
ar
X

iv
:1

80
4.

02
85

1v
3

 [
cs

.N
E

]
 5

 J
ul

 2
01

9

Neural Computing & Applications manuscript No.

(will be inserted by the editor)

Whale swarm algorithm with the mechanism of identifying

and escaping from extreme points for multimodal function

optimization

Bing Zeng · Xinyu Li · Liang Gao · Yuyan

Zhang · Haozhen Dong

the date of receipt and acceptance should be inserted later

Abstract Most real-world optimization problems often come with multiple global optima

or local optima. Therefore, increasing niching metaheuristic algorithms, which devote to

finding multiple optima in a single run, are developed to solve these multimodal optimization

problems. However, there are two difficulties urgently to be solved for most existing niching

metaheuristic algorithms: how to set the niching parameter valules for different optimiza-

tion problems, and how to jump out of the local optima efficiently. These two difficulties

limit their practicality largely. Based on Whale Swarm Algorithm (WSA) we proposed pre-

viously, this paper presents a new multimodal optimizer named WSA with Iterative Counter

(WSA-IC) to address these two difficulties. On the one hand, WSA-IC improves the iteration

rule of the original WSA for multimodal optimization, which removes the need of specifying

different values of attenuation coefficient for different problems to form multiple subpopu-

lations, without introducing any niching parameter. On the other hand, WSA-IC enables the

identification of extreme points during the iterations relying on two new parameters (i.e.,

stability threshold Ts and fitness threshold Tf), to jump out of the located extreme points.

Moreover, the convergence of WSA-IC is proved. Finally, the proposed WSA-IC is com-

pared with several niching metaheuristic algorithms on CEC2015 niching benchmark test

functions and on five additional high-dimensional multimodal functions. The experimen-

tal results demonstrate that WSA-IC statistically outperforms other niching metaheuristic

algorithms on most test functions.

Keywords Whale swarm algorithm · multimodal optimization · metaheuristic algorithm ·
niching · extreme point

1 Introduction

Most of the real-world optimization problems are multimodal [1–8], i.e., their objective

functions have multiple global optima or local optima. If applying traditional numerical

Liang Gao

State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science

and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, China.

Tel.: +86-027-87559419

E-mail: gaoliang@mail.hust.edu.cn

http://arxiv.org/abs/1804.02851v3

2 Bing Zeng et al.

methods to such problems, we have to try many times for locating a different optimum in

each run to pick out the best one, which is time-consuming and labor-intensive. In such a

scenario, using metaheuristic algorithms, no matter evolutionary algorithms (EAs) or swarm

based algorithms, to solve these problems has become a hot research topic, as they are easy

to implement and can get as good as possible solutions. However, many metaheuristic algo-

rithms, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential

Evolution (DE), and so on, are primarily designed to search for a single global optimum.

And it is desirable to locate multiple global optima for engineers to choose the most appro-

priate one. In addition, some metaheuristic algorithms are easy to fall into the local optima.

So, many techniques have been proposed for the metaheuristic algorithms to find as many

global optima as possible. These techniques are commonly known as niching methods [9],

which are committed to promoting and maintaining the formation of multiple stable sub-

populations within a single population for locating multiple optima. Some representative

niching methods include crowding [10], fitness sharing [11], clustering [12], restricted tour-

nament selection [13], parallelization [14], speciation [15], and population topologies [16],

and so on. Several of them are presented below, more references and discussions about nich-

ing methods can be found in literature [17].

Crowding was firstly proposed by De Jong [10] to preserve genetic diversity, so as to

improve the global search ability of the algorithm for locating multiple optima. In crowding

method, the offspring with better fitness replaces the most similar individual from a subset

(i.e., crowd) of the population. The similarity is generally measured by hamming distance

for binary encoding and Euclidean distance for real-valued encoding [18], which means

that the smaller the distance between two individuals is, the more similar they are. The

individuals of subset are randomly selected from the population, and the size of subset is a

user specified parameter called crowding factor (CF) that is often set to 2 or 3. However, low

CF values will lead to replacement errors, i.e., the offspring replaces another individual with

small similarity, which will reduce the population diversity. To avoid replacement errors,

deterministic crowding [19] and probabilistic crowding [20] were proposed. Setting CF

equal to the population size also proved to be effective [18].

Goldberg and Richardson [11] proposed fitness sharing mechanism, which enables the

formation of multiple subpopulations by formulating sharing functions. When using this

method, the shared fitness of all the individuals need to be calculated according to Eq.1.

f
′

i =
fi

m
′

i

(1)

where, fi and f
′

i are the original fitness and shared fitness of individual i respectively; m
′

i is

the shared value of individual i with other individuals, and is formulated as m
′

i =
N

∑
j=1

sh(di j),

where N is the population size, sh(di j) is the sharing function over the individual i and j,

which is calculated as follows.

sh(di j) =

{

1−
(

di j

σshare

)α
if di j < σshare,

0 otherwise.
(2)

where, α is a constant, and always set as 1; di j is the distance between the individual i and

j; σshare is the sharing distance, which is always set as the value of peak radius. However,

this method assumes that all the peaks have the equal height and width. Obviously, a prior

knowledge of the fitness landscape is required to set the value of σshare.

Title Suppressed Due to Excessive Length 3

Speciation [15] is another popular niching technique, which is used to form parallel sub-

populations, i.e., species, according to the similarity between individuals. The similarity is

also measured by distance, such as Euclidean distance. This niching technique employs one

user-specified parameter called species distance (σs) to divide the population into a set of

species. It is assumed that the problem to be solved is a maximization optimization prob-

lem. The detailed procedure of forming species in every generation is shown below. The

first step is to find out the species seeds that dominate their own species. Firstly, an empty

set Xs is defined to contain the species seeds. Sorting the individuals in decreasing order

of fitness and adding the first individual of population after sorting to the set Xs. Then,

judging the remaining individuals one by one in order, and determining whether they are

within the distance of σs/2 from any species seed in Xs. If no, they are added to Xs. After

all the individuals are traversed, the set Xs has collected all the species seeds. Next comes

the step of adding the individuals to their corresponding species. For each species seed in

Xs, adding the individuals that are within the distance of σs/2 from it to its species, if an

individual has been added to a species, doing nothing. Although speciation method is able

to divide the population into multiple subpopulations, it has a major shortcoming. Its pa-

rameter, i.e., species distance, is hard to set precisely for different optimization problems.

In such case, inspired by the Multinational Evolutionary Algorithms [21], Stoean et al. [22]

proposed “detect-multimodal” mechanism to establish species, which removes the need of

specifying distance parameter. The “detect-multimodal” mechanism utilizes a set of inte-

rior points between two individuals to detect whether there is a valley between them in the

fitness landscape, so as to determine whether the two individuals track different extreme

points. If all the interior points are better than the worse one of these two individuals, they

are considered to follow the same extreme point, i.e., locating in the same peak of the fitness

landscape, as shown in Fig. 1(a), wherein, f (P1)> f (X1) and f (P2)> f (X1). On the contrary,

if there exist at least one interior point that is worse than the worse one of these two indi-

viduals, at least one valley is considered existing between the two individuals, i.e., they are

considered to track different extreme points as shown in Fig. 1(b), wherein, f (P1)< f (X1).
Those individuals following the same extreme point are added to the same species. Although

“detect-multimodal” mechanism does not utilize species distance to divide the population

into multiple species, it employs another parameter called “number of gradations”, i.e., num-

ber of interior points, which also depends on the problem characteristics.

X1 X20 P1 P2 x

y

y=f(x)

(a) two individuals follow the same extreme point

X1 X2 x

y

0 P1 P2

y=f(x)

(b) two individuals follow different extreme points

Fig. 1 Sketch maps of the “detect-multimodal” mechanism

Thus it can be seen that some niching methods need to set some parameters, which

require prior knowledge of the fitness landscape, to divide the population into multiple sub-

4 Bing Zeng et al.

populations. However, for many real-world optimization problems, the prior knowledge of

the fitness landscape is very difficult or almost impossible to obtain [9]. Therefore, these

niching methods are difficult to be used to deal with the real-world optimization problems.

In this paper, a new multimodal optimization algorithm called Whale Swarm Algorithm with

Iterative Counter (WSA-IC), based on our preliminary work in [23], is proposed. By improv-

ing the iteration rule of the original WSA for multimodal optimization, WSA-IC removes the

need of specifying parameter values for different problems to form multiple subpopulations,

without introducing any niching parameter. In addition, WSA-IC enables the identification

of extreme point to jump out of the located extreme points during the iterations.

The remainder of this paper is organized as follows. A brief overview of the multi-

modal optimization algorithms is presented in section 2. Section 3 introduces WSA briefly.

A detailed description of the proposed WSA-IC is presented in section 4. The next section

presents the experimental results and analysis to evaluate WSA-IC. The last section draws

the conclusions and presents the future research.

2 Related works

With increasing niching methods put forward, a large number of multimodal optimization

algorithms combining the metaheuristic algorithms with these niching methods have been

proposed. In this section, a brief overview of multimodal optimization algorithms is pre-

sented. According to whether the prior knowledge of the fitness landscape is needed, these

multimodal optimization algorithms are classified into prior knowledge based methods and

non-prior knowledge based methods. More references and discussions about multimodal

optimization algorithms can be found in literatures [17, 24].

2.1 Prior knowledge based methods

Species Conserving Genetic Algorithm (SCGA) was proposed by Li et al. [25] via introduc-

ing speciation and species conservation techniques into the classical GA. In each iteration,

the current population is partitioned into multiple subpopulations (i.e., species) using the

speciation technique [15], before executing the genetic operators. Moreover, after execut-

ing the genetic operators, all the species seeds are either conserved to the next generation

or replaced by better members of the same species, which can contribute significantly to

the preservation of global and local optima that have been found so far. Li showed that the

additional overhead of SCGA caused by these two techniques was not higher than that intro-

duced by Genetic Algorithm with Sharing (SGA) [11], and SCGA performs far better than

SGA in success rates of locating the global optima.

Li [26] proposed Species-based DE (SDE) algorithm to solve multimodal optimiza-

tion problems via introducing speciation technique. In SDE algorithm, when the number of

member individuals of a species is less than a predefined value, the algorithm will randomly

generate new individuals within the radius of species seed until the species size reaches the

predefined value. Then, the conventional DE algorithm is implemented separately for each

identified species. In addition, if the fitness of an offspring is the same as that of its species

seed, this offspring will be replaced by a randomly generated new individual. These two

mechanisms improved the efficiency of SDE algorithm significantly.

The speciation technique was also introduced into the conventional PSO by Li [27] to

solve multimodal optimization problems. In each iteration of Species-based PSO (SPSO),

Title Suppressed Due to Excessive Length 5

after the population is divided into multiple species and the species seeds are determined,

each species seed is assigned to its member individuals as the lbest. Then, each individual

updates its position according to the iterative equations concerning velocity and position of

the lbest PSO. The experimental results showed that SPSO was comparable to or better than

SNGA [28], SCGA and NichePSO [29] over a set of multimodal functions.

Stoean et al. [22] proposed Topological Species Conservation (TSC) algorithm, which

utilizes the “detect-multimodal” mechanism to remove the need of specifying distance pa-

rameter when selecting species seeds and forming species. In TSC algorithm, all the indi-

viduals that track the same extreme point are in the same species, which corresponds to the

real structure of the optimization function. And the species seeds can also be conserved to

the next generation. However, TSC algorithm need excessive fitness evaluations in seeds

selection procedure, especially when the number of interior points get larger. For improving

the computational efficiency of TSC algorithm, i.e., saving the fitness evaluations, Stoean et

al. [30] proposed Topological Species Conservation Version 2 (TSC2) algorithm. In TSC2

algorithm, the current unclassified individual chooses the seed one by one in ascending order

of distance from it to perform the “detect-multimodal” procedure until the return value is

true or this individual is considered a new seed, because the species dominated by the closer

seed is more likely to track the same peak with the current individual. Through this method,

TSC2 algorithm saves considerable fitness evaluations. In addition, when the optimization

function has a large number of local optima, TSC algorithm might pick out too many seeds

from the population that would be conserved to the next generation, significantly reducing

the search ability of TSC algorithm. And TSC2 algorithm introduced the maximum number

of seeds to guarantee the algorithm’s search ability.

Deb and Saha [31] firstly converted a single-objective multimodal optimization problem

into a bi-objective optimization problem. Multiple global and local optima of the original

problem become the members of weak Pareto-optimal set of the transformed problem. One

of the objectives of the transformed problem is the objective function of the original prob-

lem. With regards to the other objective, the gradient-based approach is firstly employed,

which is based on the property that the derivatives of objective function at the minimum

points are equal to zero. However, the derivatives of objective function at the maximum

and saddle points are also equal to zero, and the objective functions of some optimization

problems may be non-differentiable at the minimum points. Then, more pragmatic neigh-

borhood count based approaches are developed for establishing the second objective, which

is the number of neighboring solutions that are better than the current solution. During the

iterations, the non-dominated ranks of different solutions rely on two parameters, i.e., σ f

and σx, which are used to distinguish two optima.

2.2 Non-prior knowledge based methods

Thomsen [18] proposed Crowding-based DE (CDE) algorithm by introducing crowding

method into the conventional DE for multimodal function optimization. In CDE algorithm,

the similarity of two individuals is measured by the Euclidean distance between two indi-

viduals. The fitness value of an offspring is only compared with that of the most similar

individual in the current population, and the offspring replaces the most similar individual

if it has better fitness. This replacement scheme can make the population remain diversity

in the search space, which makes a great contribution to the location of multiple optima.

Thomsen showed that CDE algorithm performed better than a fitness sharing DE variant

over a group of multimodal functions.

6 Bing Zeng et al.

The History based topological speciation (HTS) was proposed by Li and Tang [32] to

incorporate into the CDE with species conservation technique for multimodal optimiza-

tion. HTS is a parameter-free speciation method, which captures the landscape topography

relying exclusively on search history. As a result, it avoids the additional sampling and

function evaluations associated with existing topology based methods. Therefore, HTS is

a parameter-free speciation method. The experimental results showed that HTS performed

better than existing topology-based methods when the function evaluation budget is limited.

Liang et al. [33] proposed Comprehensive Learning Particle Swarm Optimizer (CLPSO)

for multimodal function optimization. In CLPSO, all particles’ best previous positions can

potentially be used to guide a particle’s flying, i.e., each dimension of a particle may learn

from the corresponding dimension of different particle’s best previous position. The velocity

updating equation of CLPSO is shown as follows.

V d
i = ω ∗V d

i + c∗ randd
i ∗

(

pbestd
fi(d)

−Xd
i

)

(3)

where, ω is an inertia weight, c is an acceleration constant, Xd
i denotes the d-th dimension

of particle i’s position, V d
i represents the d-th dimension of particle i’s velocity. randd

i is a

random number between 0 and 1 associated with Xd
i . For particle i, a set fi=[fi(1), fi(2),

· · · , fi(d), · · · , fi(D)], where D denotes the dimension of fitness function, is built to store the

serial numbers of those particles whose best previous positions particle i should learn from

at the corresponding dimensions. pbestd
fi(d)

denotes the d-th dimension of particle fi(d)’s

best previous position. The values of elements in fi depend on the learning probability Pc

that can take different values for different particles. For example, generate a random number

for assigning fi(d). If this random number is greater than Pi
c, assign i to fi(d); otherwise,

assign the serial number of a particle selected from population through tournament selection

procedure to fi(d). If particle i does not find a better position after a certain number of

iterations called the refreshing gap m, reassign fi for particle i.

Li [34] proposed Fitness-Distance-Ratio based PSO (FERPSO) algorithm, which uti-

lizes FER to avoid specifying any niching parameter, for multimodal function optimization.

The FER value with respect to particle i and particle j is shown as follows.

FER(j,i) = α ·
f

(−→
P j

)

− f

(−→
P i

)

∥

∥

∥

−→
P j −

−→
P i

∥

∥

∥

(4)

where,
−→
P i and

−→
P j are the best previous positions of particle i and particle j respectively; α

is a scaling factor and formulated as follows.

α =
‖s‖

f

(−→
P g

)

− f

(−→
P w

) (5)

where,
−→
P g and

−→
P w are the best particle and worst particle in current population respectively.

||s|| is the size of search space, which is estimated by its diagonal distance

√

∑Dim
k=1

(

xu
k
− xl

k

)2

(where Dim denotes the dimension of search space, i.e., the number of variables. xu
k and

xl
k are the upper and lower bounds of the k-th variable xk, respectively). In every iteration,

each particle needs to calculate the FER value with respect to it and every other particle

to find the neighboring point denoted by
−→
P n, corresponding to the maximal FER value.

Then, each particle updates its velocity according to Eq. 6. Over successive iterations, some

subpopulations tracking different peaks will be formed, so as to locate multiple optima.

Title Suppressed Due to Excessive Length 7

−→
v i = χ

(

−→
v i +

−→
R 1

[

0, ϕmax

/

2
]

⊗
(−→

p i −
−→
x i

)

+
−→
R 2

[

0, ϕmax

/

2
]

⊗
(−→

p n −
−→
x i

)

)

(6)

where,
−→
v i and

−→
x i are the velocity and position of particle i respectively.

−→
R 1[0, ϕmax

/

2]

and
−→
R 2

[

0, ϕmax

/

2
]

denote two vectors which are comprised of random values generated

between 0 and ϕmax

/

2. ϕmax is a positive constant. And χ is a constriction coefficient.

The lbest PSO niching algorithms using ring topology, such as r3pso, r2pso, r3pso-lhc

and r2pso-lhc, were also proposed by Li [9] for multimodal function optimization. These

ring topology based PSO niching algorithms also remove the need of specifying any nich-

ing parameters. Taking r3pso for example, a particle’s neighboring best point
−→
P n, shown in

Eq. 6, is set as the best one among the best previous positions of its two immediate neigh-

bors (i.e., left and right neighbors identified by population indices). Using the ring topology

methods, these lbest PSO algorithms are able to form multiple subpopulations over succes-

sive iterations. Li showed that the lbest PSO algorithms using ring topology could provide

comparable or better performance than SPSO and FERPSO on some test functions.

Qu et al. [35] proposed a neighborhood based mutation and integrated it with three nich-

ing DE algorithms, i.e., CDE, SDE and sharing DE [18], for multimodal function optimiza-

tion. In neighborhood mutation, the subpopulations are formed, relying on the parameter

neighborhood size m. During the iterations, each individual should calculate the Euclidean

distances from other individuals in the population. Then, selecting the former m nearest in-

dividuals form a subpopulation for each individual. And the offspring of each individual is

generated by using the corresponding DE algorithm within the subpopulation that the in-

dividual belongs to. After a certain number of iterations, some subpopulations will track

different extreme points of the multimodal function to be optimized. Generally, the param-

eter m can be set to a value between 1/20 of the population size and 1/5 of the population

size.

The locally informed PSO (LIPS) algorithm was proposed by Qu et al. [36] for mul-

timodal function optimization. LIPS makes use of the local information (best previous po-

sitions of several neighbors) to guide the search of each particle. The velocity updating

equation of LIPS is shown as follows.

V d
i = ω ∗

(

V d
i +ϕ ∗

(

Pd
i −Xd

i

))

(7)

where, ω is an inertia weight, Xd
i denotes the d-th dimension of particle i’s position, V d

i is the

d-th dimension of particle i’s velocity. Pi =

nsize

∑
j=1

(ϕ j ·nbest j)

/

nsize

ϕ , nsize is the neighbor size,

which is dynamically increased from 2 to 5 during the iterations; ϕ j is a random number

generated in [0, 4.1/nisze], and ϕ =
nsize

∑
j=1

ϕ j; nbest j is the best previous position of the j-th

nearest neighbor to the i-th individual’s best previous position. With this technique, LIPS

algorithm eliminates the requirement for specifying any niching parameters and improves

the local search ability. Qu et al. showed that LIPS algorithm outperformed several well-

known niching algorithms, containing r3pso, r2pso, SPSO, FERPSO, SDE and CDE, and

so on, over 30 standard benchmark functions not only on success rate but also with regard

to accuracy.

Yazdani et al. [37] proposed Niche Gravitational Search Algorithm (NGSA) based on

the laws of gravity and motion. To find multiple solutions in multimodal problems, the main

8 Bing Zeng et al.

population of NGSA is partitioned into smaller sub-swarms by introducing three strategies:

a K-nearest neighbors (K-NN) strategy, an elitism strategy and modification of active gravi-

tational mass formulation. The key parameter K, i.e., the number of neighbors, is adaptively

defined as K (t) =Round
([

Ki −
(

Ki −K f

)

· t
T

]

N
)

, where t is the current iteration; T denotes

the maximal iterations; N represents the population size; Ki and K f are two constants that

determine the number of neighbors at the beginning and the end of the search, always set to

0.08 and 0.16 respectively.

Wang et al. [38] proposed Multiobjective Optimization for Multimodal Optimization

Problems (MOMMOP), which transforms a Multimodal Optimization Problem (MMOP)

into a Multiobjective Optimization Problem (MOP) with two conflicting objectives. In this

way, all the global optima of the original MMOP can become the Pareto optimal solutions

of the transformed problem. With MOMMOP, an MMOP is transformed into a MOP as

follows.

{

minimize f1 (
−→x) = x1 +

| f (−→x)−BestOFV |
|WorstOFV−BestOFV | · (U1 −L1) ·η

minimize f2 (
−→x) = 1− x1 +

| f (−→x)−BestOFV |
|WorstOFV−BestOFV | · (U1 −L1) ·η

(8)

where, −→x = (x1, x2, · · · , xi, · · · , xD) is a solution, xi(i∈ {1, 2, · · · , D}) is the i-th variable,

and D denotes the number of variables. f1 (
−→x) and f2 (

−→x) are the two conflicting objectives

of the transformed problem. f (−→x) is the objective function value of −→x with respect to the

original problem. BestOFV and WorstOFV denote the best and worst objective function

values during the evolution, respectively. U1 and L1 are the upper and lower bounds of the

first variable, respectively. η is the scaling factor, which gradually increases during the evo-

lution. Because some optima may have the same values in certain variables, for the sake of

locating multiple global optima, each variable is used to construct a bi-objective optimiza-

tion problem similar to Eq. 8. If a solution −→x u Pareto dominates another solution −→x v on all

the D bi-objective optimization problems, −→x u is considered to dominate −→x v. What’s more,

to make the population more evenly distributed, another comparison criterion is proposed.

That is a solution −→x u dominates another solution −→x v if

f (−→x u) is better than f (−→x v) ∧ distance(normalization(−→x u,
−→x v)) < 0.01 (9)

where, f (−→x u) and f (−→x v) are the objective function values of −→x u and −→x v, respectively,

with respect to the original problem. distance(normalization(−→x u,
−→x v)) denotes the Eu-

clidean distance between the normalized −→x u and −→x v (i.e., xu,i=(xu,i − Li)/(Ui − Li), xv,i=(xv,i

− Li)/(Ui − Li), where i ∈{1, · · · ,D}). If distance(normalization(−→x u, −→x v))<0.01, −→x u and
−→x v is considered to be quite similar to each other.

2.3 Our motivations

Based on the above overview, we can find that lots of multimodal optimization algorithms

need to set some niching parameters, which require prior knowledge of the fitness landscape.

However, this is very difficult or impossible for many real-world optimization problems.

What’s more, few existing multimodal optimization algorithms can effectively identify and

get rid of the located extreme points during the iterations. Since they have no mechanism to

determine whether a subpopulation has already located the extreme point of a peak, before

the end of running. Therefore, lots of function evaluations will be wasted, when an extreme

Title Suppressed Due to Excessive Length 9

point has been located early. And it also restricts the global search ability of the algorithm if

a subpopulation all the time tracks an extreme point located early.

Based on the above analysis, our main motivations in this paper are summarized as

follows.

1) Improve the iteration rule of the original WSA to remove the need of specifying different

values of attenuation coefficient η for different problems to form multiple subpopula-

tions, without adding any niching parameters.

2) Enable the identification of extreme point and jumping out of the located extreme points

during the iterations, relying on two new parameters named stability threshold Ts and

fitness threshold Tf , so as to eliminate the unnecessary function evaluations and improve

the global search ability.

3 Whale swarm algorithm

Inspired by the whales’ behavior of communicating with each other via ultrasound for hunt-

ing, we proposed WSA for function optimization [23]. As shown in our previous work [23],

WSA performs well on maintaining population diversity and has strong local search abil-

ity, which contribute significantly to locating the global optima with high accuracy. WSA

updates the position of a whale X under the guidance of its “better and nearest” whale Y,

according to the following equation.

xt+1
i = xt

i + rand
(

0, ρ0 · e
−η·dX, Y

)

∗
(

yt
i − xt

i

)

(10)

where, xt
i and xt+1

i denote the i-th element of X’s position at t and t+1 iterations respec-

tively, and yt
i represents the i-th element of Y’s position at t iteration. ρ0 is the intensity

of ultrasound source, which can be set to 2 for almost all the cases. e denotes the natural

constant. η is the attenuation coefficient. And dX,Y is the Euclidean distance between X

and Y. rand
(

0, ρ0 · e
−η·dX, Y

)

denotes a random value generated between 0 and ρ0 ·e
−η·dX, Y

uniformly. According to Eq. 10, a whale would move positively and randomly under the

guidance of its “better and nearest” whale which is close to it, and move negatively and

randomly under the guidance of that whale which is quite far away from it.

The general framework of WSA is shown in Fig. 2, where |Ω| in line 6 denotes the

number of members in Ω, namely the swarm size, and Ωi in line 7 is the i-th whale in Ω.

From Fig. 2, it can be seen that WSA has a fairly simple structure. In every iteration, before

moving, each whale needs to find its “better and nearest” whale as shown in Fig. 3, where

f (Ωi) in line 6 is the fitness value of whale Ωi.

4 The proposed algorithm (WSA-IC)

Firstly, the improvements of WSA for multimodal function optimization are presented in

this section. Then, the implementation of WSA-IC is described in sufficient detail. Next, the

parameters setting of WSA-IC is discussed. Finally, the convergence analysis of WSA-IC

is given. It is assumed that the problems to be solved by the algorithms are minimization

problems. Let the fitness functions be the same as the objective functions.

10 Bing Zeng et al.

The general framework of Whale Swarm Algorithm

Input: An objective function, the whale swarm .

Output: The global optima.

1: begin

2: Initialize parameters;

3: Initialize whales� positions;

4: Evaluate all the whales (calculate their fitness values);

5: while termination criterion is not satisfied do

6: for i=1 to |�| do

7: Find the �better and nearest� whale Y of i;

8: if Y exists then

9: �i moves under the guidance of Y according to Eq. 10;

10: Evaluate �i;

11: end if

12: end for

13: end while

14: return the global optima;

15: end

Fig. 2. The general framework of WSA.

better and nearest� whale

1:

Fig. 2 The general framework of WSA

The pseudo code of finding a whale�s �better and nearest� whale

Input: The whale swarm , a whale u.

Output: The �better and nearest� whale of u.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

begin

Define an integer variable v initialized with 0;

Define a float variable temp initialized with infinity;

for i=1 to |�| do

 if f(i)<f(�u) then

 if dist(�i, �u)<temp then

 v=i;

 temp=dist(�i, �u);

 end if

 end if

end for

return �v;

end

Fig. 3. The pseudo code of inding a whale�s �better and nearest� whaleFig. 3 The pseudo code of finding a whale’s “better and nearest” whale

4.1 The improvements of WSA

1) The improvement on iteration rule of WSA

Although the original WSA performs well in forming multiple parallel subpopulations

and maintaining the population diversity, it needs to specify different values of attenua-

tion coefficient η for different problems, which reduces the practicality of WSA. Thus, we

improve the iteration rule of WSA to remove the need of specifying different values of at-

tenuation coefficient η for different problems, on the premise of ensuring the formation of

multiple subpopulations and the ability of local exploitation. Firstly, we assume that the in-

tensity of ultrasound does not attenuate in water, i.e., η=0, which means that each whale can

correctly understand the message sent out by any other whale in the search area. Therefore,

a whale will move positively and randomly under the guidance of its “better and nearest”

whale, regardless of whether that whale is close to it or far away from it. So, when a whale

and its “better and nearest” whale track different extreme points, the whale may move far

Title Suppressed Due to Excessive Length 11

away from the extreme point tracked by it due to the guidance of its “better and nearest”

whale that follows another extreme point, which will weaken WSA’s ability of local ex-

ploitation. Taking a one-dimensional function optimization problem for example, as shown

in Fig. 4, the whale X1 is near to an extreme point, while its “better and nearest” whale X2

is near to another extreme point. In this case, X1 may move to a worse point or even go to

another peak under the guidance of X2, which will impede the location of the extreme point

tracked by X1 previously. Obviously, this situation is not conducive to locating multiple

global optima for WSA.

X1 X2 x

y

0

y=f(x)

Fig. 4 A sketch map of a whale and its “better and nearest” whale tracking different extreme points

To solve the above problem effectively, we improved the rule of updating location for

each whale as follows. Firstly, generating a copy X
′

of a whale X. Then, X
′

moves under

the guidance of X’s “better and nearest” whale Y according to Eq. 10. If the position of X
′

after movement is better than that of X (i.e., the fitness value of X
′

after movement is less

than that of X), X will move to X
′
; otherwise, X will remain unchanged. In a word, if a

whale finds a better position by Eq. 10 in an iteration, it will move to the better position;

otherwise, it will remain quiescent in its current position, which is similar to the elitism

strategy in EAs. So, when it comes to the case shown in Fig. 4, the probability of whale X1

moving away from the extreme point tracked by it will be reduced very much, because it is

difficult for whale X1 to find a better position by Eq. 10 under the guidance of its “better

and nearest” whale X2. In other words, the whale X1 may stay at its current position with

high probability to guide the movement of other whales. When there exists at least one

whale that follows the same extreme point as X1 and is better than X1 in the meantime,

X1 will converge to the extreme point under the guidance of the nearest one among those

better whales, in next iteration. Therefore, this improvement will contribute significantly

to forming multiple subpopulations and enhancing the ability of local exploitation for the

improved WSA, which are very conducive to locating multiple global optima, despite η=0.

What’s more, this improvement does not introduce any niching parameters.

2) Identifying and escaping from the located extreme points during the iterations

In the field of multimodal optimization, identifying the located extreme points effec-

tively and jumping out of these extreme points for saving unnecessary function evaluations

during the iterations are very important for metaheuristic algorithms to locate the global

optimum/optima. Although the improved WSA mentioned above can ensure the formation

of multiple subpopulations and the ability of local exploitation, it cannot yet identify the

located extreme points and escape from these extreme points during the iterations. In such

case, we propose two new parameters, i.e., stability threshold Ts and fitness threshold Tf ,

which aims to help each whale identify the located optima and jump out of these optima

during the iterations, so as to save unnecessary function evaluations and improve the global

12 Bing Zeng et al.

search ability. Ts is a predefined number of iterations utilized to judge whether a whale has

reached steady state, and reaching steady state means that this whale has located the extreme

point tracked by it. And Tf is a predefined value utilized to judge whether a solution is a cur-

rent global optimum. If a whale does not find a better position after successive Ts iterations,

it is considered to have reached steady state and located an extreme point. If the difference

between its fitness value and fgbest (the fitness value of the best one among the current global

optima) is less than Tf , the whale’s position is considered a current global optimum; other-

wise, the whale’s position is considered a local optimum. If the whale’s position is a current

global optimum, this optimum will be stored. Then, the whale that has reached steady state

is randomly reinitialized in the search area to jump out of the located extreme point. To

judge whether a whale has reached steady state, each whale keeps an iterative counter c to

record the number of successive iterations during which it has not found a better position.

So, in this paper, the improved WSA is called WSA with Iterative Counter (WSA-IC).

4.2 The detailed procedure of WSA-IC

Fig. 5 presents the pseudo code of WSA-IC. For WSA-IC, it is worth noting that the initial-

ization of a whale contains two operations: initializing the whale’s position randomly and

assigning 0 to its iterative counter. The improvement on iteration rule of WSA described in

section 4.1 can be seen from Fig. 5. If a whale’s “better and nearest” whale exists (line 8

in Fig. 5), a copy of this whale is generated firstly (line 9 in Fig. 5). Then, the copy moves

under the guidance of the “better and nearest” whale according to Eq. 10 (line 10 in Fig. 5).

If the position of this copy after movement is better than that of the original whale (line 12

in Fig. 5), the copy replaces the original whale (line 13 in Fig. 5).

The detail of identifying and escaping from the located extreme points during the itera-

tions for WSA-IC is shown below. If a whale finds a better position (lines 9−13 in Fig. 5)

in an iteration, assigning 0 to its iterative counter c (line 14 in Fig. 5); otherwise, the whale

should check its iterative counter (lines 15−17 and 18−20 in Fig. 5). The detailed proce-

dure of checking a whale’s iterative counter is demonstrated in Fig. 6. As we can see from

Fig. 6, firstly determine whether the whale’s iterative counter c has reached stability thresh-

old Ts. If the whale’s iterative counter c is less than Ts (line 2 in Fig. 6), its c increases by 1

(line 3 in Fig. 6); otherwise, the whale is considered to have reached steady state and located

an extreme point. If the whale has reached steady state, it should determine whether the lo-

cated extreme point is a current global optimum (line 5 in Fig. 6). If it is a current global

optimum, this extreme point will be stored. Then, the whale that has reached steady state is

randomly reinitialized (line 6 in Fig. 6), for jumping out of the located extreme point to find

the global optima. It can be seen that, with the parameter stability threshold Ts, the proposed

WSA-IC can jump out of the located extreme points without hindering local search.

The detailed procedure of judging whether a solution is a current global optimum is

demonstrated in Fig. 7. Firstly, judge whether the fitness value of the solution is less than

fgbest (the fitness value of the best one among the current global optima set GloOpt). If

the fitness value of this solution is less than fgbest (line 2 in Fig. 7), this solution must

be the current global optimum. Before updating fgbest (line 6 in Fig. 7) and storing the

new current global optimum (line 7 in Fig. 7), judge whether the optima located before in

GloOpt are still the current global optima. If the difference between fgbest and the whale’s

fitness is greater than Tf (line 3 in Fig. 7), all the elements of GloOpt are not the current

global optima, so GloOpt needs to be cleared (line 4 in Fig. 7). If the fitness value of this

solution is greater than fgbest (line 8 in Fig. 7), judge whether this solution is a current global

Title Suppressed Due to Excessive Length 13

The pseudo code of WSA-IC

Input: An objective function, the whale swarm �.

Output: The current global optima set GloOpt.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

begin

Initialize parameters;

Initialize whales;

Evaluate all the whales (calculate their fitness values);

while termination criterion is not satisfied do

for i=1 to |�| do

Find the �better and nearest� whale Y of �i;

if Y exists then

Generate a copy X' of �i;

X' moves under the guidance of Y according to Eq. 10;

Evaluate X';

if f(X')<f(�i) then

�i=X';

�i.c=0;

else

Check the iterative counter of �i;

end if

else

Check the iterative counter of �i;

end if

end for

end while

Judge whether each whale in � is a current global optimum;

return GloOpt;

end

Fig. 5. The pseudo code of WSA-IC.

iterative counter

1:

Fig. 6. The pseudo code of checking a whale�s iterative counter.

Fig. 5 The pseudo code of WSA-IC

Fig. 5. The pseudo code of WSA-IC.

iterative counter

1:

The pseudo code of checking a whale�s iterative counter

Require: A whale X, stability threshold Ts.

1:

2:

3:

4:

5:

6:

7:

8:

9:

begin

if X.c¹ Ts then

X.c=X.c+1;

else

Judge whether X is a current global optimum;

Reinitialize X;

Evaluate X;

end if

end

Fig. 6. The pseudo code of checking a whale�s iterative counter.Fig. 6 The pseudo code of checking a whale’s iterative counter

optimum. If the difference between the fitness value of this solution and fgbest is not greater

than Tf (line 9 in Fig. 7), this solution is considered a current global optimum, so it is added

to GloOpt (line 10 in Fig. 7).

Until the end of iterations, though some whales’ iterative counters do not reach Ts, they

may have already located the current global optima. Therefore, conducting the step in Fig.

7 for each whale in the last generation (line 23 in Fig. 5) is necessary.

14 Bing Zeng et al.

The pseudo code of judging whether a solution is a current global optimum

Require: A solution X, fitness threshold Tf, the current global optima set

GloOpt, fgbest (the fitness value of the best one among GloOpt).

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

begin

if f(X)<fgbest then

if fgbest�f(X)>Tf then

Clear GloOpt;

end if

fgbest=f(X);

Add X to GloOpt;

else

if f(X)�fgbest�Tf then

Add X to GloOpt;

end if

end if

end

Fig. 7. The pseudo code of judging whether a solution is a current global optimum.

Fn. imensions No. of global optima No. of local optima

F1 Peak Trap

F2: Peak Trap 5

3: Expanded Equal Minima

F4: Expanded Decreasing Minima

F5: Expanded Uneven Minima

F6: Expanded Himmelblau�s Function

F7: Hump Camel Back 6

F8: Function

F9: 10

F10: 10

F11: 10

F12: 10

F13: 10

F14: 10

F15: 10

F16: 50

F17: 100

F18: 100

F19: 100

F20: 100

Fig. 7 The pseudo code of judging whether a solution is a current global optimum

4.3 Parameters setting of WSA-IC

As we can see from the detailed steps above, WSA-IC contains four algorithm dependent

parameters, i.e., intensity of ultrasound source ρ0, attenuation coefficient η , stability thresh-

old Ts and fitness threshold Tf . ρ0 and η are two constants, and are always set to 2 and 0

respectively. Tf should be set to a comparatively small value that is between 0 and the dif-

ference between the global second best fitness and the global best fitness, if the problem to

be solved has at least one local optimum as shown in the example of an one-dimensional

function in Fig. 8. The X1Best and X2Best in Fig. 8 denote the global optimum and the global

second best solution respectively, and the difference between their objective function values

is quite small. For the function to be optimized in Fig. 8, Tf should be set to a very small

value that between 0 and f (X2Best)− f (X1Best). For almost all the problems, especially those

problems without prior knowledge of their fitness landscape, Tf can be set to 1.0× 10−8.

And for those benchmark test functions whose global optima are given, Tf can be set to the

value of the predefined fitness error (i.e., level of accuracy) that is utilized to judge whether

a solution is a real global optimum. The value of Ts may vary with the problem to be solved.

According to a large number of experimental results, it is reasonable to set Ts=100n, where

n is the function dimension.

X2Best X1Bset x

y

0

f(X2Bset)

f(X1Bset)

y=f(x)

Fig. 8 A function with at least one local optimum

Title Suppressed Due to Excessive Length 15

4.4 Convergence analysis of WSA-IC

It can be seen from section 4.2 that if a whale’s iterative counter c increases to Ts, the whale is

considered to have reached steady state, i.e., it has converged. So, the convergence analysis

of WSA-IC depends on the convergence proof of position update rules of WSA-IC. Based

on Fig. 5 and Eq. 10, the position update equation of WSA-IC can be expressed as follows.

xt+1
i =

{

Axt
i +Byt

i f (Axt
i +Byt

i)< f (xt
i),

xt
i f (Axt

i +Byt
i)≥ f (xt

i).
(11)

where, A = 1−rand(0, 2), B = rand(0, 2). It follows that E(A) = 0, E(B) = 1 and D(A) = D(B)

= CE(AB) = 1/3.

To prove the convergence of Eq. 11 just needs to prove the convergence of expectation

and variance of xt+1
i . The expectation of xt+1

i is shown as follows.

E
(

xt+1
i

)

= E
(

Axt
i +Byt

i

)

(12)

Because the distribution of B is unrelated to xt
i and yt

i , yt
i can be treated as a constant.

And Eq. 12 can be rewritten as follows.

E
(

xt+1
i

)

= E(A)E
(

xt
i

)

+E(B)yt
i (13)

1

E(B)
E
(

xt+1
i

)

−
E(A)

E(B)
E
(

xt
i

)

= yt
i (14)

The eigenvalue λ of E
(

xt+1
i

)

satisfies the following characteristic equation.

1

E(B)
λ −

E(A)

E(B)
= 0 (15)

The sufficient and necessary condition for the convergence of E
(

xt+1
i

)

is that the eigen-

value λ is less than 1. It can be seen from Eq. 15 that λ = E(A) = 0. Therefore, we can

conclude that E
(

xt+1
i

)

will converge during the iterations.

The variance of xt+1
i is shown as follows.

D
(

xt+1
i

)

= E
(

xt+1
i

)2
−E2

(

xt+1
i

)

= E(Axt
i +Byt

i)
2 −E2 (Axt

i +Byt
i)

= E
(

A2
)

E(xt
i)

2 −E2 (A)E2 (xt
i)+2E(AB)E(xt

i)yt
i

−2E(A)E(B)E(xt
i)yt

i +
(

E
(

B2
)

−E2 (B)
)

(yt
i)

2

(16)

Eq. 16 can be transformed as follows.

D
(

xt+1
i

)

−E
(

A2
)

D(xt
i) = D(A)E2 (xt

i)+

2E(AB)E(xt
i)yt

i −2E(A)E(B)E(xt
i)yt

i +D(B)(yt
i)

2

= D(A)
(

E2 (xt
i)−2E(xt

i)yt
i +(yt

i)
2
)

(17)

From Eq. 17, it follows that the eigenvalue λ of D
(

xt+1
i

)

is equal to E(A2). So D
(

xt+1
i

)

will converge during the iterations because E(A2) = 1/3 that is less than 1. Therefore, we

can expect that during the iterations of WSA-IC, the whales will converge to an appropriate

solution under the guidance of their “better and nearest” whales.

16 Bing Zeng et al.

5 Experimental results and analysis

The proposed WSA-IC and other comparison algorithms are all implemented with C++ pro-

gramming language by Microsoft visual studio 2015 and executed on the PC with 3.2 GHz

and 3.6 GHz Intel core i5-3470 processor, 4 GB RAM and 64-bit Microsoft windows 10 op-

erating system. The source code of the proposed WSA-IC can be download from the website

https://drive.google.com/file/d/1W5uUvmdYjKYoC1QsHd5HQkSyZD2Hf0de/view?usp=sharing.

The five niching metaheuristic comparison algorithms are listed as follows.

1) LIPS [36]: the locally informed PSO.

2) NGSA [37]: the niche GSA.

3) NSDE [35]: the neighborhood based speciation DE.

4) NCDE [35]: the neighborhood based crowding DE.

5) FERPSO [34]: the Fitness-Euclidean distance ratio PSO.

Apart from the above niching metaheuristic algorithms, WSA-IC is also compared with

WSA [23]. It is worth noting that the different evolutionary rules of different algorithms

will result in different computational complexity. All these comparison algorithms are im-

plemented in the same development environment, and utilize the Function Evaluations (FEs)

as the stopping criterion. It is obvious that the more global optima the algorithm finds and

the accuracy of these optima are higher when satisfying the stopping criterion, the better the

algorithm performs.

5.1 Test functions

We use 20 multimodal benchmark functions to test these algorithms. Basic information of

these test functions is summarized in Table 1, in which the symbol “−” in the last col-

umn corresponding to F16-F20 means that these functions have many local optima, and the

number of their local optima are unknown. In Table 1, the former 15 multimodal functions

come from CEC2015 [39], and the latter 5 functions are the classical multimodal functions

with high dimension. These CEC2015 functions can be divided into two categories. The

first 8 functions are expanded scalable functions and the remaining 7 functions are composi-

tion functions. All these CEC2015 functions come with search space shift and rotation that

makes them more difficult to solve, while the latter 5 multimodal functions are only shifted.

More details of these test functions are presented in the document named “Definitions of

CEC2015 niching benchmark 20141228” which can be downloaded from the website shown

in reference [39]. For functions F2, F3, F5, F6, F7, F8, F9, F11, F12 and F13 the objective is

to locate all the global optima, while for the rest the target is to escape from the local optima

to hunt for the global optimum. And all these test functions are minimization problems.

5.2 Parameters setting

To compare the performance of the multimodal optimization algorithms in this paper, all the

test functions should be treated as black-box problems, though their global optima can be

obtained by the method of derivation. Thus, the known global optima of these test functions

cannot be used by these algorithms during the iterations. The fitness error ε f , i.e., level

of accuracy, is used to judge whether the final solution is a real global optimum. If the

difference between the fitness value of the final solution and the fitness value of the known

https://drive.google.com/file/d/1W5uUvmdYjKYoC1QsHd5HQkSyZD2Hf0de/view?us p=sharing

Title Suppressed Due to Excessive Length 17

global optimum is lower than ε f , this solution can be considered a real global optimum.

In our experiments, the fitness error ε f , population size p and function evaluations used

by these algorithms for the test functions are listed in Table 2. It is worth noting that a

function which has higher dimension or more complex fitness landscape may require a larger

population size or more function evaluations.

The parameters’ values of these comparison algorithms are set as same as those in their

reference source respectively. Table 3 lists the values of main parameters of these algorithms.

The attenuation coefficient η of WSA for each test function is listed in Table 4. Table 5

shows the neighborhood size m of NSDE and NCDE respectively.

Table 1 Test functions

Fn. Test function name Dimensions No. of global optima No. of local optima

F1 Expanded Two-Peak Trap 5 1 15

F2 Expanded Five-Uneven-Peak Trap 5 32 0

F3 Expanded Equal Minima 4 625 0

F4 Expanded Decreasing Minima 5 1 15

F5 Expanded Uneven Minima 3 125 0

F6 Expanded Himmelblau’s Function 4 16 0

F7 Expanded Six-Hump Camel Back 6 8 0

F8 Modified Vincent Function 3 216 0

F9 Composition Function 1 10 10 0

F10 Composition Function 2 10 1 9

F11 Composition Function 3 10 10 0

F12 Composition Function 4 10 10 0

F13 Composition Function 5 10 10 0

F14 Composition Function 6 10 1 19

F15 Composition Function 7 10 1 19

F16 Griewank 50 1 −
F17 Ackley 100 1 −
F18 Rosenbrock 100 1 −
F19 Rastrigin 100 1 −
F20 Expanded Scaffer’s F6 100 1 −

Search range: [−100,100]D

Table 2 Setting of parameters associated with test functions

Fn. ε f pop. size (p) FEs

F1 0.00000001 50 6.0E6

F2 0.00000001 50 1.8E8

F3 0.00000001 50 1.5E9

F4 0.00000001 50 1.5E8

F5 0.00000001 50 9.0E7

F6 0.00000001 50 3.0E7

F7 0.000001 50 3.0E7

F8 0.0001 50 1.5E9

F9 0.00000001 500 1.2E8

F10 0.00000001 500 3.0E7

F11 0.00000001 100 6.0E7

F12 0.00000001 100 5.0E7

F13 0.00000001 100 1.0E7

F14 0.00000001 500 5.0E7

F15 0.00000001 100 2.0E7

F16 0.00000001 100 2.0E7

F17 0.00000001 100 2.0E7

F18 0.00000001 100 1.5E8

F19 0.00000001 100 1.5E8

F20 0.00000001 100 6.0E7

18 Bing Zeng et al.

5.3 Performance metrics

To fairly compare the performance of WSA-IC with that of other six algorithms, we have

conducted 51 independent runs for each algorithm over each test function. And the following

four metrics are used to measure the performance of all the algorithms.

1) Success Rate (SR) [27]: the percentage of runs in which all the global optima are suc-

cessfully located using the given level of accuracy.

2) Average Number of Optima Found (ANOF) [39]: the average number of global optima

found over 51 runs.

3) Quality of optima found: the mean of fitness values of optima found over 51 runs, re-

flecting the accuracy of optima found.

4) Convergence rate: the rate of an algorithm converging to the global optimum over func-

tion evaluations.

5.4 Quantity of optima found

This section presents and analyses the results of quantity of optima found by these algo-

rithms. Firstly, all the algorithms are compared on “Success Rate”, which is the most popu-

lar metric used to test the performance of the multimodal optimization algorithms in terms

of locating multiple global optima. Then, the metric “Average Number of Optima Found” is

employed to further compare the performance of the algorithms on locating multiple global

Table 3 Setting of main parameters of algorithms

Algorithms Parameters

LIPS ω=0.729844, nsize=2 5

NGSA G0=10, α=20, ki=0.08, k f =0.16

NSDE CR=0.9, F=0.5

NCDE CR=0.9, F=0.5

FERPSO χ=0.729844, ϕmax=4.1

WSA ρ0=2

WSA-IC ρ0=2, η=0, Ts=100∗n, Tf =ε f

1. ω : inertia weight; nsize: neighborhood size;
2. G0: gravitational constant at the beginning; α : attenuation coefficient; ki,

k f : two constants that determine the number of neighbors at the beginning and at the end;
3. CR: crossover rate; F: scaling factor;
4. χ: constriction factor; ϕmax: coefficient;

Table 4 Setting of attenuation coefficient of WSA for test functions

Fn. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

η 0.0001 0.1 0.14 0.00005 0.16 0.16 0.001 0.3 0.09 0.001

Fn. F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

η 0.01 0.001 0.001 0.001 0.001 0.005 0.01 0.014 0.005 0.01

Table 5 Setting of neighborhood size m of NSDE and NCDE for test functions

Fn. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

NSDE 0.2p 0.2p 0.2p 0.2p 0.2p 0.2p 0.2p 0.2p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p

NCDE 0.2p 0.2p 0.2p 0.2p 0.2p 0.2p 0.2p 0.2p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p 0.1p

Title Suppressed Due to Excessive Length 19

optima, as some algorithms can not achieve nonzero SR over some functions with multiple

global optima.

1) Success Rate

The SR of each algorithm on each test function is presented in Table 6, in which each

number within the parenthese denotes the rank of each algorithm on the corresponding func-

tion in terms of SR, and the bold number means the corresponding algorithm performs best

on the function. The same SR value on a function means that the corresponding algorithms

have the same rank for the function. The last row of Table 6 shows the total rank of each

algorithm for all the test functions, which is the summation of each individual rank of the

algorithm for each function. It can be seen from Table 6 that WSA-IC performs best on most

of the test functions in terms of SR. Especially on F3, F5 and F8 which have massive global

optima, WSA-IC achieves the maximal SR values, i.e., 1, while the comparison algorithms

can not achieve nonzero SR values on the three functions,indicating WSA-IC performs much

better than other algorithms. It is worth noting that F9−F15 are composition functions with

search space shift and rotation, whose global optima are more difficult to locate, so that all

the algorithms can not achieve nonzero SR values on F9−F14. For the composition function

F15, WSA-IC, LIPS, NSDE and NCDE all get the maximal SR value. What’s more, for the

high dimensional multimodal functions F16, F18 and F19, WSA-IC can also achieve much

higher SR values than most of other multimodal optimization algorithms. It also can be seen

that the better performance of WSA-IC in terms of SR can be supported by the total rank of

WSA-IC which is much better than those achieved by other algorithms.

2) Average Number of Optima Found

As the sample size in this paper is 51 that is greater than 30, we have conducted the

Two Independent-samples Z-test for WSA-IC to judge whether the difference between its

population and the population of every other algorithm, respectively represented by their

independent samples, is significant or not on each test function under the significance level

0.05, which is based on the variance between the ANOF of two independent samples. Table

7 presents the ANOF of each algorithm on each test function, and the standard deviation

of the number of optima found is also listed. The symbol “+” means that the difference

between the population of WSA-IC and the population of the comparison algorithm is sig-

nificant, and WSA-IC performs better than the comparison algorithm, while the symbol “=”

means that the difference is not significant. And the symbol “−” means that the difference is

significant, and WSA-IC performs worse than the comparison algorithm. The bold number

in Table 7 means that the corresponding algorithm performs best on the function in terms

of ANOF. It can be seen from Table 7 that WSA-IC has the best performance in terms of

ANOF over F1−F8, F15 and F18, which echoes the best SR values of WSA-IC on these

test functions as shown in Table 6. For the two composition functions F10 and F14 and the

high dimensional function F20, all the algorithms can not get nonzero ANOF, which means

that all the algorithms can not find the global optima of these functions. For the composi-

tion functions F9, F11 and F12, WSA-IC performs far better than most of other comparison

algorithms in terms of ANOF. It also can be seen that the better performance of WSA-IC

in terms of the number of optima found can be supported by the total number of symbols

“+”, “=” and “−” in the last three rows of Table 7. As we can see from Table 7, the nonzero

values of the number of symbol “−” only occur once when WSA-IC is compared with LIPS.

And the number of symbol “+” is larger than that of symbol “=” when compared with the

other algorithms. The better performance of WSA-IC is firstly due to the improvement on

20 Bing Zeng et al.

Table 6 SR and ranks (in parentheses) of algorithms on F1−F20

Fn. LIPS NGSA NSDE NCDE FERPSO WSA WSA-IC

F1 0.31 0.10 0.92 0.14 0.39 0.08 1
(4) (6) (2) (5) (3) (7) (1)

F2 0 0 0 0 0 0 1
(2) (2) (2) (2) (2) (2) (1)

F3 0 0 0 0 0 0 1
(2) (2) (2) (2) (2) (2) (1)

F4 0.31 0.49 (1) (1) 0.14 0 1
(5) (4) (1) (1) (6) (7) (1)

F5 0 0 0 0 0 0 1
(2) (2) (2) (2) (2) (2) (1)

F6 0 0 0 0 0 0 1
(2) (2) (2) (2) (2) (2) (1)

F7 0 0 0 0.16 0 0 1
(3) (3) (3) (2) (3) (3) (1)

F8 0 0 0 0 0 0 1
(2) (2) (2) (2) (2) (2) (1)

F9 0 0 0 0 0 0 0
(1) (1) (1) (1) (1) (1) (1)

F10 0 0 0 0 0 0 0
(1) (1) (1) (1) (1) (1) (1)

F11 0 0 0 0 0 0 0
(1) (1) (1) (1) (1) (1) (1)

F12 0 0 0 0 0 0 0
(1) (1) (1) (1) (1) (1) (1)

F13 0 0 0 0 0 0 0
(1) (1) (1) (1) (1) (1) (1)

F14 0 0 0 0 0 0 0
(1) (1) (1) (1) (1) (1) (1)

F15 1 0.20 1 1 0.73 0 1
(1) (6) (1) (1) (5) (7) (1)

F16 1 0.12 1 1 0.39 0.41 0.98
(1) (7) (1) (1) (6) (5) (4)

F17 0 0 0.08 0 0 0 0
(2) (2) (1) (2) (2) (2) (2)

F18 0 0 0.82 0.88 0.24 0.57 0.88
(6) (6) (1) (1) (5) (4) (1)

F19 0 0 1 0 0 0 0.98
(3) (3) (1) (3) (3) (3) (2)

F20 0 0 0 0 0 0 0
(1) (1) (1) (1) (1) (1) (1)

Total rank 42 54 30 33 50 55 25

the location update rule of WSA when η=0, i.e., a whale will move to a new position under

the guidance of its “better and nearest” whale if this new position is better than its original

position, which can ensure the formation of multiple subpopulations and maintain the ability

of local exploitation. More importantly, the method of identifying and jumping out of the

located extreme points during the iterations can improve the global search ability as much

as possible, which can contribute significantly to the location of multiple global optima.

5.5 Quality of optima found

This section compares the performance of these algorithms in terms of the quality of optima

found. Table 8 presents the mean of fitness values of optima found over 51 runs on all these

test functions, and the standard deviation of fitness values of optima found are also listed

in the parentheses. For comparing the performance of all the algorithms on the quality of

Title Suppressed Due to Excessive Length 21

Table 7 ANOF of algorithms on F1−F20

Fn. LIPS NGSA NSDE NCDE FERPSO WSA WSA-IC

F1 0.31±0.46 + 0.10±0.30 + 0.92±0.27 = 0.14±0.34 + 0.39±0.49 + 0.08±0.27 + 1±0

F2 10.86±1.36 + 2.84±1.04 + 1.51±0.50 + 0±0 + 2.67±0.88 + 0.76±0.47 + 32±0

F3 16.76±1.45 + 3.37±1.27 + 1.84±0.36 + 44.90±1.61 + 5.59±1.16 + 1.04±0.59 + 625±0

F4 0.31±0.46 + 0.49±0.50 + 1±0 = 1±0 = 0.14±0.34 + 0±0 + 1±0

F5 16.80±1.68 + 4.73±1.50 + 1.98±0.14 + 0.22±1.53 + 8.61±1.50 + 1.27±0.45 + 125±0

F6 9.65±1.49 + 4.37±0.93 + 2±0 + 7.96±1.83 + 4.25±1.10 + 0.92±0.39 + 16±0

F7 3.80±1.31 + 1.27±0.89 + 2±0 + 5.90±1.47 + 1.49±0.70 + 0.47±0.50 + 8±0

F8 16.04±1.67 + 8.75±2.09 + 2.02±0.14 + 33.24±4.04 + 7.90±1.47 + 0.69±0.98 + 216±0

F9 6.31±0.67 − 0.61±0.56 + 0±0 + 2±0 + 0.82±0.68 + 1.51±0.54 + 4.53±1.04

F10 0±0 = 0±0 = 0±0 = 0±0 = 0±0 = 0±0 = 0±0

F11 0.51±0.50 + 0.51±0.50 + 0.02±0.14 + 0.84±0.36 = 0.02±0.14 + 0.33±0.47 + 0.82±0.38

F12 0.18±0.38 = 0±0 = 0±0 = 0±0 = 0±0 = 0±0 = 0.04±0.19

F13 0.96±0.19 = 0.06±0.24 + 1±0 = 1±0 = 0.76±0.42 = 0±0 + 0.90±0.30

F14 0±0 = 0±0 = 0±0 = 0±0 = 0±0 = 0±0 = 0±0

F15 1±0 = 0.20±0.40 + 1±0 = 1±0 = 0.73±0.45 + 0±0 + 1±0

F16 1±0 = 0.12±0.32 + 1±0 = 1±0 = 0.39±0.49 + 0.41±0.49 + 0.98±0.14

F17 0±0 = 0±0 = 0.08±0.27 = 0±0 = 0±0 = 0±0 = 0±0

F18 0±0 + 0±0 + 0.82±0.38 + 0.88±0.32 + 0.24±0.42 + 0.57±0.50 + 0.88±0.32

F19 0±0 + 0±0 + 1±0 + 0±0 + 0±0 + 0±0 + 0.98±0.14

F20 0±0 = 0±0 = 0±0 = 0±0 = 0±0 = 0±0 = 0±0

+ 11 15 8 9 14 15

= 8 5 12 11 6 5

− 1 0 0 0 1 0

optima found, 100*Fn. (Fn. denotes the serial number of a function) is substracted from the

fitness values of optima found by all the algorithms on the CEC2015 niching test functions

(i.e., F1−F15 in Table 1). And we have also conducted the Two Independent-samples Z-test

between WSA-IC and other comparison algorithms. The bold number in Table 8 means that

the corresponding algorithm performs best on the function in terms of the quality of optima

found. It can be seen form Table 8 that WSA-IC has the best performance over F1, F4, F7

and F14. What’s more, WSA-IC shows very stable performanc in terms of the quality of

optima found over these functions, which can be supported by the total number of symbols

“+”, “=” and “−” in the last three rows of Table 8, in which the number of symbol “−”

corresponding to different comparison algorithms is much less than that of symbols “+” and

“=”.

What’s more, the box plot of mean fitness values of optima found per run over 51 runs,

by WSA-IC, LIPS, NGSA, NSDE, NCDE and FERPSO, is shown in Fig. 9. Since the quality

of optima found by WSA are worse than other algorithms over most of these functions as

shown in table 8, the blox plot of WSA are ignored, so as to ensure the obvious differences

of other algorithms in terms of the distribution of optima found. It can be seen from Fig. 9

that, the dispersion degree of mean fitness values of optima found by WSA-IC is quite small

on most of the test functions with respect to other comparison algorithms. And WSA-IC

only has outliers on F11, F12, F13, F14 and F20, while most of other algorithms have more

outliers over these test functions. Therefore, it can be concluded that WSA-IC has good

stability on the accuracy of optima found over these test functions, with respect to other

comparison algorithms. The better performance of WSA-IC in terms of the quality of optima

found is also due to the improvement on the location update rule of WSA, i.e., a whale moves

to a new position under the guidance of its “better and nearest” whale if this new position

is better than its original position, which can ensure the ability of local exploitation. For

example, when some whales follow the same extreme point, the best whale among these

whales will stay where it is with great probability to guide other whales to converge to the

extreme point followed by them. Besides, the method of identifying and jumping out of the

22 Bing Zeng et al.

Table 8 Quality of optima found by algorithms on F1−F20

Fn. LIPS NGSA NSDE NCDE FERPSO WSA WSA-IC

F1
2.65E+01

+
5.18E+01

+
3.14E+00

+
6.53E+00

+
2.98E+01

+
8.71E+01

+
0.00E+00

(2.01E+01) (2.66E+01) (1.08E+01) (1.37E+01) (2.73E+01) (4.39E+01) (0.00E+00)

F2
0.00E+00

=
1.58E−10

=
1.17E−10

=
6.86E−03

=
2.26E−13

=
9.32E+00

+
4.88E−16

(0.00E+00) (3.81E−10) (5.07E−10) (1.52E−02) (7.85E−13) (1.97E+01) (2.11E−15)

F3
0.00E+00

=
4.66E−09

=
3.90E−15

=
1.60E−11

=
8.41E−13

=
1.57E−01

=
3.42E−16

(0.00E+00) (3.14E−08) (9.78E−15) (5.53E−11) (3.44E−12) (3.64E−01) (5.28E−16)

F4
7.86E−02

+
6.17E−02

=
0.00E+00

=
1.89E−14

=
1.71E−01

+
1.52E+00

+
0.00E+00

(6.68E−02) (7.11E−02) (0.00E+00) (3.31E−14) (1.33E−01) (5.64E−01) (0.00E+00)

F5
0.00E+00

=
2.72EĺC10

=
5.57E−16

=
3.88E−06

=
3.74E−13

=
6.69E−15

=
1.52E−16

(0.00E+00) (4.20E−10) (3.94E−15) (3.38E−06) (8.30E−13) (1.83E−14) (3.89E−16)

F6
0.00E+00

=
1.91E−10

=
1.11E−15

=
1.53E−14

=
1.19E−13

=
5.84E−01

+
2.37E−15

(0.00E+00) (5.55E−10) (7.88E−15) (3.21E−14) (1.72E−13) (2.42E+00) (5.39E−15)

F7
5.58E−07

=
7.04E−01

+
5.58E−07

=
5.65E−07

=
6.40E−02

=
2.41E+00

+
5.58E−07

(8.76E−15) (1.34E+00) (0.00E+00) (2.75E−08) (4.53E−01) (2.95E+00) (0.00E+00)

F8
0.00E+00

=
6.26E−06

=
7.73E−09

=
1.05E−05

=
2.02E−11

=
5.38E−01

+
2.09E−08

(0.00E+00) (6.35E−06) (5.47E−08) (6.30E−06) (1.27E−10) (1.13E+00) (6.67E−08)

F9
1.78E−13

=
5.50E−01

+
1.53E+00

+
0.00E+00

=
4.81E−01

+
2.02E−10

=
3.77E−14

(1.15E−13) (7.45E−01) (0.00E+00) (0.00E+00) (7.12E−01) (5.69E−10) (2.92E−14)

F10
3.00E+01

−
1.39E+04

+
3.00E+01

−
3.00E+01

−
9.84E+03

+
1.07E+04

+
3.82E+01

(2.22E−12) (1.10E−11) (0.00E+00) (5.24E−05) (6.32E+03) (5.89E+03) (1.34E+01)

F11
4.61E−03

=
8.26E−02

=
2.04E−01

+
3.00E−03

=
3.78E−01

+
3.44E−01

+
3.78E−02

(1.44E−02) (2.80E−01) (1.07E−01) (1.02E−02) (3.52E−01) (7.03E−01) (8.59E−02)

F12
5.61E+01

+
7.04E+02

+
4.69E−02

−
8.83E−02

−
3.27E+01

+
3.88E+02

+
4.41E+00

(1.47E+02) (2.25E+02) (1.86E−02) (1.07E−01) (8.17E+01) (2.71E+02) (2.47E+01)

F13
9.58E+00

−
2.89E+02

+
4.15E−13

−
0.00E+00

−
6.01E+01

+
3.91E+02

+
2.28E+01

(4.74E+01) (8.44E+01) (1.47E−13) (0.00E+00) (1.12E+02) (8.24E+01) (6.98E+01)

F14
2.12E+02

+
4.22E+02

+
1.12E+02

+
8.02E+01

+
2.13E+02

+
6.20E+02

+
5.91E+01

(2.15E+02) (4.51E+01) (7.36E+01) (7.09E+00) (1.41E+02) (1.10E+02) (4.16E+01)

F15
2.54E−13

=
1.73E+02

+
4.99E−13

=
0.00E+00

=
5.92E+01

+
2.91E+02

+
6.24E−14

(1.32E−13) (9.93E+01) (1.86E−13) (0.00E+00) (9.71E+01) (4.95E+01) (2.92E−13)

F16
7.58E−14

=
3.59E−01

+
2.63E−13

=
1.74E−13

=
1.28E−01

=
1.11E−02

=
4.83E−04

(1.07E−13) (3.34E−01) (8.27E−14) (9.64E−14) (2.82E−01) (1.23E−02) (1.95E−03)

F17
2.11E+01

+
2.13E+01

+
2.43E−03

−
2.11E+01

+
2.00E+01

=
2.00E+01

=
2.00E+01

(3.18E−02) (2.56E−02) (8.54E−03) (6.69E−02) (1.78E−02) (2.91E−04) (3.41E−03)

F18
1.52E+00

−
2.39E+08

+
6.44E−01

−
4.69E−01

−
7.37E+07

+
1.72E+00

−
1.77E+02

(4.05E+00) (1.98E+08) (2.42E+00) (1.28E+00) (9.80E+07) (1.97E+00) (1.22E+03)

F19
1.28E+02

+
4.00E+03

+
1.01E−12

−
3.65E+02

+
2.55E+03

+
5.69E+03

+
1.50E+00

(2.06E+01) (1.79E+03) (1.45E−13) (1.58E+02) (2.61E+03) (1.44E+03) (1.06E+01)

F20
3.05E+01

−
4.63E+01

+
1.83E+00

−
4.43E+01

+
3.72E+01

−
4.44E+01

+
4.36E+01

(2.38E+00) (3.68E−01) (1.02E+00) (1.75E+00) (1.66E+00) (7.13E−01) (7.79E−01)

+ 6 13 4 5 11 14

= 10 7 9 11 8 5

− 4 0 7 4 1 1

located extreme points during the iterations can improve the global search ability as much

as possible to find the global optima. For example, if some whales converge to a solution

that is close to a global optimum, with this method some other whales that have reached

steady state will be reinitialized, and they may move to the positions that is close to those

convergent whales, which will accelerate these whales to converge to the global optimum.

5.6 Convergence rate

From the previous two sections, it can be seen that the proposed WSA-IC has better and

more consistent performance than other algorithms, in terms of both the quantity of optima

found and the quality of optima found on most test functions. To demonstrate the efficiency

of WSA-IC on locating the global optima, WSA-IC is compared with other algorithms ex-

cept FERPSO and WSA (because the population of FERPSO and WSA may prematurely

converge to a solution or several solutions with same fitness value and terminate the itera-

tion) in terms of convergence rate in this section. Six functions (i.e., F1, F4, F9, F14, F18

and F19, wherein F9 has no local optima while others all come with local optima) are used

to test these algorithms. The convergence curves of all the algorithms on these test func-

tions are depicted in Fig. 10, in which the horizontal axis represent the number of function

evaluations and the vertical axis denote the mean of fitness values of the current global op-

tima over 51 runs. It can be seen from Fig. 10(c) that, for function F9 without local optima,

NSDE cannot converge to the global optima, and WSA-IC converge to the global optima

Title Suppressed Due to Excessive Length 23

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0

20

40

60

80

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0.00

0.02

0.04

0.06

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0.0

0.2

0.4

0.6

fi
tn

es
s

v
al

u
e

 a F1 b F2 c F3 d F4

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0.0E+00

1.0E-09

2.0E-09

3.0E-09

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0

1

2

3

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0.0E+00

1.0E-05

2.0E-05

3.0E-05

fi
tn

es
s

v
al

u
e

 e F5 f F6 g F7 h F8

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0.0

0.5

1.0

1.5

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0

3000

6000

9000

12000

15000

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0.0

0.5

1.0

1.5

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0

200

400

600

fi
tn

es
s

v
al

u
e

 i F9 j F10 k F11 l F12

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0

100

200

300

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0

200

400

600

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0

100

200

300

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0.0

0.5

1.0

fi
tn

es
s

v
al

u
e

 m F13 n F14 o F15 p F16

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0.0

5.0

10.0

15.0

20.0

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0E+00

2E+08

4E+08

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0E+00

5E+03

1E+04

2E+04

fi
tn

es
s

v
al

u
e

LIP
S

N
G

SA

N
SD

E

N
C
D

E

FER
PSO

W
SA

-I
C

0

10

20

30

40

50

fi
tn

es
s

v
al

u
e

 q F17 r F18 s F19 t F20

Fig. 9 Box plot of algorithms on F1−F20

with much faster rate than that of LIPS and NCDE. Although NCDE can converge to the

global optima of F9, it gets a much lower ANOF on F9 than that gained by WSA-IC as

shown in Table 7. What’s more, for functions F1, F4, F14, F18 and F19 that have multiple

local optima, WSA-IC can achieve the global optima with satisfying convergence rate on

F4 and F18 as shown in Fig. 10(b) and Fig. 10(e). For F19, WSA-IC only performs a little

worse than NSDE and far better than other algorithms, as shown in Fig. 10(f). And WSA-

IC can obtain better solutions with faster convergence rate than other algorithms on F1 and

24 Bing Zeng et al.

F14, as shown in Fig. 10(a) and Fig. 10(d). Therefore, it can be concluded that the proposed

WSA-IC shows excellent performance on convergence rate relative to other algorithms.

0E+00 1E+06 2E+06 3E+06
0

20

40

60

80

100

120

Fi
tn

es
s v

al
ue

No. of evaluations

 LIPS
 NGSA
 NSDE
 NCDE
 WSA-IC

(a) F1

0.0E+00 5.0E+07 1.0E+08
0.00

0.02

0.04

0.06

0.08

Fi
tn

es
s v

al
ue

No. of evaluations

 LIPS
 NGSA
 NSDE
 NCDE
 WSA-IC

(b) F4

0.0E+00 5.0E+06 1.0E+07 1.5E+07
0

1

2

3

4

5

Fi
tn

es
s v

al
ue

No. of evaluations

 LIPS
 NGSA
 NSDE
 NCDE
 WSA-IC

(c) F9

0.00E+00 2.50E+07 5.00E+07

300

600

900

Fi
tn

es
s v

al
ue

No. of evaluations

 LIPS
 NGSA
 NSDE
 NCDE
 WSA-IC

(d) F14

0.0E+00 5.0E+07 1.0E+08 1.5E+08
0.0E+00

3.0E+06

6.0E+06

9.0E+06

1.2E+07

fit
ne

ss
 v

al
ue

No. of evaluations

 LIPS
 NGSA
 NSDE
 NCDE
 WSA-IC

(e) F18

0.00E+00 2.50E+07 5.00E+07
0

3000

6000

9000

Fi
tn

es
s v

al
ue

No. of evaluations

 LIPS
 NGSA
 NSDE
 NCDE
 WSA-IC

(f) F19

Fig. 10 Convergence rate of algorithms on F1, F4, F9, F14, F18 and F19

5.7 Discussion of WSA-IC parameters

As mentioned in section 4.3, the parameters ρ0 and η are two constants, and are always set

to 2 and 0 respectively. For almost all the problems, especially those problems without prior

knowledge, Tf can be set to 1.0×10−8. Thus, only the parameter stability threshold Ts may

need to be specified different values for different problems. This section presents the results

of ANOF obtained by WSA-IC on all these test functions with different Ts values, as shown

in Table 9. And a clear visual comparison of ANOF obtained by WSA-IC with different Ts

values is shown in Fig. 11, where the values of ANOF with different Ts values on each test

function are normalized, and 1 refers to the best ANOF value while 0 refers to the worst

ANOF value. It can be seen from Table 9 and Fig. 11 that, WSA-IC can achieve the best

ANOF values on most test functions with Ts=100n. Therefore, the parameter Ts can be set

to 100n for almost all the continuous optimization problems.

6 Conclusions and future research

A new multimodal optimizer named Whale Swarm Algorithm with Iterative Counter (WSA-

IC), based on our preliminary work in [23], is proposed in this paper. Firstly, WSA-IC im-

proves the iteration rule of the original WSA when attenuation coefficient η is set to 0, i.e.,

a whale moves to a new position under the guidance of its “better and nearest” whale if

this new position is better than its original position. As a result, WSA-IC removes the need

Title Suppressed Due to Excessive Length 25

Table 9 ANOF of WSA-IC with different Ts values on F1−F20

Fn. Ts=20n Ts=40n Ts=60n Ts=80n Ts=100n Ts=120n Ts=140n Ts=160n Ts=180n Ts=200n

F1 1 1 1 1 1 1 1 1 1 1

F2 32 32 32 32 32 32 32 32 32 32

F3 477.22 588.67 622.35 624.96 625 625 625 625 625 624.98

F4 0.76 0.84 0.88 1 1 1 1 1 1 1

F5 125 125 125 125 125 124.98 125 125 125 125

F6 16 16 16 16 16 16 16 16 16 16

F7 8 8 8 8 8 8 8 8 8 7.98

F8 215.98 215.98 215.98 216 216 215.92 215.96 215.94 215.94 215.80

F9 5.86 4.94 4.51 4.12 4.53 4.10 4.43 4.20 4.06 4.04

F10 0 0 0 0 0 0 0 0 0 0

F11 0.82 0.80 0.80 0.76 0.82 0.75 0.67 0.67 0.63 0.67

F12 0.02 0.02 0.04 0.02 0.04 0 0.02 0 0 0

F13 1 0.98 0.90 0.82 0.90 0.86 0.82 0.76 0.82 0.69

F14 0 0 0 0 0 0 0 0 0 0

F15 0.98 1 0.73 0.94 1 0.84 0.90 0.76 0.82 0.82

F16 0.84 0.76 0.92 0.88 0.98 0.88 0.73 0.92 0.90 0.88

F17 0 0 0 0 0 0 0 0 0 0

F18 0.82 0.86 0.86 0.84 0.88 0.86 0.86 0.73 0.71 0.72

F19 1 0.98 0.98 0.98 0.98 0.92 0.82 0.88 0.84 0.92

F20 0 0 0 0 0 0 0 0 0 0

F20F19F1 F18F17F16F15F14F13F12F11F10F9F8F7F6F5F4F3F2

20n

200n

180n

160n

140n

120n

100n

80n

60n

40n

0

0.2

0.4

0.6

0.8

1

Fig. 11 Overview of ANOF obtained by WSA-IC with different Ts values on each function

of specifying different values of η for different problems to form multiple subpopulations,

without introducing any niching parameters. And the ability of local exploitation is also

ensured. What’s more, WSA-IC enables the identification of extreme points and enables

jumping out of the located extreme points during the iterations, relying on two new param-

eters, i.e., stability threshold Ts and fitness threshold Tf . If a whale does not find a better

position after successive Ts iterations, it is considered to have located an extreme point and

is to be reinitialized, so as to eliminate the unnecessary function evaluations and improve

the global search ability. If the difference between the fitness value of the located extreme

point and fgbest (the fitness value of the best one among the current global optima) is less

than Tf , the located extreme point is considered a current global optimum. The values of Ts

and Tf are very easy to set for different problems. Moreover, the convergence of WSA-IC

is proved. The experimental results clearly show that WSA-IC performs statistically better

26 Bing Zeng et al.

than other niching metaheuristic algorithms over most test functions in terms of comprehen-

sive metrics.

The main contributions of this paper are summarized into four aspects.

1) WSA-IC removes the need of specifying optimal niching parameter for different prob-

lems, which increases the practicality.

2) WSA-IC can efficiently identify and jump out of the located extreme points during the

iterations, so as to locate as more global optima as possible in a single run, which further

increases the practicality.

3) The algorithm dependent parameters of WSA-IC are easy to set for different problems,

which also increases the practicality.

4) The population size of WSA-IC does not need to match the number of optima of the

optimization problem. Generally, WSA-IC can keep a relative small population size,

which contributes significantly to reducing the computation complexity.

In the future, we will focus on the following aspects.

1) Introduce other metaheuristic algorithms or heuristic algorithms for the current best

whale to execute the neighborhood search process in each iteration, so as to further

improve the local search ability and the quality of optima.

2) Design some new methods to escape from the located extreme points instead of random

reinitialization, to make the population spread over the entire solution space as much as

possible.

Funding: This study was funded by the National Natural Science Foundation of China

(NSFC) (51825502, 51775216 and 51721092), Natural Science Foundation of Hubei Province

(2018CFA078) and the Program for HUST Academic Frontier Youth Team.

Conflict of interest: We declare that we have no financial and personal relationships with

other people or organizations that can inappropriately influence our work, there is no pro-

fessional or other personal interest of any nature or kind in any product, service and/or

company that could be construed as influencing the position presented in, or the review of,

the manuscript entitled “Whale swarm algorithm with the mechanism of identifying and

escaping from extreme points for multimodal function optimization”.

References

1. Tasgetiren MF, Kizilay D, Pan Q-K, Suganthan PN (2017) Iterated greedy algorithms for the blocking

flowshop scheduling problem with makespan criterion. Comput Oper Res 77:111-126

2. Lin G, Zhu W, Ali MM (2016) An effective hybrid memetic algorithm for the minimum weight dominating

set problem. IEEE T Evolut Comput 20(6):892-907

3. Zhang H, Cao X, Ho JKL, Chow TWS. (2017) Object-level video advertising: an optimization framework.

IEEE T Ind Inform 13(2):520-531

4. Ciancio C, Ambrogio G, Gagliardi F, Musmanno R (2016) Heuristic techniques to optimize neural net-

work architecture in manufacturing applications. Neural Comput Appl 27(7):2001-2015

5. Şevkli AZ, Güler B (2017) A multi-phase oscillated variable neighbourhood search algorithm for a real-

world open vehicle routing problem. Appl Soft Comput 58:128-144

6. Yi J, Li X, Chu C-H, Gao L (2016) Parallel chaotic local search enhanced harmony search algorithm for

engineering design optimization. J Intell Manuf :1-24

7. Raja MAZ, Ahmed U, Zameer A, Kiani AK, Chaudhary NI (2017) Bio-inspired heuristics hybrid with

sequential quadratic programming and interior-point methods for reliable treatment of economic load dis-

patch problem. Neural Comput Appl. doi:10.1007/s00521-017-3019-3

Title Suppressed Due to Excessive Length 27

8. Zhang H, Llorca J, Davis CC, Milner SD (2012) Nature-inspired self-organization, control, and optimiza-

tion in heterogeneous wireless networks. IEEE T Mobile Comput 11(7):1207-1222

9. Li X (2010) Niching without niching parameters: particle swarm optimization using a ring topology. IEEE

T Evolut Comput 14(1):150-169

10. De Jong KA (1975) Analysis of the behavior of a class of genetic adaptive systems

11. Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimiza-

tion. In: Genetic algorithms and their applications: Proceedings of the Second International Conference on

Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum, pp 41-49

12. Yin X, Germay N (1993) A fast genetic algorithm with sharing scheme using cluster analysis methods in

multimodal function optimization. In: Artificial neural nets and genetic algorithms. Springer, pp 450-457

13. Harik GR (1995) Finding Multimodal Solutions Using Restricted Tournament Selection. In: ICGA. pp

24-31

14. Bessaou M, Pĺętrowski A, Siarry P (2000) Island model cooperating with speciation for multimodal

optimization. In: International Conference on Parallel Problem Solving from Nature. Springer, pp 437-446

15. Deb K, Goldberg DE (1989) An investigation of niche and species formation in genetic function op-

timization. In: Proceedings of the 3rd international conference on genetic algorithms. Morgan Kaufmann

Publishers Inc., pp 42-50

16. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Evolutionary

Computation, 2002. CEC’02. Proceedings of the 2002 Congress on. IEEE, pp 1671-1676

17. Li X, Epitropakis M, Deb K, Engelbrecht A (2016) Seeking multiple solutions: an updated survey on

niching methods and their applications. IEEE T Evolut Comput 21(4): 518-538

18. Thomsen R (2004) Multimodal optimization using crowding-based differential evolution. In: Evolution-

ary Computation, 2004. CEC2004. Congress on. IEEE, pp 1382-1389

19. Mahfoud SW (1992) Crowding and preselection revisited. Urbana 51:61801

20. Mengshoel OJ, Goldberg DE (1999) Probabilistic crowding: Deterministic crowding with probabilistic

replacement. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO-99). p 409

21. Ursem RK (1999) Multinational evolutionary algorithms. In: Evolutionary Computation, 1999. CEC 99.

Proceedings of the 1999 Congress on. IEEE, pp 1633-1640

22. Stoean CL, Preuss M, Stoean R, Dumitrescu D (2007) Disburdening the species conservation evolution-

ary algorithm of arguing with radii. In: Proceedings of the 9th annual conference on Genetic and evolution-

ary computation. ACM, pp 1420-1427

23. Zeng B, Gao L, Li X (2017) Whale Swarm Algorithm for Function Optimization. In: Huang D-S,

Bevilacqua V, Premaratne P, Gupta P (eds) Intelligent Computing Theories and Application: 13th Inter-

national Conference, ICIC 2017, Liverpool, UK, August 7-10, 2017, Proceedings, Part I. Springer Interna-

tional Publishing, Cham, pp 624-639. doi:10.1007/978-3-319-63309-1_55

24. Das S, Maity S, Qu B-Y, Suganthan PN (2011) Real-parameter evolutionary multimodal optimizationąłA

survey of the state-of-the-art. Swarm Evol Compu 1(2):71-88

25. Li J-P, Balazs ME, Parks GT, Clarkson PJ (2002) A species conserving genetic algorithm for multimodal

function optimization. Evol Comput 10(3):207-234

26. Li X (2005) Efficient differential evolution using speciation for multimodal function optimization. In:

Proceedings of the 7th annual conference on Genetic and evolutionary computation. ACM, pp 873-880

27. Li X (2004) Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for

multimodal function optimization. In: Genetic and Evolutionary ComputationĺCGECCO 2004. Springer,

pp 105-116

28. Beasley D, Bull DR, Martin RR (1993) A sequential niche technique for multimodal function optimiza-

tion. Evol Comput 1(2):101-125

29. Brits R, Engelbrecht AP, Van den Bergh F (2002) A niching particle swarm optimizer. In: Proceedings

of the 4th Asia-Pacific conference on simulated evolution and learning. Singapore: Orchid Country Club,

pp 692-696

30. Stoean C, Preuss M, Stoean R, Dumitrescu D (2010) Multimodal optimization by means of a topological

species conservation algorithm. IEEE T Evolut Comput 14(6):842-864

31. Deb K, Saha A (2010) Finding multiple solutions for multimodal optimization problems using a multi-

objective evolutionary approach. In: Proceedings of the 12th annual conference on genetic and evolutionary

computation. ACM, pp 447-454

32. Li L, Tang K (2015) History-based topological speciation for multimodal optimization. IEEE T Evolut

Comput 19(1):136-150

33. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer

for global optimization of multimodal functions. IEEE T Evolut Comput 10(3):281-295

34. Li X (2007) A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio. In: Pro-

ceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 78-85

28 Bing Zeng et al.

35. Qu B-Y, Suganthan PN, Liang J-J (2012) Differential evolution with neighborhood mutation for multi-

modal optimization. IEEE T Evolut Comput 16(5):601-614

36. Qu B-Y, Suganthan P, Das S (2013) A distance-based locally informed particle swarm model for multi-

modal optimization. IEEE T Evolut Comput 17(3):387-402

37. Yazdani S, Nezamabadi-pour H, Kamyab S (2014) A gravitational search algorithm for multimodal

optimization. Swarm Evol Comput 14:1-14

38. Wang Y, Li H-X, Yen GG, Song W (2015) MOMMOP: Multiobjective optimization for locating multiple

optimal solutions of multimodal optimization problems. IEEE T Cybernetics 45(4):830-843

39. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2015/CEC2015.htm

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2015/CEC2015.htm

	1 Introduction
	2 Related works
	3 Whale swarm algorithm
	4 The proposed algorithm (WSA-IC)
	5 Experimental results and analysis
	6 Conclusions and future research

