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Abstract: In vitro neuronal cultures embodied in a closed-loop control system have been used
recently to study neuronal dynamics. This allows the development of neurons in a
controlled environment with the purpose of exploring the computational capabilities of
such biological neural networks. Due to the intrinsic properties of in vitro neuronal
cultures and how the neuronal tissue grows in them, the ways in which signals are
transmitted and generated within and throughout the culture can be difficult to
characterize. The neural code is formed by patterns of spikes whose properties are in
essence non-linear and non-stationary. The usual approach for this characterization
has been the use of the post-stimulus time histogram (PSTH). PSTH is calculated by
counting the spikes detected in each neuronal culture electrode during some time
windows after a stimulus in one of the electrodes. The objective is to find pairs of
electrodes where stimulation in one of the pair produces a response in the other but
not in the rest of the electrodes in other pairs. The aim of this work is to explore
possible ways of extracting relevant information from the global response to culture
stimulus by studying the patterns of variation over time for the firing rate, estimated
from inverse inter-spike intervals, in each electrode. Machine-learning methods can
then be applied to distinguish the electrode being stimulated from the whole culture
response, in order to obtain a better characterization of the culture and its
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computational capabilities so it can be useful for robotic applications.

Response to Reviewers: Following the kind suggestions of the editor, we have rewritten the former last
paragraph in Introduction to clarify the novelty of the manuscript and also we have
introduced a new separate paragraph at the end of Introduction to explain the structure
of rest of the paper. The subsections of the former section 2 have been renumbered
and reorganized as sections and their titles have been revised to better reflect the
structure and sequence of the work.

We have made a new proofreading of the whole MS to correct any minor English
errors.

Response to minor issues indicated by Reviewer #1:

1. "in-vitro" changed to "in vitro" and with italics formatting.

2. Inserted "of" in "has been the use of the post-stimulus".

3. "an MEA" was changed to "a MEA", considering MEA as an acronym pronounced as
a word and not letter by letter.

4. "an hibrot" corrected to "a hybrot"  and also corrected "Hybrots" in the rest of MS.
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studying the patterns of variation over time for the firing rate, estimated from inverse
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to distinguish the electrode being stimulated from the whole culture response, in order
to obtain a better characterization of the culture and its computational capabilities so
it can be useful for robotic applications.
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Keywords MEA · Dissociated neurons · Neuronal stimulation · Hybrots · Machine-
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1 Introduction

Our brain is continuously processing all our sensory inputs to produce behavioural
responses. In order to deal with these processes, neuron circuits generate multidimen-
sional dynamics that encode multiple internal and external features. During the last
decades, many researchers have approached the study of these processes by working
with cell cultures of dissociated neurons, where it was expected that spontaneous cir-
cuits would emerge. The main idea behind that approach is such that the combination
of controlled external electrical stimulation with the recording of the electrical out-
put of the neuron culture would allow for the dynamics of the implicit circuits to be
understood.

In neuron cell cultures, the early development of neuron circuits is controlled both
by the spontaneous activity of the circuit [1] and by the interaction with the environ-
ment [2,3]. Despite the fact that cell cultures are grown in isolation, without any kind
of input/output feedback, self-organized neuron circuits present spontaneous activity
in the form of global oscillations, which are recorded in the whole multi-electrode array
(MEA) [1,2,3]. Such spontaneous activity must be taken into account when neuron
cultures receive any kind of stimulation, as the internal dynamics of the circuit may
affect the respective response to stimulation.

According to Xydas et al. [4], the use of artificial sensory inputs and effector out-
puts seems to be a logical solution to overcome the re-embodiment problem. This
has been one of the main motivations to study neuron cultures grown over a substrate-
embedded MEA, merged with robots or simulated animals. As is the case with Braiten-
berg’s vehicles, robots with simple hardware architectures that directly couple sensors
and motors. Valentino Braitenberg [5] showed, by using different types of sensor to
motor connections, how transfer functions were formed producing different observable
behaviours of the robot in response to its environment. Several authors have used
Braitenberg’s vehicles as an approach to create and make sense of closed-loop systems
[6,7,8].

Many attempts have been made to merge biological computation with robotics,
where the principal aim was to explore the computational capabilities and learning
capacities of such in vitro neuron cultures. In the future, this approach could allow us
further understanding of how neuronal networks manage information in order to create
high order behaviours. DeMarse et al. [9] made a neuronally controlled animat (arti-
ficial animal), to study “how information is processed and encoded in living cultured
neuron networks by interfacing them to a computer-generated animal”. The main ob-
jective was to study the interaction between the sensory inputs of these animats and
the dissociated neuron culture in a MEA. Later, Bakkum et al. [10] delved into the
study with such animats by researching about “how learning, memory and information
processing in real time” is performed. They studied a promising approach by merging
a disembodied neuron culture with a real robot, called a hybrot (hybrid robot), where
they hypothesized that “if a given neuronal reaction is repeatable with low variance,
then the response may be used to control a robot to handle a specific task”. Applying
pairs of electrical stimuli to different electrodes they found a way to produce stable
non-linear responses that they characterized in order to control the robot’s behaviour.
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Also, Warwick et al. [8] proposed a “hybrid system incorporating closed-loop control
of a mobile robot by a dissociated culture of neurons”. They developed a methodolo-
gical approach to characterize the instantaneous firing rate of the neuron culture in
several electrodes in order to map the inputs and outputs of the overall system. Fi-
nally, Tessadori et al. [6,11] improved the previously mentioned approaches by adding
one more step in the experiment, where after each collision due to a bad response of
the cell culture, they stimulated the circuit to enhance the plasticity over the selected
input-output electrodes.

The main requirement in any neuron culture embodiment is the characterization of
neuronal dynamics after stimulation to identify which channels of the MEA can be used
as sensory inputs (i.e. connected to robot’s sensors) and which channels are to be used
as motor outputs (i.e. connected to robot’s wheels). The usual mathematical tool used
for this characterization has been the post-stimulus time histogram (PSTH) [7,8]. The
PSTH is calculated by counting the spikes detected in each neuronal culture electrode
during some time windows after a stimulus in one of the electrodes. The objective is
to find pairs of electrodes where stimulation in one of the pair produces a response in
the other but not in the rest of the electrodes in other pairs. This electrode selection
method cannot be applied to neuronal cultures with high connectivity, because in that
case, it is difficult to find pairs of electrodes connected and isolated from the rest of
the stimulus.

In this paper, we tried to overcome the difficulties involved in the PSTH method
for characterizing pairs of connected electrodes in a neuron culture. To this end, a new
method was developed and applied that uses the patterns in variation over time (im-
mediately after a stimulus) of the firing rate at each electrode, estimated from inverse
inter-spike intervals (IISI), to distinguish the electrode being stimulated. Jimbo et al.
[12] reported that stimulation on different electrode positions can produce immediate
differences in the firing rate properties on the recording electrodes, as a result of the
interaction between excitatory and inhibitory synaptic pathways towards the recorded
electrode. Following that, the main hypothesis is that the neuron culture has a global
activation topology with a distinctive response depending on the stimulus localization,
that can be used to obtain probably more than two simple pairs of inputs and outputs
and thus allow its application to other more complex Braitenberg’s vehicles.

The rest of the paper is organized as follows. Section 2 describes the experimental
set-up including the process to select the electrodes to stimulate. In section 3 the pre-
processing of data is explained. The pattern analysis of the data obtained is explained
in section 4. Section 5 describes the machine-learning method applied to detect the
stimulated electrode. In section 6 the robustness throughout the lifetime of neuronal
culture is discussed. Finally, some concluding remarks and future perspectives are given
in section 7.

2 Experimental set-up

Our set-up consists of a set of MultiChannel Systems (MCS) devices. A standard multi-
electrode array (MEA) is composed of 60 Ti/Au/TiN electrodes of 30 µm in diameter,
arranged in an 8× 8 square grid and spaced 200µm from each other that allow simul-
taneous recording and stimulation. A commercial 60-channel amplifier (MEA1060-BC)
with limited frequency in the range of 10Hz− 3000Hz was used.
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The stimulation was performed using the stimulator (STG1002) capable of multi-
plexing the signals for the stimulation of 60 electrodes in a nearly parallel process. The
data were digitized through data acquisition cards with an analogue-digital interface.
Each channel was sampled at a frequency of 25 kHz where the signal was filtered by a
2nd-order Butterworth bandpass filter in the range 300Hz ≤ ω ≤ 1300Hz, acquired
with the MC-Rack software, also provided by MCS. Spike shapes and timestamps were
extracted using MC-Rack software.

Embryonic rat brains (E16) were dissociated and the obtained cells were seeded over
a substrate-embedded MEA from MCS. Cell cultures were maintained using a standard
culture medium and were kept in an incubator with constant 37 ◦C temperature and
5% CO2. Experiments started 20 days after seeding. Spike shapes and time stamps
were extracted using MC-Rack software from MCS.

The stimulus consisted of a train of 20 biphasic pulses of ±2V amplitude and
1ms period applied to a small subset of previously selected electrodes, with an inter-
stimulus interval of 4 s. A series of 200 stimulations were applied to each of the selected
electrodes, and the evoked response in the rest of the MEA was recorded.

In order to select the electrodes to stimulate, a first experiment was recorded at
day 20 after the seeding of the experiment. We stimulated 10 times each electrode of
the MEA and selected the two electrodes which evoked the greatest response in the
whole array.

3 Data preprocessing

The recorded data were preprocessed to filter out the noise. In the first step, the root
mean square (RMS) of each spike raw data was computed. The distribution of RMS
values for all spikes is different from those events that are more similar to noise or to
artefacts generated from stimulation. The events with an RMS value that were two
standard deviations above or below the mean value were discarded.

As a second step to remove any existing noise that was wrongly classified as a
spike, a 5th-degree polynomial was adjusted to each of the detected events using a 2ms
window centred in the minimum value. The obtained coefficients of each event were
analysed using a density-based spatial clustering of applications with noise (DBSCAN)
algorithm [13] that can find outliers respect to the main cluster of spike models. The
events detected as outliers by the DBSCAN algorithm were also discarded.

Any stimulation trial that did not produce a significant increase in global activity,
probably because a high burst of spontaneous activity had just occurred, was discarded
and not considered for further analysis. In addition, only those electrodes that showed
a significant firing rate after some stimulus were selected for analysis. To do so, we
compared the firing rate of each electrode in a 150ms window before and after stimu-
lation (Wilcoxon test, p < 0.05). Only 26 electrodes, showing a significant response to
stimulation, were selected. Figure 1 shows some examples of the evolution over time of
the IISI immediately after a stimulus.

4 Pattern analysis

A total of 200 valid trials of a stimulus was performed on each of the two stimulation
electrodes. The inverse inter-spike interval (IISI) of the activity in each one of the
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Figure 1: Samples of the evolution of sequences of inverse inter-spike intervals from two
electrodes (indexes 42 and 47) immediately after a stimulation in other two electrodes
(11 and 59).

26 selected responsive electrodes was computed along the 150ms after each stimulus.
Therefore, 200 vectors for each active electrode after a stimulation in each of the
selected electrodes were obtained. Once these vectors were stored, we computed a linear
regression to the IISI of each electrode and trial, in order to obtain a meaningful feature
to predict the used stimulation electrode of a given trial. Thus, the corresponding slope
(variation in time) of the IISI was used as a representation of the individual response to
that stimulus on each electrode. The sequences with a very low number of spikes were
eliminated from the analysis, replacing their slope with a zero value, as a regression on
them could produce spurious values.

After the representation of each sequence by the slope, the pattern of responses on
each electrode was used as a fingerprint to characterize the whole culture firing dynam-
ics. The slopes from the linear regression were mainly negative (indicating a decrease)
but slopes are not bounded and they could have large and isolated values. Therefore,
slopes were normalised using the arctan() function, converting them to angles in radi-
ans that only vary from −π/2 to +π/2, in order to normalise all the information in
a limited range of values. That limited range favours the use of the data in machine
learning methods. Figure 2a shows an example of the global activity fingerprint after
one stimulus through the representation of the angles of IISI variations for all the elec-
trodes. Figure 2b shows the distribution statistics of the angles of IISI for responses of
each electrode after stimulation in two selected electrodes.

5 Stimulated electrode detection by machine-learning

Finally, the fingerprints of the electrodes in culture response to each stimulation in
two selected electrodes were used to train a supervised artificial neural network (ANN)
[14] in order to classify which of the electrodes were stimulated. The 31 electrodes
that showed no activity at all in any stimulation, the stimulated electrodes, and the
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(b) Statistical distributions (box and whiskers diagrams) of angles of IISI responses for all
electrodes after 200 stimulations in electrodes 11 and 59.

Figure 2: Global activity in all electrodes measured by the angle (in radians) of the IISI
response after each stimulus. The electrode ID number is the order of each electrode
as read by software, not the label (column-row position) in MEA.

ground electrode were discarded. The angles of firing rate variation of the remaining
26 electrodes were used to build the dataset.

The ANN was a standard multilayer perceptron with 26 inputs, a hidden layer of
seven neurons with a hyperbolic tangent sigmoid transfer function, and one output with
the standard sigmoid function to classify the stimulated neuron for the input pattern.
The ANN was trained with the Levenberg-Marquardt backpropagation algorithm in
MATLAB software using default values for the parameters.

The dataset had 400 patterns after pre-processing and filtering, 200 from stimula-
tion in electrode number 11 and 200 patterns in electrode 59. The training was repeated
ten times using different random weight initialization and pattern presentation order.
After training, the average correct classification was (97.9± 1.7)%.

By visual inspection, comparing the two diagrams in figure 2b, it can be noted that
there are two electrodes that have a distinctive response depending on the stimulated
electrode. These are the recording electrodes 21 and 46. These electrodes have a high
impact on the training because they make it “easy” for the ANN to distinguish between
both classes. In order to test if the information was restricted to a very small subset
of electrodes, or if the stimulation electrode could be also inferred from the rest of the
circuit, we trained a new ANN excluding those electrodes with the biggest differences
among stimulation conditions. Despite we could appreciate a decrease in the perform-
ance of the classifier, it was still far beyond chance classification (69± 10)%. This
confirms that additional information about the stimulation electrodes can be extrac-
ted from the response on other electrodes different from those more evident ones.

Even though the analysis of the experiments was done off-line, all the computations
are simple and could be optimized and adapted to run on-board a robot. The training

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Frequency analysis in neuronal cultures characterization 7

of the ANN can be done previously off-board, and then the resulting weights could be
frozen and translated into the robot to identify neuronal culture response online.

6 Robustness throughout the lifetime of neuronal culture

It was necessary to check if the used strategy was robust during the lifetime of a
neuronal culture, so the experiment was repeated up to nine times on different days.
In figure 3 the variation in the percentage of correct classification by using the IISI
strategy is shown. It can be seen that taking into account all electrodes with significant
activity (blue line), the correct classification never goes below 80%. On the other hand,
the classification without taking into account the distinctive electrodes for each training
set it does not even fall below 60%.
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Figure 3: Evolution of the culture characterization over 9 days starting after 20 days
in vitro. The classification results using all electrodes with significant activity, exclud-
ing stimulated electrodes, is shown in blue. The same results but excluding also the
distinctive electrodes (21 and 46) for each case is shown in red.

There was a clear correlation between the classification results in both cases (includ-
ing or not the distinctive electrodes). It can be supposed that the effect of stimulation
in the electrodes produces different flows of neural activity in each experiment, but
the data provided by the IISI method for all the electrodes can still give valuable
information about that process.

7 Conclusions and future perspectives

The available evidence about neurons firing properties indicates that pulse trains are
both, analogical (duration of the train of pulses) and digital (“all or nothing” behaviour)
[15], as well as they manage information changes depending on the density of the train
of pulses. These properties suggest a strong dependency of the neural code in the
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frequency domain and its variation over time. The approximation presented here can
take advantage of these properties to obtain a better characterization of the neuronal
culture response, thus making it more useful for culture embedding in robots. Also, this
method allows exploring and extending the possible forms to use the global response
in a neuronal culture, because it does not depend on the response at specific electrodes
after stimulation but on parallel computational processes of the neurons connected in
the neuronal culture. Moreover, this approach allows us to analyse which electrodes
are more relevant for the classification of a given stimulus based on the learned weights
of the artificial neurons to study their possible role in the initiation of spontaneous
activity or the study of neural circuit connectivity. The results show that the neural
code can be modified by the local modulating activities when the correct electrode is
stimulated, and the resulting neural flow can be used for characterization. It can be
observed through comparison and correlation of data, with and without taking into
account the distinctive electrodes, that IISI method can provide valuable information
about the effects that electrode stimulation can produce on neural activity over time in
the culture. In addition, the fact that the classification results increase and decrease over
a few days may be due to cell migration and the generation of new connections formed
along the growth of the culture. These changes can alter the neural flow produced after
stimulation. The cell migration can occur in the reading electrodes as in the stimulated
electrodes, that is, if one or more axon migrated slightly in the stimulation electrodes, it
can result in that the stimulus has a different effect in the network with less important
propagation.

The experiments were based on stimulation in only one electrode each time, mak-
ing more difficult to affect the local pathways, so we expect that the results can be
improved by having into account different stimulus properties, such as, the stimulus
amplitude, frequency, duration and position, and by using a bigger subset of electrodes
for stimulation in each experiment. Also, the number of stimuli performed could be
increased in order to obtain enough data for the process of characterization through
the ANN.

Considering the excitability of the self-organized circuit, any change in the Excit-
atory/Inhibitory balance, by means of using glutamate or GABA blockers, will cause
major changes both in the spontaneous and evoked activity of the network. The addi-
tion of Mg2+ to the extracellular medium suppresses the bursting activity after stim-
ulation and, in contrast, the addition of bicuculline increases it. These changes could
drive the neuronal network dynamics into two different dynamical states: a non-chaotic
deterministic behaviour system and a chaotic system where the system exhibits large
spatial-temporal fluctuations [16]. Nevertheless, this exceeds the aim of this paper, as
we intend to characterise the evoked response of self-organized, unaltered, neuronal
circuits and to reproduce the experimental conditions described by DeMarse et al. [9]
and Novellino et al. [6], where no blockers were used.

In summary, this study opens a new insight in the exploration of the computational
capabilities of neuronal cultures, in terms of frequency domain and global activity
response, to obtain a more complex mapping of stimulus and response in order to
create more complex behaviours in a robotic context.
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