown in Figure 4 (A), the foreground objects from the input frame are detected and are 323 

computed using the image density mean shift method.  The frame counter is used to facilitate 324 

pipeline calculations. The Bhattacharyya coefficient is calculated in the mean-shift module 325 

and the new location is calculated after iterations using the loop box (see Figure 4(B) for 326 

more details).  The attractor neural network block is used to keep the boundary of curve 327 

evolution at a given time period, and preserves the contour of the object during partial and 328 

full occlusion. For on-line debugging purpose, the command interpreter is designed to assist 329 

the tracking with interfaces for setting up pre-defined feature spaces of the targeted object. 330 

Thus, the “set” instruction sets the frame store to write back from memory and the “delay” 331 

instruction inserts a delay enabling screen effect that allows user to observe contour 332 

evolution during processing while the “relocate” instruction writes back entries in the frame 333 

store.  334 

 335 

Figure 4. Block diagram of object tracking (A) Block diagram of the proposed method in 336 

system view. (B) Loopbox design for running multiple iterations in five pipelines design. 337 

(A) 
(B) 

(C) 
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(C) Attractor neural network implementation: Communication protocol between the 338 

attractor neural network and level-set and mean-shift module 339 

Figure 4(C) depicts the dynamical neural network block diagram. The NN module is used 340 

to mode the attractor neural network. The βFN and rFN are the input currents for two 341 

excitatory neuron populations; the rMN is the input current for the inhibitory neuron. U(x) 342 

and F (x) are initial contour starting points; P(c0) is the initiate mass density for the mean-343 

shift  system. Q(c) and P(c) are generated the mass densities for the mean vectors.  344 

The system design block diagram can be found in Figure 5 (A) and Figure 5 (B) shows the 345 

floor-planning of the SOC data fusion platform. The neural network processing unit is 346 

located in between the two processing stages, in such a way that they are used as a fence to 347 

prevent a single data transfer from corrupting, show as the red fence in Fig.5. The dark blue 348 

fence is data acquisition and the light blue part is for HDMI interfaces. The neural network 349 

module and image processing modules are physically near to the processing stages with 350 

which they share most of their connections, lead to short paths and ultimately high stable 351 

clock frequency (200MHZ)). 352 

 353 

 354 

Figure 5 (A)Block Diagram of overall system with HDMI module included for 355 

visulasation. Image_0 module is the core module for neural network processing (B) 356 

XC702 SOC floor-planning. 357 
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3. RESULTS 358 

This section presents three realistic experiments, which are used to test the ability of the 359 

system to correctly handle occluded object. Our hardware implementation test two 360 

resolution inputs: VGA resolution 640 by 480 (VGA) video and 1024 by 768 (XGA) video. 361 

The incoming video frames are processed, using our integrated model in a system-on-chip 362 

platform, within three main stages: (1) image data preparation; (2) active contour evolution 363 

combined with attractor neural network; and (3) update mean vectors.  364 

3.1 Hardware resource analysis 365 

 366 

The implementation of the dynamic neural network with standard floating-point arithmetic 367 

units on FPGA is rather straightforward. A summary of the resource usage for the whole 368 

design is shown in Figure 6. The first column shows the type of hardware resources, and 369 

each row shows the total number of logical resources used. A memory controller used in this 370 

design consisted of single bidirectional 128-bit port configuration and two additional FIFO 371 

buffers (1025 words deep). Using this module a constant data flow at the level of 30 frames 372 

per second achieved with the image resolution of 640 by 480. The maximum operating 373 

frequency of whole design was 200MHz, which is more than enough for processing video 374 

stream (pixel clock rate of 25 MHz).  375 

 376 

Since the visual tracking system needs to access large data inside loops, the power 377 

consumption of this system is largely contributed by data transfer and memory access 378 

operations. The data operation consumes much less power than memory access.  Our method 379 

minimizes the off-chip memory access using attractor neural network, since intermediate 380 

data can be represented by population efficiency and redundant memory access are reduced. 381 

Power consumption of the whole programmable IP reported by Xilinx XPower Analyzer for 382 

the device (On-Chip) was 0.03 W [24].  383 
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 384 

 385 

                                           Table 1 Hardware resource usages and comparison 386 

3.2 Occlusion detection 387 

During occlusion, visual features of the occluded object are not observed and the object’s 388 

contour is recovered by an attractor state of the recurrent neural network. Figure 6 shows an 389 

occlusion recovery example, where one synthetic object occludes a person. Before the 390 

occlusion (Figure 6(A)), contour evolution is based on visual features and the object’s 391 

contour is complete.  392 

 393 

 394 

Figure 6. A synthetic object is occluding a walking person. (A) The first image of a sequence 395 

of images.  (B) A synthetic object is the occluding object. The white box next to the image 396 

shows the extracted objects.  397 

 398 

(A) (B) 
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Figure 6(B) shows an occlusion example, where a synthetic object (black rectangle) 399 

occludes a walking person. During occlusion, the evolution using the visual feature results 400 

in an incomplete contour. The moving person and the synthetic block are two objects 401 

labelled as A and B. When the size of object A is dramatically changed while the size of 402 

object B is remained, we label object B as occluding object A. The Euclidean distance 403 

between the two objects A and B is labelled as 𝐷𝐴,𝐵 . The current size of object A is ∅𝐴
𝑡 . The 404 

average size of object A is ∅𝐴
𝑎𝑣𝑒 . Occlusion detection is calculated using the value  405 

1

exp(−|𝐷𝐴,𝐵|)+1
×

∅𝐴
𝑡

∅𝐴
𝑎𝑣𝑒 ; if this value is less than 0.25, we assume that object A is occluded. 406 

Figure 6(B) demonstrates the correct extraction of the two objects.  407 

 408 

3.3 Moving objects with partial and full occlusion 409 

Our focus is on the tracking of occluded objects where occlusions may be present and the 410 

camera may not necessarily be stationary. However, there are not many openly available 411 

datasets with these characteristics [26]. Hence, we conduct the experiment using two case 412 

studies: walking person and children playing. Note that the popular pedestrian’s video clips 413 

in the Caltech database [26] would be too challenging for this work, of which one of 414 

objectives is for prototyping. This is mainly due to the detection module with weak response 415 

to illumination changes as well as the dramatic changed in size of people in the video clips 416 

(see Section 2).  417 

 418 

 419 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 
 
 

 20 

 420 

Figure 7. Tracking of object in a multiple people walking sequence with total occlusion. 421 

Under each image is labelled the frame number. The video clips can be viewed at the 422 

following link (https://www.youtube.com/watch?v=Kq5dxpiYyjs).  423 

 424 

A multiple people walking sequence is illustrated in Figure 7. In this scene, partial 425 

occlusions occur repeatedly and there is total occlusion towards the end of the sequence 426 

before the person reappears. Hence, the detected region can be dramatically changed and 427 

even disappeared altogether. When the mean shift tracker fails to generate the mean vector, 428 

the curve evolution needs to be restarted and many computational steps are involved.  In 429 

Figure 8, the results of tracking integrated with the attractor neural network can correctly 430 

depict the active contour of moving persons during partial occlusion by recovering its hidden 431 

parts (frames 45, 63, 72, and 81, in Figure 7). During total occlusion, the (yellow) curve 432 

predicts and evolves to locate the moving object in the preceding frame even if the real 433 

object is fully concealed (frames 54 and 90, in Figure 7). Significant partial occlusion and 434 

total occlusion also occur in the sequence. During total occlusion, the bottom-up feature 435 
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abstraction guides the contour evolution. After total occlusion the person is detected 436 

although the detected shape is not exactly the same as the object’s contour.  437 

 438 

3.4 Comparison 439 

 440 

Sometimes the contour shape of the tracked object can be occluded or undergo profile 441 

variation, as shown in the above experiment. There are two challenges that make the scene 442 

an interesting example for object tracking. The first challenge is when a section of the 443 

contour is occluded unpredictably. The other challenge is a cluttered scene, in the sense that 444 

the moving object and the background have a similar random texture. A cluttered scene 445 

makes distinguishing between background and foreground difficult. A traditional mean-shift 446 

algorithm alone might not be able to track this particular type of scenario since the prior 447 

colour is computed inaccurately due to the cluttered scene [12].  448 

 449 

Figure. 8 shows a realistic example of occlusion. In this scene, two children were playing, 450 

and partial occlusions occurred repeatedly. When occlusion occurs, there is less relevant 451 

information available to the model’s visual inputs for tracking. However, our model is still 452 

able to track the targeted object by inferring from the geometric contour in the previous 453 

frames (Figure 8 (A)). In particular, the attractor neural network model is able to sustain the 454 

significant deformation occurring over time to enable the continuity of tracking. These 455 

combined mechanisms present considerable benefit when the occluded object is highly 456 

mobile. In comparison, the particle filter, which is one of the most common geometric 457 

models for tracking, is not as effective and robust in generating the same object 458 

representation [12]. The results are shown in Figure 8 (B). The poor accuracy of the particle 459 
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filter may be because it uses only the energy function to weight particles and evolve the 460 

curve over time.  461 

 462 

 463 

 464 

Figure 8.  Tracking children playing to test for object tracking with occlusion. (A) By 465 

constraining the curve to retain a similar shape between consecutive frames, the tracked 466 

object with partial occlusion was maintained even in the presence of a similar (colour) object 467 

in the same frame. (B) Tracking method using particle filter, in which the tracked object was 468 

unintentionally switched to a similar object that has occluded the originally tracked object.  469 

(The particle filter experiment here used 35 particles.) 470 

An important issue of visual tracking that often comes up in practice is that of the algorithm’s 471 

computational efficiency. We compare the computational efficiency of our proposed method 472 

with the basic mean-shift tracking method [11] and particle filter method [12]. This is 473 

achieved by computing the average computational time used to track one frame of video. 474 

Table 2 shows the running time for the three methods in the system-on-chip platform. The 475 

particle filter method outperforms the tradition mean-shift method because the mean-shift 476 

method uses local max/min density value and minimise the distance in the current frame. It 477 

(A) (B) 
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is noted that our proposed integrated method requires less computational cost compared to 478 

the other two methods; about 10% lesser than the basic mean-shift method and 20% lesser 479 

than the particle filter method.  480 

 481 

Table 2 Comparison of computational efficiency in terms of averaging time required to track 482 

one frame with 1024 by 768 (XGA format) and 640 by 480 (VGA format). 483 

Video Proposed method 

(s) 

Mean-shift 

method (s) 

Particle filter 

method (s) 

Multiple people walking scene 1024 by 

768 (Figure 8)  

1.115 1.235 1.345 

Children’s playing scene 1024 by 768 

(Figure 9) 

0.731 0.812 0.936 

Multiple people walking scene 640 by 480 

(Figure8)  

0.038 0.041 0.045 

Children’s playing scene 640 by 

480(Figure 9) 

0.033 0.036 0.039 

 484 

4. DISCUSSION 485 

There has been significant scientific debate regarding the appropriate incorporation of 486 

biological approaches to address computer image processing. Typically, neurobiologically 487 

realistic computational models are computationally costly [27]. In this paper, we strike a 488 

compromise between biologically inspired and efficient computation by adopting an 489 

attractor neural field model to the traditional computer vision method of curve evolution, 490 

allowing for a reduction in curve evolution iterations during object occlusion situations, and 491 

hence improving computational efficiency. Specifically, we have used traditional mean-shift 492 

tracking and level-set methods to track the contour of a moving person, and when partial or 493 

total occlusion occurs, the attractor states of a neural field model can store the contour 494 
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information in visual space to refine the evolution of the curve and preserve the object 495 

contour in the subsequent frame. This eliminated the computationally expensive re-496 

initialization of the curve evolution at every new iteration or frame. Importantly, the system 497 

is able to process, in real-time using only one low-power Xilinx Zynq-7000 system-on-chip 498 

platform. Overall, our proof-of-concept work has successfully demonstrated the advantage 499 

of incorporating neuro-inspired features in efficiently solving image-processing problems.  500 

 501 

Despite the positive results demonstrated in this work, there remain some limitations to our 502 

approach. For on-chip implementation, slow memory speed limits the feed-in frame rates in 503 

our system. Our current implementation also could not handle scenes with objects 504 

undergoing dynamical scale change (e.g. due to camera’s zooming) and unpredictable 505 

motion (e.g. sharp turns and sudden stops). Furthermore, the basic idea of the background 506 

updating we have implemented is based on the assumption that the pixel value of 507 

background changes slower than those of the tracked objects. In many realistic scenarios, it 508 

is a valid assumption. However, tracking non-uniform color object can potentially become 509 

challenging. These issues will be addressed in the future, and extended methods can then be 510 

implemented on the challenging pedestrian datasets such as the Caltech pedestrian datasets.  511 

 512 

In this work, although we have only adopted a neural field model with basic attractor features, 513 

in future work, we can extend it to other more complex visual tasks using more dynamic 514 

neural field capabilities. For example, our present work can easily be extended to more 515 

complex visual search or visual motor control paradigms [28]. By equipping the neural field 516 

model with adaptive mechanisms, it can produce anticipative and enhanced tracking 517 

capabilities especially on time-varying stimuli. Also, our framework can be expanded into 518 

multiple object tracking. With multiple objects to be tracked simultaneously, multiple nodes 519 
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can be added for multiple regions of occluded object. It should be noted that in this work, 520 

we have assumed that the tracked object is not moving out of the frame and the first image 521 

has the tracking object already in the visual scene.  522 

 523 

To summarize, we have successfully integrated traditional mean-shift tracking and level-set 524 

methods with an attractor neural field model, and solved, as proof-of-concept, various 525 

occlusion problems during tracking moving objects. It opens up the opportunity of providing 526 

low-power neuro-inspired system-on-chip platform for the challenging visual object 527 

tracking application.  528 

 529 

 530 
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