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Abstract 
This paper proposes a novel method for robust visual tracking of arbitrary objects, 

based on the combination of image-based prediction and position refinement by 

weighted correlation. The effectiveness of the proposed approach is demonstrated on 

a challenging set of dynamic video sequences, extracted from the final of triple jump 

at the London 2012 Summer Olympics. A comparison is made against five baseline 

tracking systems. The novel system shows remarkable superior performances with 

respect to the other methods, in all considered cases characterized by changing 

background, and a large variety of articulated motions. 

The novel architecture, from here onwards named 2D Recurrent Neural Network 

(2D-RNN), is derived from the well-known Recurrent Neural Network model and 

adopts nearest neighborhood connections between the input and context layers in 

order to store the temporal information content of the video. Starting from the 

selection of the object of interest in the first frame, neural computation is applied to 

predict the position of the target in each video frame. Normalized cross-correlation is 

then applied to refine the predicted target position. 

2D-RNN ensures limited complexity, great adaptability  and a very fast learning 

time. At the same time, it shows on the considered dataset fast execution times and 

very good accuracy, making this approach an excellent candidate for automated 

analysis of complex video streams. 

 

Keywords: Recurrent Neural Network, Convolutional Network, Video Tracking, 

Automated Video Analysis. 

1  Introduction 

The visual tracking is the generic process of locating one or more objects in the 

visual field. Tracking is done instinctively and without any effort by humans, but for 

artificial systems that use cameras, can be a very difficult and time-consuming 

process. Errors in tracking are often due to sharp changes in the motion of objects or 

camera motion, partial occlusions, changes in the appearance of the objects; for non-

rigid objects, the changes in the appearance are most of the time the main problem to 

be addressed [1].  From this point of view, even though assumptions are often made 

to constrain the tracking problem within the context of a particular application, it is 

nowadays clear that  a robust representation of the target appearance is a crucial issue 

in order to successfully implement tracking methods. 

Based on the learning strategy adopted, tracking algorithms can be classified into 

two main categories: generative and discriminative methods. Generative methods rely 



 

on a statistical model of the target appearance, usually estimated from training  

frames. In order to guarantee robustness of the representation and to maintain the 

integrity of the target appearance, various approaches have been proposed, including 

sparse representation [2-6] and on-line density estimation [7]. Conversely, 

discriminative methods rely on a direct implementation of classifiers aimed at  

discriminating the target from the surrounding background  [8-10]. Also in this case 

several significant implementations have been proposed, including multiple instance 

learning [8], structured support vector machines [9], on-line boosting [10], random 

forests [11-12] and Kernel Regularized Least Squares [13-14]. These approaches are 

often characterized by the adoption of very peculiar features for object representation, 

such as  Haar-like wavelets, color histograms and orientation histograms, which 

generally improve the detection of rigid objects but may not generalize well in 

presence of deformable targets and other challenges arising from complex video 

sequences.  

In this paper, an original method is proposed for robust visual tracking, based on a 

combination of image prediction and weighted correlation matching techniques. The 

image prediction is made through a novel neural networks architecture named Two-

dimensional Recurrent Neural Network (2D-RNN). 2D-RNN is derived from both 

Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). 

 

RNN is an artificial neural network with feedback connections between nodes. 

Due to this peculiar structure, a RNN  has the capability to model dynamic systems 

[15]. Among RNNs, Elman’s neural network (also known as Simple Recurrent 

Network  or SRN) is a partially recurrent  network that has a simple three-layer  

structure and a set of additional context unit receiving input from and feeding output 

to the intermediate (hidden) layer [16]. Training and convergence of SRNs usually 

take a long time, which makes them useless when dealing with high resolution images 

and in case of  time-critical applications [4]. Authors in [31] propose deep tracking 

through RNN and unsupervised learning (but only using synthetic dataset) on 

simulated scenario representing a robot equipped with a 2D laser scanner. 

A CNN is a feed-forward artificial neural network where the arrangement of 

individual neurons is biologically inspired by the concept of “receptive visual field”. 

A CNN  exploits local correlation of data by enforcing a local connectivity pattern 

between neurons of adjacent layers: neurons of “following layers” take as input small 

overlapping neurons of the “preceding layers”, ensuring a  good representation of the 

original image and a reasonable invariance to planar translation of the image data 

[17]. Due to their representation power, CNNs have recently attracted a considerable 

attention in the Computer Vision community [4], particularly for image- and video-

based object recognition. CNNs  reach excellent results in object 

detection/recognition (see for example [24-28]) but an extensive use of CNNs in this 

domain requires long training phases and good GPUs [27]. 

More questionable is the adoption of CNNs for generic visual tracking; 

performing on-line learning is possible but it is not straightforward, due to the usually 

large network size; moreover, according to Hong and colleagues [4], the extraction of 

features from the deep structure may not be appropriate for visual tracking due to the 

relatively poor localization accuracy and due to the function of deep layers, mainly 

related to the semantic content of the image.  

With this respect, a recent successful attempt has been  proposed by Bertinetto 

and colleagues[29]; they  introduce a fully convolutional network in which a deep 



 

conv-net is trained to address a more general similarity learning problem in an initial 

offline phase, and then this function is simply evaluated online during tracking.  

 

The architecture proposed in this paper, the 2D-RNN, is a variation of the 

Elman’s architecture. More in detail, this neural architecture is derived from a CNN 

where the input layer captures small areas of the input image. This mapping of the 

image pixels allows to reduce both the training time and the network dimension, yet 

keeping the temporal information embedded in the video and the image details 

unaltered. 

 

With respect to the seminal work presented in [23], this paper focuses on the 

performance of 2D-RNN and gives a detailed comparison of the proposed tracker 

against some baseline trackers. In particular, three discriminative and two generative 

methods have been tested on the same dataset: 

Boosting Tracking -  a real-time object tracking based on a novel on-line version of 

the AdaBoost algorithm [10]; 

MIL Tracking - a real-time tracker based on Haar features and multiple instance 

learning [8]; 

KCF Tracker   - a novel tracking framework that utilizes intensity images and founds 

on some mathematical properties of the circulant matrix to enhance the processing 

speed [13-14],  

Cross Correlation  - a baseline generative tracker implemented by using a normalized 

cross correlation and frame by frame search [18], 

Meanshift tracker - a well know generative tracker based on color histograms and  the 

meanshift procedure in order to optimize the location of the target [19]. 

 

The paper is organized as follows: in section 2, the tracking problem is 

analytically stated, the solution based on the novel 2D-RNN architecture is described 

and compared with the Elman’s SRN. A case study for video tracking (triple-jumping 

runner and related dataset) is first introduced in section 3; then experimental steps and 

experimental protocols are defined. Section 4 is devoted to the comparison and 

discussion of the experimental results. Conclusions and future developments are 

finally discussed in section 5. 

2  Object tracking in real-time video 

In this paragraph we discuss about the tracking problem for scenes including non-

rigid and articulated bodies; thereafter the two types of neural networks utilised in the 

experimental section, the original Elman’s SRN and the proposed 2D-RNN are 

detailed.  

2.1   Tracking  

In a tracking problem, an object can be defined as “anything that is of interest for 

further analysis”[3]. Objects can be represented by their varying shapes and 

appearances; the position of a single object can be traced through a single point as the 

centroid or by a set of points related to a small region in the image; for example 

primitive geometric shapes (suitable for rigid object but also used for tracking of non-

rigid objects), object silhouette and contour, articulated shape models or skeletal 

models.  In the proposed method a simple rectangular shape (bounding box or BB) is 

used. The BB has a fixed dimension for all frames of the database. Note that for the 



 

purposes of this paper, the initialization of the tracking process, for example by 

moving objects detection or direct object recognition, it is not explicitly considered;  

as a consequence the object of interest must be defined at the initial time step by 

manually placing a starting BB in the first frame. Afterward, the tracking algorithm 

iteratively determines the object position in the next frame by the following three 

steps: 

–  Step 1: prediction of the  next-frame by 2D-RNN. 

The past i images inside the BB are fed as input to a 2D-RNN, which produces as 

output the prediction of the expected image content of the bounding box (sub-image) 

for the current time step. 

–  Step 2 : correlation-based refinement. 

The expected position of the bounding box for the current time step can be evaluated 

and refined through the correlation between the predicted sub-image (2D-RNN 

output) and the current image. Let C(x,y) be the correlation matrix between the 

predicted sub-image and the current entire image. The arguments of the correlation 

matrix represent the relative coordinates between the sub-image and the entire image. 

Each element represents the value of the correlation between the sub-image and the 

entire image for those relative coordinates. The correlation matrix is computed by 

convolution in the Fourier domain; the position of the maximum of the correlation 

matrix corresponds to the best prediction of the BB position for the current time step.  

–  Step 3 : Computation of the expected position of the BB  

In general, the correlation matrix can have more than one local maximum, and it can 

happen that the target BB position is close to a local maximum that is not the absolute 

maximum. Such issue is quite relevant  when the dynamic object of interest is subject 

to partial occlusions, abrupt deformations, etc. With the purpose to solve this issue, in 

our method the correlation matrix C(x,y)  is weighted with a two-dimensional 

Gaussian function centered at the extrapolated center position  (���
�,���� , 	��

�,����) , 

which is evaluated as follows: at each time step t, it can be assumed that the object 

position has been detected in the previous t−i time steps, through the centroid of the 

bounding box. The system then computes the extrapolated position of the BB based 

on the measured velocity of the two most recent frames. In particular, the coordinates 

��
�,����  and 	�

�,����   of the extrapolated center position are defined through : 
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Where  
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The weighted correlation matrix is evaluated as: 

 

Cw(x,y) = C(�, �) · G( �� �
�,����;  	��
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Where G( ���
�,����; 	��

�,����; �, �) is a two-dimensional Gaussian function centered on 

(���
�,���� , 	��

�,����). 

 



 

The refined center position is given by the coordinates at which the weighted 

correlation matrix has a maximum: 

(��� , 	��) =  arg max�C! (x, y)#       (6) 

 

 

 

 

 

Fig. 1. a) The 2D-RNN takes as input the images in the bounding box at previous time steps 

and yields as output a prediction of the image in the bounding box at time step t. b) The 

correlation between the predicted bounding box image and the entire image is evaluated. 

(��� , 	��) are the relative coordinates between the bounding box and the entire image for which 

the correlation is maximum. c) The correlation matrix C(x,y) is weighted with a two-

dimensional Gaussian function centered at the extrapolated center position; (��� , 	��) are the 

relative coordinates between the bounding box and the entire image for which the weighted 

correlation is maximum. d) The bounding box image at time step t is obtained by cropping the 

entire image at coordinates (���, 	��). 

Note that using the above tracking scheme  also the predicted content of the BB can 

be evaluated (both the dynamic background and the object of interest) by considering 

the residual error corresponding to the maximum of the correlation. 

Figure 1 shows in detail the tracking scheme based on the 2D-RNN (or SRN to have a 

comparison) next frame prediction.  



 

2.2 The Elman’s neural network 

In a Elman’s Simple Recurrent Network (SRN) an input, hidden, context, and an 

output layers are defined. The outputs of the context neurons and the external input 

neurons are fed to the hidden neurons. Context neurons are known as memory units 

as they store the previous output of hidden neurons. At the time step t, the context 

layer nodes carry the output of hidden layer nodes of the time step t−1 iteration and 

supply that as input during processing of the time step t data.  The SRN architecture is 

shown in Fig. 2.  

   

Fig. 2. Architecture of the SRN. The layers are fully connected with a feedback connection 

between the hidden and the context layers. The context layer provides both actual and delayed 

inputs to the hidden layer. 

Considering I, S, C and O as input, hidden, context and output layer vectors, 

respectively, the vector components at the tth iteration can be written as [20]:  

$%
� ∈ ', ( = 1,2, . . , ,        (7) 

-.� ∈ /, 0 = 1,2, . . , 1       (8) 

2�� ∈ 3, 4 = 1,2, . . , 5       (9) 

6.� = 7         (10) 

-.
� = 89:.

� ;        (11) 

6.� = -.���        (12) 

In the above equations, n, m and l represent the numbers of nodes of input, 

hidden, and output layer, respectively,  f(⋅) indicates the activation function of the qth 

hidden node at the tth iteration, while 6.�  denotes the input of the qth context layer node 

at the tth iteration and :.�  is the linear output of the hidden node q at tth iteration.  

Let W1, W2 and W3 be the weight matrices between input and hidden layer, 

hidden and context layer and hidden and output layer , respectively. The output of 

hidden layer and output layer nodes at the tth iteration with these weight matrices can 

be represented by the following equations :  

 

-.� = 89∑ >�.%$%�
?
%@� + ∑ >�.A-A

���B
A@� ;     (13) 

 

2�
� = 89∑ >C�.-.

�B
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where the  w
1qp

 , w
2qj

 ,  w
3rq

  are the elements of the weight  matrices W1 , W2, and 

W3,  respectively.   

 



 

The backpropagation algorithm is used to perform the neural network training 

[21]. In such algorithm, the error is minimized to converge to the target value by 

updating the link weights at each iteration through the equation (15).  

 

D?�E = DFGH + I∆D         (15) 

 

where α is the learning rate. 

 

The error E expresses the difference between the set target at the output nodes and 

the actual output obtained as defined in equation (16):  

 

J(D) = �
� ∑ ∑ (3�� − 2��)�G

�@�
�
K@�        (16) 

 

where  Ot,r and ot,r  represents the set target and the actual output from the network at 

the tth iteration, respectively,  and e is the number of epochs. 

2.3   Two-dimensional Recursive Neural Networks  

In the proposed 2D-RNN, hidden, context and output layers are organized in two-

dimensional arrays all having the same dimensions as the input image.  Unlike the 

Elman’s network, the layers of the proposed network are not fully connected to each 

other. In particular , denoting by (x,y) the index of row and column of the matrix of 

the hidden layer, respectively, 2D-RNN  uses for each element (x',y') of the input 

matrix  also its nearest elements in the connection with the correspondent element of 

the hidden layer (x,y). This type of association is replicated in the connection of the 

context layer with the hidden layer and in the connection between the hidden layer 

and the output layer, as shown in figure 3.  

    

Fig. 3. Architecture of the 2D-RNN. Mapping of the image pixels from the input and context 

layers. Each node in the hidden layer receives input from both the actual and delayed image. 

Spatial information is preserved through the layers 

Note that neuron (x,y) of the hidden layer is connected to all neurons (x',y') of the 

input layer and to all neurons (x'',y'') of the context layer with:  

x - k ≤ x’ ≤ x + k , y – k ≤ y’ ≤  y + k      (17) 

 

x - k ≤ x” ≤ x + k , y – k ≤ y” ≤  y + k      (18) 

 



 

Anyway, the neuron at position (x,y) of the hidden layer is connected to the 

corresponding neuron of the input layer and to its nearest neighbors, and to the 

corresponding neuron of the context layer and to its nearest neighbors. Similarly, each 

neuron of the output layer is connected to the corresponding neuron of the hidden 

layer and to its nearest neighbors.  

Also in this case the backpropagation algorithm is used to perform the training of 

the network. Also the additional k parameter (dimension of the neighborhood) 

requires an optimization, and the equations (13) and (14) are modified in this forms: 

 

-�L� = 89∑ ∑ >��LME
LNK
E@L�K $ME��NK

M@��K + ∑ ∑ >��LME
LNK
E@L�K /ME����NK
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3  Experimental results 

3.1  Basic assumptions and datasets 

A limited but challenging dataset of sequences, extracted from the final of  triple 

jump at the London 2012 Summer Olympics, is used in order to validate the proposed  

tracking algorithm. The original video data is freely available on the YouTube 

platform [32]. As illustrated by few frames in fig. 4, the dataset is characterized by 

severe conditions that strongly affect  the application of tracking techniques. In 

particular it is worth noting the presence of a moving target (the athlete) over a 

dynamic background (due to the continuous motion of the camera);  additional critical 

issues are also present such as noise, articulated motion and scene illumination 

changes. 

                        

   

Fig. 4. Frames extracted from the triple jump sequence. Several visual artifacts can be noticed, 

such as moving background, changes in the object (the runner) shape, changes in lighting and 

occlusions. 

 

 

A total number of 10 sequences is used in the experimental phase; each sequence 

relates to a different athlete, as shown in table 1.   



 

Sequence Athletes’ name Tot frames 

1 Platniski 97 

2 Laine 103 

3 Dong 108 

4 Copello 113 

5 Oke 117 

6 Compaore 96 

7 Sands 98 

8 Greco 119 

9 Donato 119 

10 Claye 127 

Table 1:  Sequences considered in the MP4 video format (stored in a single file) 

The sequences are in MP4 video format (all are stored in a single file) and are 

characterized by a  frame rate of 29 images/s; the dimension of each original frame is 

1280×720 pixels. Each sequence  has a duration of about 45 seconds but temporal  

subsampling is applied taking only  one frame every ten for further processing. 

Therefore, for each sequence the number of frames processed varies between 97 and 

127. 

Our approach to visual tracking is not in terms of object detection performed 

frame by frame, but it rather refers to the ability of continuously establishing  the 

correspondence of a given foreground area (containing the object of interest) between 

two subsequent frames[33]. As stated in the introduction, object-tracking methods 

often impose external constraints in order to guarantee adequate tracking 

performances; these constraints   almost always concern the appearance of objects. 

Most tracking algorithms also assume some a priori knowledge on the motion of the 

objects, for instance stating  constant velocity or constant acceleration of the target. 

Finally, as discussed in the previous section, prior knowledge about the number and 

the size of objects, or the object appearance and shape, can be used to simplify the 

problem. The proposed method does not make  assumptions. Furthermore, it does not 

use any pre-processing of the image to remove external objects (i.e. TV-written) and 

it does not apply any pre-processing such as band-pass filtering or segmentation. The 

result of  the developed object tracker is shown by a simple bounding box  that 

contains the athlete in all different frames of the video (see figure 5). The gold 

standard for each frame is provided through manual labeling of the region of interest 

and more specifically by defining the position of the pelvic bones of the athlete.  

In summary, the main processing steps for the experimental phase are the 

following:   

• temporal subsampling and extraction of the single JPG frames for each 

sequence; 

• resizing by interpolation of all the frames from the original number of pixels 

(1280×720) to a small image dimension (128×72pixels) more convenient for 

further processing ;  

• conversion of color  frames  to  grayscale;  

• 2D-RNN training and validation.  



 

Training and validation are repeated following a cross-validation scheme; for each  

combination of training and validation sets, a comparison between the original SRN 

with respect to the novel 2D-RNN is performed. Input data are the same for both 

networks. 

3.2  Configuration 

Both networks require a careful evaluation of configuration parameters. The SRN 

can identify the single-order dynamic system using fixed coefficients  in the context 

neurons, using weight = 1 in the feedback connections with the context layer; SRN 

best architecture needs 2500 input, 250 hidden, 250 context and 2500 output neurons. 

Note that the input and output layers are related to the frame input matrix (the 50x50 

pixels bounding box) while the number of neurons of the context and hidden layers 

have been optimized trying several configurations. 

2D-RNN is not fully connected as the SRN; it requires 2500 input, hidden, 

context and output neurons (the numbers of neurons for all layers is fixed with respect 

to the frame input matrix). Best results are obtained for a number of nearest neighbors 

k=3, using weight=1 in the feedback connections with the context layer. For both 

RNNs and for all neurons a logistic standard transfer functions has been adopted.  

4  Results and Discussion 

4.1  Performances of RNNs 

 

In order to check  the independence from the sampling of the dataset, a k-folder 

cross validation (5x2) has been used in the simulations. First round of cross-

validation involves partitioning a sample of data in two complementary subsets, and it 

carries out an investigation on one subset (train set of 5 videos), while the validation 

is made on the other subset (test set of 5 videos); after that the experiment is repeated 

swapping train and test sets. To reduce the variance, 5 rounds of cross-validation are 

carried out choosing random different partitions, and the validation results are 

averaged over the 10 (5x2) rounds. 

In table 2 the comparison of the best setting for both RNNs on the same random 

train test and blind test set is shown; learning times refer to a simple desktop 

architecture based on an Intel CoreTM 2 DUO CPU E 8400 @3.00 GHz and 4 GB 

RAM. 

Configuration 

Parameters 

2D-RNN SRN 

 Input Neurons 2500 2500 

 Output Neurons 2500 2500 

 Hidden Neurons 2500 250 

 Context Neurons 2500 250 

 Learning rate 0.05 0.005 

Number of  Epochs 130 280 

Number of  

Connections 

367500 1312500 

 Learning time (s) 1092 9230 

 Best rmse 0.104 0.114 

Table 2:  Performance analysis of the 2D-RNN and SRN for the same blind test set 



 

Table 2 clearly indicates that the learning phase of 2D-RNN is faster than SRN, 

and 2D-RNN produces the best results. The best learning rate for both RNNs are 

reported. In particular, the root-mean-square deviation (rmse) is repeatedly computed 

on the test set after a random selection of the training set followed by the learning 

phase. The results for the 2D-RNN, in 5x2 cross validation,  is a mean  rmse = 0.105 

± 0.003 . In summary, table 2 proves that  2D-RNN, compared to SRN on the same 

dataset, provides a better rmse; the results are stable for the 5x2 cross-validation and 

2D-RNN is faster than SRN in terms of learning time and epochs. The complexity of 

the 2D-RNN is lower than SRN in terms of connections.  

4.2   Introduction to  tracking results 
Visual tracking outcomes can be displayed through the distances between the center 

of  manual annotation (the pelvic bones) of the athlete and the center of bounding box 

in the 2D-RNN next frame prediction. Using only one frame every ten and starting 

from the original frame rate information, the RNN predictions correspond to one 

image every 0.344 s . In figure 5 corresponding samples for the SRN (left) with actual 

frames and next frame prediction are indicated, together with the  correlation 

diagram.  The same results are manifested for the 2D-RNN in figure 5 (right). In the 

surface plot, the peak of the cross-correlation matrix occurs where the sub images are 

best correlated.  

        

Fig. 5. In this composed pictures with both SRN (left) and 2D-RNN (right), are shown the 

current frame, predicted next frame and the correlation diagram. The blue bounding box 

displays the gold standard while the green box displays  the position computed by the systems. 

It should be highlighted that all the next frames prediction in all pictures are 

blurred because the RNNs produce a probabilistic distribution of intensity values. 

This distribution reflects the variability of the  images used to train the RNN. In a 

natural manner, the athletes move their limbs in different ways during the run-up. The 

issue that the body image is blurred is the consequence of the inability to obtain an 

accurate prediction. Moreover images with clear prediction of the part of the body 

with respect to blurred images, would reduce correlations on the average, and 

consequently larger mean errors, due to the variability and not exact predictability of 

the next image. This is a compromise viable because in the tracking problem it is only 

necessary to have an accurate prediction of the center of the BB to follow the object 

of interest. 

 

In this paper object tracking is evaluated at pixel level [22]. There are no lost 

frames in the proposed approach, therefore evaluation metrics based on accuracy are 



 

not used. With the aim to show the performances on the correct location of the BB, a 

position based measure (PBM) can be defined as in [22]: 

 

OPQ = �
RS

∑ T1 − U(V)
WX

YV        (21) 

 

Where 

 

Z[ = �
� �(PPE) + (PP[)#        (22) 

 
depends on the dimensions (width and height) of the bounding box. In equation 21, 

\] is the total number of frames considered whilst D(i) is the L1-norm distance 

between the gold standard and the BB predicted by RNN. Using such index in our 

dataset the resulting mean of PBM is expressed always for the first 85 frames. After 

the frame 85 there is a large deviation, due to the runner landing on the sand. 

A further measure quite convenient for comparison is the deviation index. 

Deviation defines the capability of a tracker to determine the correct position of the 

target and measures the accuracy of tracking [22]. In particular, by using Deviation as 

the error of the center location expressed in pixels as a tracking accuracy measure: 

 

^_`$ab$2, = 1 − ∑ H(Wc,dWc)c∈ef
|hi|         (23) 

 

where  j(ZV , kZV) is the normalized distance between the centroids of the bounding 

box (BB) and the gold standard while |Ms| denotes the set of frames in a video where 

the tracked BB  overlaps for more than 50%  the golden standard bounding box.  

In according with [23] another viable measure for comparison is the Euclidean 

Distance (number of pixels) from the center of the bounding box and the gold 

standard.  

4.3  Results for tracking: 2D-RNN vs baseline trackers 

In the following comparison, five baseline trackers, all freely available on the 

OpenCV platform, have been considered. A short list of the main features of these 

trackers is given in the table 3. 

 

Most of times, the configuration of the trackers did not require special effort: in fact, 

we did not observe substantial effects of small variations of the configuration 

parameters on the performance of the trackers.   

 

Default configurations have been used for  Boosting  [10], MIL  [8],  KCF  [14],  

Cross Correlation [18].For the Meanshift tracker [19], the optimal number of 

histogram bins has been set in the range 120 to 200, depending on the sequence.  

 

All the metrics used in the results are calculated for the resized video (1/10), for a 

bounding box of 50x50 pixels, and taking a frame every 10 frames.  

 

 

 



 

Tracker Target 

Region 

Appearance Model Motion 

Model 

 Method Update 

2D-RNN Bounding 

Box 

Recursive neural 

networks  

(gray level intensity) 

Uniform 

search,No 

motion 

model 

Recursive neural 

networks, and 

weighted 

correlation  

(generative) 

Incremental 

update 

Boosting  Bounding 

Box 

Haar features, 

Orientation 

histograms, Local 

Binary Patterns 

Uniform 

search  

Ada Boost 

Classifier 

(discriminative) 

 

Incremental 

update 

MIL  Multiple 

Boxes 

Haar features Uniform 

search 

MIL Boost 

Classifier 

(discriminative) 

Incremental 

update 

KCF  Bounding 

Box 

Array of dense 

samples (intensity) 

Gaussian 

Search 

Kernel 

Regularized Least 

Squares with 

classifier 

(discriminative) 

Incremental 

update 

Cross 

Correlation 

Bounding 

Box 

Intensity Uniform 

search 

Normalized Cross 

Correlation 

(generative) 

No update 

Meanshift Bounding 

Box 

Color Histograms Mean shift 

moments 

Mean shift 

maximum 

(generative) 

Continuous 

Table 3: Main characteristics of the  baseline  trackers used for comparison 

In table 4 the results in terms of PBM, Deviation and Euclidean Distance are 

reported for the 2D-RNN and all baseline trackers, with their standard deviations, 

respectively. Such values are calculated for the first 85 frames of each sequence in the 

whole test set.  

 
Tracker PBM St.  

dev. 

Deviation St.  

dev. 

Euclidean 

Distance 

St.  

dev. 

2D-RNN 0.95 ±0.03 0.95 ±0.03 2.4 ±1.5 

Boosting  0.88 ±0.10 0.89 ±0.10 5.9 ±4.9 

MIL  0.52 ±0.17 0.85 ±0.17 24.3 ±8.5 

KCF  0.43 ±0.09 0.90 ±0.09 29 ±3.8 

Cross Correlation 0.53 ±0.16 0.84 ±0.16 23.9 ±7.9 

Meanshift 0.90 ±0.09 0.93 ±0.09 4.8 ±4.4 

Table 4: Main results of the  state of the art trackers among  2D-RNN.  

For the algorithms KCF and cross correlation the object of interest is lost in some 

frames, therefore for these methods the values of the indexes in table 4 are not 

calculated in these frames. However, the Deviation is calculated as general formula, 

only for the frame in which the overlapping between BB and object is not less than 

50% (that is, when the object is not lost). 

In any case, the 2D-RNN shows better results than the other methods used for all 

indices. Further comparisons between SNR and 2D-RNN are reported in [23], 

showing that 2D-RNN performs better than SNR in all considered cases. 

In fig. 6 the Euclidean Distance (number of pixels) from the center of the 

bounding box and the gold standard for five sequences randomly selected is shown . 

In the right side of the chart the average value for each tracker is plotted. In fig. 7 a 

similar comparison based on PBM is presented.  

 



 

 

Fig 6. Performance of the trackers measured by the Euclidean distances (number of pixels) 

from the gold standard (five random sequences and  overall average). 

 

Fig.7. Performance of the trackers measured by the PBM (five random sequences and overall 

average). 

In fig. 8 the comparison of the trackers is shown by using the deviation index;   

 

 

Fig.8. Deviation  (five random sequences and  overall average). 

 
Fig.9. |Ms|, number of frames where the Bounding Box overlaps for more than 50% of the 

golden standard bounding box. 
 



 

Fig. 9 gives some additional details on the deviation measures showing that  a 

similar performance in figure 8 does not correspond to an effective  tracking 

performance. In fact for CC, MIL and KCF the number of “lost” frames is significant. 

This behavior is further clarified by fig. 10, reporting  the average distance (for the 

five sequences) between the center of the BB and the gold standard. Weaknesses of 

CC, MIL and KCF  clearly  emerge, but also for Meanshift and Boosting it is possible 

to observe slight deviations from the golden standard in some parts of the trajectory. 

For 2D-RNN results are clearly stable. 

 

Fig.10. Temporal evolution of the average Euclidean distance (five sequences). 

5  Conclusion 

A novel tracking algorithm based on the fusion of two complementary neural 

networks architectures has been presented.  The temporal memory of a recursive 

neural networks is used to keep the correlation among processed pixels, and to 

perform the next frame prediction at the temporal distances of ten frames, with 

respect to the frame of interest. 

The novel algorithm is called 2D-RNN because a two dimensional approach is 

proposed: For each pixel of the input image also the information of its k nearest 

pixels are considered, without any pre-processing of such image. 

A quantitative comparison against five baseline  approaches on the same datasets 

is made, obtaining superior performances of the proposed method, on the base of 

recognised important indexes  of the video tracking literature. 2D-RNN  has also 

superior performances  in terms of rmse and  learning times with respect to the 

classical SRN architecture. 

The extension of this approach will be applied in the future to large benchmark 

datasets, for example ILSVRC (e.g. [29]), with different types of object of interest, 

and replacing the manual selection of the BB in the first frame with an automatic 

procedure designed to recognize objects belonging to predefined classes.  In future 

works we will also explore the same optimisation of the SRN shown here, using 

instead LSTMs [30], which recently are receiving increasing attention in the image 

processing community due to their better capability of learning long-term 

dependencies. The system could be useful for the analysis of the athlete errors in the 

jump, following the paradigm of the computer aided coaching, or for the generation 

of real-time TV highlights. Moreover, as the new method doesn’t require any 

information related to the object of interest it is therefore suitable for a large set of 

applications from automated analysis of sport activities to intelligent video-

surveillance. 
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