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Abstract In a short period of time, many areas of science have made a sharp
transition towards data-dependent methods. In some cases, this process has
been enabled by simultaneous advances in data acquisition and the devel-
opment of networked system technologies. This new situation is particularly
clear in the life sciences, where data overabundance has sparked a flurry of
new methodologies for data management and analysis. This can be seen as
a perfect scenario for the use of machine learning and computational intelli-
gence techniques to address problems in which more traditional data analysis
approaches might struggle. But this scenario also poses some serious chal-
lenges. One of them is model interpretability and explainability, specially for
complex nonlinear models. In some areas such as medicine and health care,
not addressing such challenge might seriously limit the chances of adoption,
in real practice, of computer-based systems that rely on machine learning and
computational intelligence methods for data analysis. In this paper, we re-
flect on recent investigations about the interpretability and explainability of
machine learning methods and discuss their impact in medicine and health
care. We pay specific attention to one of the ways in which interpretability
and explainability in this context can be addressed, which is through data and
model visualization. We argue that, beyond improving model interpretability
as a goal in itself, we need to integrate the medical experts in the design of
data analysis interpretation strategies. Otherwise, machine learning is unlikely
to become part of routine clinical and health care practice.
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1 Introduction

In a very short period of time, many areas of science have made a sharp
transition towards data-dependent methods. Examples of this might include
astronomy [1] and high-energy physics [2,3]. This epochal change was of course
heralded by the widespread adoption and integration of computers in all as-
pects of scientific research. In some cases, this process has been enabled by
simultaneous advances in data acquisition and the development of networked
system technologies. Probably in no other field this new situation is so clear
as in the life sciences, where data overabundance in some of their areas has
become the main driver behind the development of whole new methodologies
for data management.

Research in the life sciences has turned to significantly rely on data acqui-
sition and analysis [4]. One of the main reasons for this is the central role that
genetics has come to play over the last few decades. The revolution started by
genetics and genomics in the life sciences, product of the coalescence of ad-
vances in sequencing techniques (data acquisition) and computer-based data
processing and analysis, can today be seen replicated in all members of the ex-
tended —omics family, including proteomics, transcriptomics and metabolomics
[5].

Part of the research challenges faced in this field have thus been transferred
to the computer science domain. Note that these now include issues so basic as
the limitations and barriers for the storage of exponentially growing very large
genomic databases [6]; the data transfer bottlenecks caused by millions of daily
data requests in the form of database queries; or the potential privacy issues
caused by trusting private information technology companies with data and
software storage [7]. In fact, the challenges for the omics sciences now involve
the four elements of data management: acquisition, storage, distribution, and
analysis. Genomics data have been forecasted to become the most extreme
case of big data over the next decades, surpassing astronomy and the internet
[8].

This can be seen as a perfect scenario for the use of machine learning (ML)
and computational intelligence (CI) techniques to address problems in which
more traditional data analysis approaches might struggle. But this scenario
also poses some far from trivial challenges. One of them is model interpretabil-
ity and explainability, especially for complex nonlinear models. In some areas,
such as medicine and health care, where explainability is paramount, such
challenge might seriously limit the chances of adoption, in real practice, of
computer-based systems that rely on opaque ML and CI methods for data
analysis.

In this paper, we reflect on recent investigations regarding the interpretabil-
ity and explainability of ML and CI methods and discuss their differential
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impact on medicine and health care. We also pay specific attention to one of
the ways in which interpretability and explainability can be addressed in this
context, which is through techniques for data and model visualization. By do-
ing so, we aim to stress the importance of considering the human factor when
attempting to enhance model interpretability in general and the importance
of integrating the medical expert in the process of developing strategies to
guarantee the interpretability and explainability of medical data models.

The remaining of the paper is structured as follows. The general problem of
interpretability in ML and CI is discussed, in its many facets, in section 2. This
is followed in section 3 by a more focused discussion of the role played by data
and model visualization strategies in enhancing ML and CI interpretability.
The rationale for these two sections is replicated in sections 4 and 5 for the
fields of medicine and health care. The first reflects on how interpretable ML
in these fields has very specific requirements and may arguably become a
key to adoption. The second, again, focuses on the opportunities created by
visualization in this context, given the importance of involving external experts
in its knowledge generation cycle.

2 Interpretability and explainability in Machine Learning: a
many-faceted problem

At the heart of ML and CI, in the end, we have families of algorithmic methods
and mathematical models for data analysis. Over the decades, these methods
have demonstrated their many benefits and capabilities, but they have also
been seen to suffer from shortcomings that endanger or, at the very least,
limit their use in a host of practical applications.

One of the latter is the focus of this paper and is the direct result of
the design characteristics of many of these methods: the potential lack of
interpretability and/or explainability of the data models they generate. In-
terpretability and explainability have become central issues in ML and CI
research over the last few years [9] and at least part of that interest is caused
by the resurgence of artificial neural networks (ANN) in the form of deep
learning (DL) and the fact that DL risks becoming an extreme case of the
black box model syndrome that was also a problem and a bottleneck for the
application of shallow ANN methods. Being reported as such a dramatic suc-
cess in ML, the lack of interpretability of DL models becomes one of the most
pressing concerns in the area and recent literature reflects that. Some exam-
ples include the proposal [10] of an adversarial training scheme where model
neurons “are endowed with human-interpretable concepts” and interpretable
representations can trace outcomes back to influential neurons, providing an
explanation of how models make predictions; the description of interpretabil-
ity criteria based on analysis of deep networks in the information plane is the
result of another recent study [11]. From a different but related perspective,
several studies base their proposal in visual interpretations of the deep models,
as we will address in the next section.
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The first issue to reckon with is that interpretability in ML is by no means
a fully formalized problem. Intuitively, it would seem to require that our data
models can be explained (thus making it overlap with the problem of model
explainability [12-14]). In a real-world application context, interpretability
might be judged according only to the specific requirements of the application
area (for example, the requirements for diagnosis in oncology and for anomaly
detection in industrial production have little in common) in acknowledgement
that different applications usually have different interpretability and explain-
ability needs. In general terms, though, we might want to consider standardized
interpretability metrics that allow us to quantitatively assess this characteris-
tic of our models. A timely outline of requirements for the formalization of a
“rigorous science of interpretable ML” has recently been described in [15]. A
key idea in this study is that the main reason for an ML or CI-based system to
require interpretability is some form of incompleteness in the way the problem
addressed by the system is formulated. This incompleteness may take different
forms, including a limited understanding of the problem (so that interpreta-
tion is a tool to acquire new knowledge), or a mismatch between the modeling
objectives and the goals from an application viewpoint.

Interpretability and explainability might be more than just a desired prop-
erty of ML and CI methods. These are concepts that can in fact take us way
off data modeling technical issues. A currently popular example of this are
how the recent swift advances on the application of Al in autonomous driving
have raised the question of who is legally liable for accidents caused by deci-
sions made by the autonomous system. The issue of Al legal accountability has
recently been broached by Doshi-Velez et al. [16]. Interpretability and explain-
ability of the system would come to the forefront of Al requirements in such a
circumstance. Al-controlled autonomous weapon systems are even harsher re-
mainders of the importance of interpretability and explainability as problems
of legal accountability [17], as they pertain to both international humanitarian
law [18] and military law [19]. Even further off from data modeling technical
issues, ML model interpretability has also recently been scrutinized from a
philosophical standpoint. In [20], Kroll discusses that lack of interpretability
might be the not always unintended outcome of power dynamics surrounding
software systems development, where lack of interpretability could be used as
an excuse to avoid the scrutiny that is the guarantee of accountability. The
author goes as far as to argue that the idea that some systems are “of necessity
inscrutable” should not be accepted and that, in certain areas of application,
the system designer has the latitude to avoid using unexplainable algorithms,
what could be considered as malpractice.

Much more immediate is the implementation of the European Union di-
rective for General Data Protection Regulation (GDPR). Enforced in May,
2018, it mandates a right to explanation of all decisions made by automated
or artificially intelligent algorithmic systems [21]. More explicitly, such right
to explanation involves providing the individual with “meaningful information
about the logic involved, as well as the significance and the envisaged conse-
quences of such processing [automated decision making] for the data subject”.
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Needless to say, this directly involves Al in the form of ML or CI, which is
illustrated by explicit reference in the legal affairs briefings of the European
Parliament [22]. This directive is of compulsory application at the national
level, but it is fair to say, though, that there is no consensus just yet about its
true reach and implications. It has been argued that the practical implemen-
tation of such a right to explanation might have limited impact [23] because
the GDPR might be too vague about what type of actual information subjects
would be entitled to receive. It has also been argued [20] that an individual
right to explanation might be of limited interest if it fails to account for ag-
gregated population effects (e.g. decisions made on a segment of population),
or if explanations are limited to a mechanistic unraveling of the algorithm
operation, failing to engage the context of the problem. In any case, this di-
rective places model interpretability and explainability right at the center of
many decisions in areas in which ML and CI are bound to have an impact on
the individual, such as health care and medical decision making as we argue
further in the following sections.

The fact remains that interpretability is a matter to be dealt with as a
human cognitive problem. As such, it could be addressed as a challenge for
the design of a proper interface between artificial pattern recognition (APR)
methods (those algorithmic techniques and statistical models that aim to ex-
press patterns from data in the expectation that they make sense, that is,
that they can be interpreted by a human) and natural pattern recognition
(NPR) human abilities (that is, the own internal pre-cognitive and cognitive
brain processing of the input information, about which we have, at best, lim-
ited knowledge). Note that this is related to another concern raised about the
way interpretability and explainability are currently being investigated in Al
in general. This concern has been expressively stated as the risk of “inmates
running the asylum” [24]. In this work, Miller and co-workers argue that it is
not necessarily convenient to leave decisions on how to articulate model in-
terpretability to the own data scientists, because this might result in models
that are only interpretable for the own data scientists. Instead, it is suggested
that models should be built with the assistance of concepts and expertise from
the fields of philosophy, psychology and cognitive science. This is an idea for
which some philosophers have recently provided support [25].

This way of addressing interpretability as a problem of interaction between
APR and NPR has been described [9] as an opportunity to create cycles of
interpretation, in which human appraisal of APR results enables the design
of a formal rationale for the modification of all the elements of data analysis
that have a potential impact on interpretability and comprehensibility, namely
data selection and preprocessing and modeling technique choice, as graphically
sketched in Fig.1.

In this cycle, the ML and CI interpretation tools (a broad palette of ap-
proaches from model sparsity and feature relevance determination to rule ex-
traction and visualization) play the key role of being intermediaries between
potentially opaque models and a human expert who needs this interpretation
in order to comprehend the problem and, as a result, make decisions about
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Fig. 1 ITuman analyst-computer ML interpretability cycle. Adapted from [9].

the data and analytical models leading to the optimization of the data analy-
sis process. This type of framework, contemplating the interplay of APR and
NPR, has recently been formalized in greater detail for one of the main tools
of interpretation of ML and CI methods, namely data visualization, as we
describe in the following section.

3 Visualization as a tool for interpretable Machine Learning

Visualization is a central human cognitive ability, making it the perfect conduit
for interpretation of algorithmic data models. It can also be seen as a powerful
tool for exploratory data analysis and one that enables inductive reasoning
in a natural, seamless manner. That means that visualization can itself be a
knowledge generator as it intuitively leads the analyst from observed model
outcomes to potential hypothesis about the observed data. Visual analytics
have, in fact, become a research field on its own [26,27]. The transparency
of ML, and CT can enormously benefit from the use of visualization [28] and,
once again, DL has become a hotbed for the use of visual analytics as a tool
to improve interpretability. Examples of research in this area include [29-32].
Much of this work concerns Deep Convolutional Neural Networks (CNN).
From the onset, visualization calls for synergies between APR and NPR,
and these can be mediated by the concept of interactive visualization. This in-
teraction has recently been characterized [27] as leading towards three goals in
the ML domain, namely understanding, diagnosis, and refinement, all of them
related to the problems of interpretability of the ML results and comprehen-
sibility of the obtained models. Understanding would refer to one of forms of
incompleteness in the way the problem addressed with ML or CI techniques is
formulated in [15], namely incompleteness defined as the limited understand-
ing about the problem itself. Interpretation in this case is used to acquire new
knowledge through visualization. Diagnosis refers to the interpretation of the
reasons behind ML model performance, be it good, bad, or not according to
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expectations, using visual analytics. Interpretation would lead here to the de-
sign of better models, which would be the final goal described in [27], namely
refinement.

As stressed in [15], interpretable ML and CI requires a formal framework to
encompass and give coverage to the different ways in which this problem can
be addressed. One instance of such a framework has recently been proposed for
the problem of ML and CI interpretability through interactive visualization
[33]. Tt encompasses the three goals of understanding, diagnosis and refinement
outlined in [27] and it emphasizes the interactive aspect of such visualization
as the main element of the interface between human cognition and algorithmic
learning. As such, it is defined as a human-centered framework. Again, its main
strength lies on its cyclical nature, which should make it fit any data mining
formal framework in a natural manner. We graphically summarize it in Fig.2.

~ » Exploration & -

o = Execution &
Edits & Preparation. Model selection Direct - oD
Enrichment et & Building ‘manipulation | n

U

ML
MODEL VISUALIZATION
\

Confirmatory analysis
Hypothesis forming
Confronting ML results
Adapting ML pipelines
What-if analysis
Expert verification

DATA PRE-
PROCESSING

SOIVYNIDS SISATYNY

Fig. 2 Human analyst-computer ML interpretability cycle through interactive visualization.
Adapted from [33]. The top row boxes describe the actions through which the analyst can
adapt and modify, mediated by interactive visualization, each and every component of the
analysis (data, pre-processing, models, and the own visualization process).

This conformity with the requirements of data mining methodological frame-
works is guaranteed by the choice of key elements used to describe the visual
interpretation interactive cycle. As seen in Fig.2, they include, in succession,
the data under analysis, the data pre-processing, the ML models, the visual-
ization strategies and the human expert (the analyst). The interaction with
the analyst, mediated by visualization, allows the former to feed the acquired
knowledge back into each of the elements of the cycle: visualization may induce
the analyst to modify the data sample under analysis through edits and en-
richment. It may also suggest modifications in the preparation of the data by
fine-tuning the data pre-processing (say, by dealing with visually detected out-
liers, anomalous data, or data artifacts, as well as by implementing alternative
forms of feature selection and/or extraction as a basis for refined visualiza-
tion). Visualization may also guide model selection and building and, in an
even closer loop, can provide the analyst, through interactive exploration, with



O J oy Ul W

OO OO YO U OOl U1 U1 Ul U Ul B DD DEDSEDNWWWWWWWWWWNDNDDNDNDNDNDNDNNDNNNNNRERRRRRRRERERE
G WN PP OWOO-JOHUDd WNEFEFOWOW-JIOUDdWNEFOWOJOUd WNEFE OWOWJIOU P> WNDE OWOWWTJOo Uk WP o

8 Alfredo Vellido

clues that might advice about the quality, usability and adequacy of the own
visualization techniques.

The role of the analyst as described in [33] is eminently proactive, and it is
seen as the hub through which visualization can be used in different analysis
scenarios, including confirmatory analysis, hypothesis forming, confronting ML
results, adapting ML pipelines, performing what-if analysis and seeking expert
verification. These analysis scenarios are compatible with and extend those
proposed in [27] for interpretation with visual analytics. The expert verification
listed in [33] is paramount in medical and health applications, as we argue and
discuss in the following sections.

4 Interpretable Machine Learning in health care and medicine: a
key to adoption

As mentioned in the introduction, we are witnessing a radical and extremely
swift transition towards data-dependency in the life sciences. This process is
putting much pressure on the development of novel strategies for biological
data management, curation and, ultimately, analysis.

These challenges have also been acknowledged in the particular domains
of health care and medicine, in which they may have had comparatively less
repercussion due to the fact that, in most cases, they do not generate data in
the sheer quantities that are becoming commonplace in, for instance, bioin-
formatics. Even here, though, the potential complexity and heterogeneity of
medical data implies that “it is not yet possible to create a comprehensive
model capable of considering all the aspects of health care systems” [34].

This is not to say that there are no areas in these domains that have
quickly evolved to become rich information ecosystems. An example can be
found in the widespread adoption of electronic health records (EHR) in medi-
cal practice, allowing clinicians networked access to multimodal medical data
including image, signal and text about patients’ history, hospital admissions,
drug prescriptions, visiting notes and the like. As a result, EHR and medical
databases have become an analytical target for natural language processing
and medical text mining, to the extent that one of the currently most fruitful
applications of ML in medicine is, precisely, the mining of EHR text [35].

Given the overabundance of this type of information, the use of mining
techniques for the automated extraction of knowledge might seem like an im-
peccable idea. It has been argued, though, that, unless properly designed and
implemented, these methods might lead to a reduction of skills among medical
experts. The pressure put on physicians to make use of EHRs on a routine ba-
sis may also lead to content-impoverished reports due to time constrains and
to an increase in the difficulty of striking a balance between an appropriate
personal engagement with patients and the compliance with EHR use guide-
lines [36]. Feeding information-poor EHRs to data analysis methods will yield
poor results. This problem may also occur in the opposite direction: Due to
the limitations on the type of data that analytical methods can handle and
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model, we might end up with EHRs that are artificially impoverished only
to fit the modeling needs instead of the medical requirements. This negative
consequence of the use of ML methods in medicine has been formulated as ML
methods’ “focus on text and the demise of context” [37].

Data-dependence is only likely to increase in health care and medical prac-
tice, given the prominent place occupied by the concept of evidence-based
medicine in the current health care agenda . A paradigmatic example of this is
the area of critical care. An intensive care unit (ICU) cares for acutely ill pa-
tients, many of whom, and particularly those at a surgical ICU, are technolog-
ically dependent on life-sustaining devices such as infusion pumps, mechanical
ventilators, catheters, etc. The assessment of the patient’s clinical needs may
change depending on the conditions present at the point of care, while their
status influences the medical team’s requests for further data (flow sheets,
EHR, demographic information, laboratory blood tests, medical images, etc.).

This situation should again be seen as an opportunity for data science in
general, and ML and CI in particular. These methods aim to extract knowledge
from observational data, and this knowledge aims to be novel as well as useful
and actionable in the sense that, beyond shedding light on medical issues,
medical decisions could be made on its basis. This was from the onset the
premise on which medical decision support systems (MDSS), often based on
ML and CI methods, are developed. Although still far from common medical
practice at the point of care, MDSS have made significant inroads in specific
domains [38-40]. On the other hand, the advantages and possible barriers to
the adoption of MDSS based on ML or similar methods have been investigated
for over a decade [41].

The simultaneous creation of an information-rich medical environment and
the development of techniques for knowledge extraction tailored to this do-
main, would seem to be a win-win situation for ML and CI. The fact, though,
that these methods have not yet been universally accepted and adopted in
health care and medicine should warn us about possible difficulties of adop-
tion and non-trivial implementation challenges. Arguably, and despite the ex-
istence of plenty of evidence supporting their usefulness, ML, and CI methods
are likely not to be adopted in routine medical practice beyond a limited num-
ber of niche applications unless those challenges are addressed.

Three main challenges for the application of ML in medicine were recently
described in [37] and one of them is precisely interpretability, expressed there
as “the need to open the machine learning black box”. This is indeed not
an unknown challenge for ML and CI in the medical domain, because the
black box problem was already being discussed decades ago for ANNs [42]
in this context. As previously mentioned, at least part of the new interest in
interpretability and explainability is driven by the new ANN models described
as DL, a family of successful methods that have also found their way into
the life sciences [43], as well as in biomedicine and health care [44-49]. In
their review of DL applications in health informatics, Ravi and co-workers
[47] rightly point out that one of the reasons that hinder the adaptation of
ML methods (and DL methods in particular) in medical settings is precisely
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the lack of interpretability they suffer. This view is shared by Che et al. in
[50], where gradient boosting decision trees were used to extract interpretable
knowledge from a trained deep network. In a somehow related study [51], deep
models are explicitly regularized so that their class-probability predictions can
be modeled with minimum loss by decision trees with few nodes, amenable to
intuitive interpretation.

Beyond these particular examples, self-contained tables of key bibliographic
references pertaining to the use of DL in biomedicine and health care and to
early attempts to imbue DL models with interpretability in medical and health
care applications are included in an appendix to the paper. A few conclusions
may be drawn from the studies compiled in these tables. The first is that
almost all review works in Table 1 identify interpretability and explainability
as key challenges to address in medical and health care applications of DL
methods. From Table 2, it is also clear that the problem of interpretability
can addressed in very different manners. There is a commonality, though: all
methods somehow replicate human interpretation procedures. This includes
mimicking the performance of DL using simpler more interpretable models
such as decision trees [51,52], visual analytics on their own or combined with
attention models [53-56], motif analysis [57], or semantic representations [56,
58]. All of these emphasize the need to treat interpretability at the human
cognition level, beyond technical detail.

In the health care and medical contexts, this is a problem with obvious
implications: if an ML or Cl-based MDSS churns out decisions that cannot
straightforwardly be described in comprehensible terms, a potentially insur-
mountable barrier is raised between the MDSS and the human subjects. For
instance, the medical expert could not trust to implement a decision that
she or he cannot explain to either the patient or to other medical experts,
whereas the patient might not trust an expert that bases her or his judgement
on unexplainable outcomes of a computer-based algorithmic method. Efforts
have been made to generate underlying knowledge representations that are
comprehensible to the human expert. Examples of this include rule-based rep-
resentations, which are usually compatible with medical reasoning [59]; and
nomograms, commonly used by clinicians because they allow visualizing the
relative weight of each symptom on a diagnosis or prognosis [60]. At a higher
level, and on the basis of legal safeguards such as the GDPR described in
previous paragraphs, a health care system might not be willing to implement
an opaque MDSS in clinical practice, in order to avoid litigation costs. Even
so, there is increasing evidence that doctors welcome the assistance of MDSS
in medical practice [41]. Interestingly, there is also evidence that doctors are
less likely to accept MDSS recommendations if they are confident about their
own decisions and the other way around. Note that this might be the cause
of a negative feedback cycle in which less confident medical personnel would
tend to rely more on MDSS assistance, behaviour that might in turn lead to
further deskilling of that personnel [36].

One of the justifications for seeking interpretability in ML-based systems,
listed in [15] and mentioned in previous sections, especially resonates with
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problems in the medical and health care domains. It is the idea that inter-
pretability is needed when there is incompleteness in the formulation of a
problem. This incompleteness may be due to a limited understanding of the
problem. An example of this from the field of oncology (detailed later on in
the paper) is the limited knowledge about what tissue metabolic fingerprint
can better discriminate different tumours in diagnosis. Such limited knowledge
makes the definition of sparse models (those able to yield maximum discrim-
ination from the minimum number of metabolites) almost compulsory [61].
The incompleteness may also be due to a mismatch between the modeling ob-
jectives and the goals from an application viewpoint. Arguably, this might be
one of the most common situations in medicine and health care; ML and CI-
based systems may have quantifiable goals in the form of prediction, accuracy,
robustness, etc., but they might be rendered useless if the obtained models do
not conform to clinical guidelines. Note that computer-based systems such as
the MDSS we are discussing here are often seen as an extra burden for the day-
to-day practice of clinicians [62] and that clinical guidelines, even if necessary
to standardize clinical practice, often conflict with the objective of personal-
izing medical practice [36]. In this scenario, interpretability might be seen as
the way to make model performance and guidelines compliance compatible.

Arguably, interpretability and explainability are necessary to fill the gaps
between raw information and human decision making. The role of ML in health
care should be acting “as a tool to aid and refine specific tasks performed by
human professionals” [63]. Note that this adds a key element to the issue
of interpretability: the fact that it cannot be dissociated from the cognitive
abilities of the human interpreter itself. In other words, that even though
we need to address the technical problem of opening those ML black boxes,
the problem by no means ends there and the human role must be factored
in the interpretability problem. Furthermore, the human factor is key in the
implementation of MDSS because, beyond the need to extract novel knowledge
from data, the justification for the use of computer-based MDSS can be found
in the need to counter-balance human experts’ diagnostic over-confidence [64].
This is clearly expressed in [41] when discussing the weak levels of adoption
of MDSS at the point of care. Authors argue there that one of the reasons
for such situation is that, by focusing too much on MDSS performance per se,
researchers often sidestep practical questions pertaining the interface between
the system and the medical expert, including, for instance, whether adequate
“explanations [are] given for the system’s diagnosis”, “the form of explanation
[is] satisfactory for the physicians using the system”, or “how intuitive is its
use”.

There is yet another way to look at this matter: it has been argued [65]
that many of the existing ML and CI approaches to biomedical data analysis
do not make the effort to integrate the often available expert knowledge into
the models, or use prior expert knowledge to improve model interpretability.
All this means that formal frameworks for machine-human interaction in the
pursue of interpretability and explainability, such as those described in pre-
vious sections, are even more important in health care and medicine than in
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other ambits of science. They should almost be considered as a pre-requisite
in the development of ML and CI-based MDSS and medical decision making
in general. In the framework described in [33], we have mentioned the partic-
ularly proactive role played by the human analyst and we have stressed the
analyst’s role in seeking expert verification. In medical and health care appli-
cations this verification is not a one-way process and we illustrate this in the
following section.

Although many of the interpretability and comprehensibility challenges for
ML and CI in medicine are related to the own characteristics of the methods,
it is also true that the challenges can be amplified by legal issues such as the
implementation of the European Union GPDR directive, enforced in 2018 and
described in previous sections. The reason is clear: it would affect any ML or
Cl-based MDSS that could not guarantee “the right to explanation” it grants
to individuals affected by automated algorithmic decisions made about them.

5 Visualization as a problem in health care and medicine

Unsurprisingly, visualization has been mentioned to play a central role as an
interpretability tool for medicine in recent research [65]. In this study, we find
a list of relevant open questions on this topic such as the choice of the most
suitable visualization techniques for the heterogeneous and structured data
to be commonly found in the biomedical context; the assessment of the most
relevant features to be visualized in order to ease human experts’ interpreta-
tion; or the integration of domain experts’ requirements/limitations in the ML
model, amongst others.

In a previous section, we have stressed the importance of visualization as
a tool to assist interpretation and comprehensibility of ML and CI models
in general, as well as the importance to provide a formal framework for the
use of visualization with these goals. The human analyst has an active role
in the interactive visualization framework proposed by Sacha and co-workers
[33], acting as a bridge between visual pattern discovery (using ML tools)
and knowledge validation by external experts. The importance of appraising
the possible benefits of putting the “human-in-the-loop” in applications of
ML to medical problems has been persuasively argued in [66]. In real-world
use cases in medicine and health care, visual discovery is not always purely
exploratory and, therefore, potentially interesting patterns obtained through
visualization must be cross-checked and validated against expert knowledge
from the domain. Quite often, this external assessment requires a committee
of domain experts who, in turn, will provide feedback to the analyst that can
be reinvested in the redesign of visualization experiments.

Note that this adds an extra layer of human subjectivity to the process
of interpretation through visualization. As a result, the framework must care
not only about a cycle involving computer-based visual techniques and a hu-
man analyst, but also about a coupled cycle involving two human parts: the
data analyst and the experts from the medical and health care domains, pro-
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viding ezpert verification. Finding a shared language for knowledge exchange
between these human experts may, in practice, be more difficult than the task
of knowledge extraction from the visual models generated by the computer
systems carried out by the analyst.

This new coupled cycle is not even just about verification, but should be
seen as a whole extra sub-cycle in which the medical expert may seek sev-
eral things from the data analyst, including: a) guarantees of interpretability
and explainability that are adapted to the specific requirements of the medical
problem; b) model compliance with clinical protocols and guidelines for a given
problem; ¢) model compliance with system-human interaction workflows at the
point of care. In turn, the data analyst may seek from the medical expert: a)
a clear statement of the medical requirements concerning interpretability and
explainability; b) a realistic understanding of the interpretability limitations
and possibilities of the analytical models; ¢) a clear description of the real med-
ical decision making process in place at the point of care; and d) a guarantee
of verification of the data analysis results.

This sub-cycle is represented in Fig.3 as an add-on to the cycle depicted in
Fig.2. Note that, although the sub-cycle is here integrated in a visualization-
based approach to interpretability, it could naturally be inserted in any sys-
tematic process that aimed to achieve model interpretability and explainability
beyond visualization. The next section illustrates the importance of taking this
extra loop into account using a case study in the area of neuro-oncology.

a) Guarantee of medical interpretability
b) Protocols and guidelines compliance
c) Point-of-care workflow compliance

>
COMPUTER SYSTEM

»

a) Statement of interpretability requirements

b) Understanding model interpretability limitations
c) Description of medical decision making process
d) Verification of data analysis results

Fig. 3 Extension of the human analyst-computer ML interpretability cycle through in-
teractive visualization proposed in [33] to account for a new sub-cycle of importance to
the medical and health care domains. This new sub-cycle covers the necessary interaction
between the human analyst, who must deliver data models that are interpretable and/or
explainable from a medical viewpoint, and the medical expert, who must ensure that the
data analyst is informed of the requirements that make interpretability valid from a medical
standpoint. Arrows in the graphical depiction of the interaction between these two agents
point from the agent that can deliver the interpretability item to the agent that requires it.
Note that (medical) expert verification (item d) of the data analyst’s list of requests to the
medical expert) was one of the analysis scenarios considered in [33] (sce Fig.2).
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6 Interpretability: a case study from the neuro-oncology domain

If ML, CI and related methods are to find real application in the medical and
health care domains, a transparent bridge of communication must be built
between the analysts extracting knowledge from the available data and the
medical experts making sense of that knowledge and putting it in practice.
Transparency in this context works at two levels: The results of data analytics
must be interpretable and the resulting interpretation must in turn be made
explainable by the medical expert, sometimes transferring the explanation to
the agent at the end of the chain: the patient.

Those two levels have been instantiated in the previous section in the form
of a further interpretation sub-cycle, depicted in Fig.3. It includes several
things that the medical expert (ME) may seek from the data analyst (DA);
to simplify the description of the case study presented in this section, we will
refer to these as DA2ME. Likewise, it includes things the DA may seek from
the ME and we will refer to these as ME2DA.

As mentioned, the case study with which the elements of this cycle will be
illustrated belongs to the area of neuro-oncology. This is an especially sensitive
area of oncology dealing with tumours of the central nervous system at large
and of the brain in particular. Several studies concerning the application of ML
and related methods to the analysis of brain tumour data will be covered here.
From the point of view of ML, several problems were investigated, including
classification, clustering, visualization, feature selection and outlier analysis in
different combinations. Analyses focused on Magnetic Resonance Spectroscopy
(MRS) as data acquisition modality. MRS, unlike the more commonly used
MR Imaging (MRI), provides a detailed and spatially-located biochemical and
metabolical fingerprint of the brain tissue composition. This technique can
shed light on cases that remain ambiguous after clinical investigation and can
provide a more precise diagnosis of some tumour types.

The analyzed data belonged to databases resulting from the INTERPRET
and eTUMOUR European research projects. Details of data acquisition and
processing procedures, as well as of further database characteristics can be
found in [67,68]. These multi-centre, international databases gathered just
a few hundred cases, but they are still to date amongst the largest avail-
able databases of their type. Only a number of tumour pathologies are repre-
sented by a sizeable number of cases amenable of automated analysis. They
include low-grade astrocytomas, oligoastrocytomas and oligodendrogliomas
(sometimes bundled as low-grade gliomas), glioblastomas and metastases (some-
times bundled as high-grade malignant tumours), and meningiomas.

One of the first ML-based studies we carried out with these data involved
outlier analysis. A simple exploratory visualization of the data using Sammon’s
Mapping was first performed, followed by a quantification of the atypicality
of the MR spectra using a generative manifold learning model [69]. Note that
these are quality controlled, curated databases. Each of the MR spectra had
to conform to several non-trivial selection criteria. These criteria included
that “the spectrum had not been discarded because of acquisition artefacts”.
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Furthermore, class labelling of each case was performed “according to the
World Health Organization (WHO) system for diagnosing brain tumours by
histopathological analysis of a biopsy sample”. It was thus unexpectedly that
the methods identified clearly atypical data of two types: clearly abnormal
data, way outside the main data distributions, and class-abnormal data resid-
ing within the main data distributions, but outside the distribution of their
own class. The latter are most likely to be misclassified by any ML method,
but are a lesser concern. Individual inspection of the former, though, revealed
the existence of data acquisition artifacts that were not meant to exist.

This turned out to be a flagrant case of both ME2DA and DA2ME items.
First, of ME2DA item a): (A clear statement of the interpretability and explain-
ability medical requirements). It happens that the tumour types (class labels)
were agreed among a committee of neuropathologists. Usually, a majority vot-
ing of two out of three experts was enough to assign the hystopathological
diagnosis to a case. A human diagnosis from the MRS could be reached even
if the spectrum was partially affected by one or more artifacts, provided that
enough relevant information remained in the rest of the spectrum. The exis-
tence of artifacts will easily fool an automated classification (decision making)
system, but will probably not fool a trained radiologist (the human decision
maker). This situation revealed that the medical experts had not appropri-
ately informed the data analysts of the medical terms of interpretability for
this particular problem. This situation also works the other way around as
a DA2ME item a) (guarantees of interpretability and explainability that are
adapted to the specific requirements of the medical problem), because the an-
alysts incorrectly assumed that their concept of data outlier was consistent
with that of the medical experts when this was clearly not the case. The iden-
tification of both items led to address ME2DA item d) (verification of the
data analysis results), as a thorough bipartite inspection of outlier candidates
revealed an unexpectedly nuanced variety of atypicalities and combinations of
artifacts that had hitherto not been characterized in the database.

A second study [70] focused on a more specific (and difficult) problem: the
discrimination between two types of high-grade malignant tumours, namely
glioblastomas and metastases. This problem is difficult because differentiating
one from the other from their images is almost impossible, but even their MRS
biochemical signatures are quite similar when taken as a whole, because they
are dominated by the presence of lipids, which are the result of the anaerobic
metabolism associated to their aggressive proliferation. The goal of the study
was replacing classification based on the whole MRS by classification based
on an intensive feature selection process (where each feature was one of the
discrete frequencies of the spectrum). The first experiments were fairly suc-
cessful, yielding better than the state-of-the-art classification accuracy with
a parsimonious selection of frequencies. Discussion of the results with medi-
cal experts made us realize that we had failed on two accounts: first, because
some of the features (frequencies) selected as important did not correspond
to any known metabolites in the tissue (only a limited number of frequen-
cies were metabolically interpretable); second, because the nonlinear classifier
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of choice did not allow a straightforward (i.e. interpretable and explainable)
visualization of the decision surface.

In the first failure, we were not complying with any of the DA2ME items:
not with a) (gquarantees of interpretability and explainability thal are adapted
to the specific requirements of the medical problem); not with b) (model com-
pliance with clinical protocols and guidelines for a given problem) because a
decision as sensitive as discriminating between these two types of tumours
cannot be supported by a doctor if based on an automated result without any
biochemical /metabolical explanation; and not with ¢) (model compliance with
system-human interaction workflows at the point of care) because an uninter-
pretable and unexplainable decision such as this cannot become the basis for a
diagnostic and prognostic decision and, even less, for a decision on treatment,
given that glioblastomas and metastases have completely different courses of
treatment.

In the second motive for failure, it is worth highlighting ME2DA item a)
(A clear statement of the interpretability and explainability medical require-
ments). It was first assumed by the analysts that the model success criterion
was balanced accuracy in the discrimination between tumour types. It turned
out that medical experts were happy to trade off part of such accuracy in
exchange for an increase on interpretability. Such increase entailed a linear-
on-the-parameters classifier and the use of only three features (the three most
relevant spectrum frequencies) for straightforward visualization of the data in
relation to the decision surface. In consequence, the choice of classifier was
changed to a single-layer perceptron, allowing to fulfill ME2DA item d) (ver-
ification of the data analysis results).

The third and last of the studies reviewed in this section [71] builds on the
experience gained in previous work. The important difference in this case is
that the study preventively tackled DA2ME item c) (model compliance with
system-human interaction workflows at the point of care) from inception. Here,
both the analysts and the medical experts started from the assumption that
the database might include bad data cases, even after expert assessment and
database curation. The problem is that the medical definition of a “good qual-
ity” MR spectrum from the point of view of diagnostics is not yet well estab-
lished: the gold standard is human-dependent, that is, despite the existence
of some guidelines, the standard may well vary from expert to expert. The
study proposed an ML pipeline that involves source extraction using Con-
vex Non-negative Matrix Factorization (¢cNMF) and a variety of classifiers,
including Logistic Regression, Linear Discriminant Analysis, AdaBoost, and
Random Forests. Importantly, this pipeline was built according to what med-
ical experts required in practice. cNMF was used for artifact detection and
characterization, and the system was designed to flag potentially bad cases for
radiologists’ consideration.
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7 Conclusions

The life sciences are at the avant-garde of an irreversible trend that, in a very
short time, is placing data at the heart of scientific discovery. Medicine and
health care, at their own pace, are following suit. This is an unprecedented
opportunity for ML, CI and related techniques for knowledge extraction from
data. Unsurprisingly, big I'T companies are swiftly veering towards Al while
simultaneously showing their interest in entering the medical domain and even
directly becoming health care solution providers [72], sometimes with unex-
pected and undesired results [73].

In this paper, we have argued that there are still many barriers to over-
come before these techniques become mainstream in real applications. One of
them is model interpretability and explainability, which must be guaranteed
before ML and Cl-based MDSS are trusted by the final users, who are the
medical practitioners and the health care systems for which they work. Model
interpretability has become a central issue for ML in recent times, and this
renewed (not new) interest can at least be partially explained by the success
of DL models, which, despite their abilities, are paradigmatic examples of lack
of interpretability. We have tried to convey the message that, although techni-
cal advances that aim to increase ML models’ interpretability are important,
medical data analysts must widen their scope to ensure the interpretability of
the complete analytical process by involving medical experts in it. We have
also paid special attention to one of the approaches to achieve interpretability
that best encompasses the necessary integration of technical developments and
human judgement, namely interactive visualization.

Sometimes, in our efforts to formalize the problems of interpretability and
explainability in the application of ML and related methods, we run the risk
of remaining at an excessively abstract level. This risk is especially clear in
the case of medical and health care applications, where the human factor,
as we have seen, extends beyond the data analyst to require the proactive
involvement of the medical experts, who must convey the interpretation of
the obtained data analysis results towards the patient. Here, we have tried
to move from the abstract to the specific by using a case study in neuro-
oncology as illustration. The research covered in this case study illustrates
the often overlooked and often unexpected interpretability and explainability
issues hampering the real application of (semi-)automated ML methods to
medical and health care problems in general. These experiences lead us to
conclude that one way to increase the interpretability and explainability of
our ML models when applied to medical problems is by involving the medical
experts in the analytical process. As part of that involvement, we should make
sure that the interaction between the data analysts and the medical experts
adheres to a formal protocol in which the specific requirements of each of these
parties, as detailed in the previous sections, are clearly and unambiguously laid
out. This form of interactive ML makes methodically correct experiments more
difficult to implement, evaluate and replicate, as correctly pointed out in [66].
These difficulties, though, could be offset by the advantages of adhering to
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such protocol, which would maximize the chances of ML and Cl-based MDSS
being integrated in the routine of clinical practice.
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Appendix

This appendix includes a self-contained summary of research publications in
the form of two tables. Table 1 covers a selection of general references on DL
methods applied to biomedicine, while Table Table 2 focuses only on studies
that deal with the problem of interpretability of DL methods applied in the
field.
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