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Abstract

Interaction graphs provide an important qualitative modeling approach for System Biology.

This paper presents a novel approach for construction of interaction graph with the help of Boolean

function decomposition. Each decomposition part (Consisting of 2-bits) of the Boolean functions

has some important significance. In the dynamics of a biological system, each variable or node is

nothing but gene or protein. Their regulation has been explored in terms of interaction graphs

which are generated by Boolean functions. In this paper, different classes of Boolean functions

with regards to Interaction Graph with biologically significant properties have been adumbrated.
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1 Introduction

Biological components (such as genes, proteins etc.) are continuously interacting through paths and

their interaction regulates the system into complex global dynamic behavior [1] and Biologists are

currently wasting a lot of time and effort in searching for all of the available information form biological

regulatory networks of biological components. Dynamics of the network can be described by recurrence

of synchronous iteration of Boolean function which can be used to form Boolean Network. Again On

the other hand topology of the network can be described by a sign directed graph. . An interaction

graph talks about the positive and negative influences between components. A signed directed graph

having one vertexes which considered to be components, indicates the static abstraction of Biological

Network [1, 2, 3].

Boolean functions have huge application in the theory of computer science, cellular Networks etc.

[4, 5, 6] and Boolean Networks in System Biology have been elaborately discussed in [5]. Boolean

networks (BNs) are extensively used to model biological regulatory networks [7, 8, 9, 10, 11] i.e. to study

the interactions between Biological components such as genes, proteins etc. Each Boolean Network has
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some Biological Components which are independently represented by local logical Boolean functions

and associates with a Boolean value for each component in Boolean Networks. All Boolean functions

are not accurately reflecting the behaviors of Biological systems and it is imperative to recognize classes

of Boolean functions with biologically relevant properties. A subset of Boolean functions having noble

characteristics of dynamics of Boolean networks is constructed. These functions have significance for

determining their potential in a model. One such notable class and their biological properties have

been introduced by Kauffman[7, 8] . To identify Boolean network, which are biologically relevant is a

major problem as the number of Boolean functions and the size of the state space of Boolean networks

are growing exponentially [1] with the increase of components. Different technique such as classical

analysis, model checking may be intractable with large complex systems. A number of operations can be

carried out on Interaction graph to make biologically relevant predictions about a regulatory system and

Interaction Graph can also be used for predicting qualitative aspects of system biology. Fundamental

issues in the analysis of Interaction graphs are the enumeration of paths and cycles (feedback loops) and

calculation of shortest positive or negative paths [12, 13, 14]. Some static analysis of Boolean Networks

through Interaction graph has been studied in [1].

In this paper, analysis of the Boolean functions through interaction graph have been discussed by

partitioning n-variable Boolean function into 2 fixed bits. Here we present a slightly different approach

from [1] with regards to the definition of Interaction graph. Partitioning of a Boolean function into 2

bits helps us to identify an edge or arc and cycle on interaction graph. Arcs and Cycles on Interaction

Graph are basically responsible for static analysis of Boolean Network. First we will give a formal

definition of Interaction Graph based on partitioning method and then classify the Boolean function

based on Interaction Graph. In section 2, decomposition technique is discussed and thereby Interaction

Graph and their matrix representation are given. Section 3, Boolean functions have been analyzed with

regards to Interaction Graph and section 4 deals with concluding remarks emphasizing the key factors

of the entire analysis.

2 Definition and Notations

Given any Boolean function f( x1,x2,x3,....,xn ) of n-variable is a mapping from {0, 1}n → {0, 1} which

are having the string of bit length 2n bits. Decomposition of a Boolean function of n-variable is the

segmentation of the function into 2n−1 functions with respect to inputs for all possible combination of

fixed variables n−1. Output of each segmented function is two bits string which are fixed (00, 01, 10, 11).

Decomposition technique of any Boolean function with a single and n − 1 variable has been given in

section 2.1.
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2.1 Di(f) - Decomposition

Di -Decomposition of any Boolean function f in input xi is the segmentation of f into two functions

f i
0 and f i

1 which are defined by all possible inputs xi where i ∈ {1, 2, 3, ..., n}.

Di(f) :

{
f i
0 = x1, x2, x3, . . . , xi−1, 0, xi+1, . . . , xn

f i
1 = x1, x2, x3, . . . , xi−1, 1, xi+1, . . . , xn

}

The bit string representations of f i
0 and f i

1 are called decomposition fragments of the Di(f) -

Decomposition having the length of bits string for each decomposition fragment is 2n−1. To decompose

a n-variable Boolean function from ith to jthposition having (n−1) number of variables for each segment

is defined as follow,

Di,...,j(f) :



f i,...j
0,...,0 = f(x1, . . . , 00 . . . 00, . . . , xn)

.

.

.

f i,...j
1,...,1 = f(x1, . . . , 11 . . . 11, . . . , xn)


Where i and j ∈ 1, 2, 3, ..., n

Example 1. Let consider a 3-variable Boolean function f21(x1, x2, x3) with the bits string 00010101.

We have taken 2(n-1) variable at a time to decompose f as it is 3-variable Boolean function. So there

are 3 decomposition fragments of the function f21 and they are shown below;

D23(f) :


f23
00 = 11

f23
01 = 00

f23
10 = 10

f23
11 = 00

 D13(f) :


f13
00 = 11

f13
01 = 00

f13
10 = 10

f13
11 = 00

 D12(f) :


f12
00 = 10

f12
01 = 10

f12
10 = 10

f12
11 = 00


Here D23(f) indicates decomposition of the function f21 with regards to variable x2 and x3 and so

on. The definition of Interaction Graphs with regards to decomposition technique and the analysis of

Interaction Graph can be detected with the help decomposition fragments of any Boolean function.

2.2 Interaction Graph (I.G) of f

The Interaction graph of f , denoted by G(f) = (V,E), is the sign directed graph on vertexes set

V ∈ {1, 2, · · ·n} corresponds to nodes and edges set E ∈ {+,−}, an arc (positive or negative) between

nodes. For all i, j ∈ V , there exist an arc i −→ j if and only if there exist at least one Di,...,j(f) = 01

or 10 in decomposition fragments for positive and negative arc respectively.
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Example 2. Let consider three 3-variable Boolean functions f1(x1, x2, x3) = x1

∨
(x2

∧
x3), f2(x1, x2, x3) =

x1

∧
x2

∧
x3, f3(x1, x2, x3) = (x1

∧
x2)

∧
x3 with the bits string 00010101, 00000001 and 1001000 re-

spectively. The Decomposition fragments of the three functions f168, f128 and f17 are shown below;

D23(f1/f2/f3) :


f23
00 = 00/00/11

f23
01 = 01/00/00

f23
10 = 00/00/00

f23
11 = 11/01/00

 D13(f1/f2/f3) :


f13
00 = 00/00/10

f13
01 = 01/00/00

f13
10 = 00/00/10

f13
11 = 11/01/00



D12(f1/f2/f3) :


f12
00 = 00/00/10

f12
01 = 00/01/00

f12
10 = 00/01/10

f12
11 = 01/01/00


Here three Boolean functions for 3-variable and there are 3 decomposition segments for each function.

So there are total 3 × 3 = 9 decomposition segments. Output for each decomposition segments (first

segment for function f168, second segment for function f128 and third segment for f17 and so on are shown

. To represent edges connectivity of these three functions (three functions represents corresponding three

nodes 1, 2 and 3 respectively) of the Interaction Graph of running Example 2 is shown in Fig 1.

Fig. 1. I.G for functions f168, f128 and f17

2.3 Matrix Representation of Interaction Graph

Since a graph is completely determined by specifying either its adjacency structure or its incidence

structure, these specifications provide far more efficient ways of representing a large or complicated
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graph than a pictorial representation. As computers are more adept at manipulating numbers than at

recognizing pictures, it is standard practice to communicate the specification of a graph to a computer

in matrix form. We can represent node to node (vertex to vertex) connectivity of Interaction Graph by

the matrices. For n nodes size of the matrix will be n × n i.e. a square matrix M = [aij ] whose both

the n rows and n columns correspond to the n vertices shown in TABLE 1 such that

aij =


1, if ith node is connected to jth node by positive edge

−1, if ith node is connected to jth node by negative edge

0, otherwise


As Interaction Graph is signed directed Graph and direction of edges will be ith row to jth column

(i −→ j) as each column is considered an individual Boolean function from node 1 to node n, then each

row from 1 to n represents the output (1 for 01, -1 for 10 and 0 for 11 or 00) of decomposition segment

1, segment 2 . . . segment n respectively and vice versa . So the value of each cell will be 1, or −1, or 0.

Table 1: Representation of n× n Matrix

i ↓ j −→ 1 2 3 4 . . . n-2 n-1 n

1

2

3

4

.

.

.

n-2

n-1

n

We represent two separate Matrixes i.e. Positive Matrix (M+) and Negative Matrix (M−) for

positive edges and negative edges connectivity among nodes respectively for running Example 2 shown

below in Table 2. From M+, we can see that there exist paths from node 1 to node 1 (self-loop), node

1 to node 2 and node 1 to node 3 which are represented in column 1 and so on. And from M− there

exist paths node 2 to node 3 and node 3 to node 3.
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Table 2: Representation of 3× 3 both Positive Matrix (M+) and Negative Matrix (M-)

M+ M-

i ↓ j −→ 1 2 3 i ↓ j −→ 1 2 3

1 1 1 0 1 0 0 0

2 1 1 0 2 0 0 -1

3 1 1 0 3 0 0 -1

3 Analysis of Boolean Function

This section provides analysis of Boolean functions with regards to their symmetrical Interaction graphs.

For each case we classify the two sets of Boolean functions i.e. Positive Boolean Functions (PBF) and

Negative Boolean Function (NBF) both binary and decimal value (DV) having similar Interaction

graphs separately with positive edges and negative edges respectively.

3.1 Only Positive or Negative Edges/Cycles in I.G

The Interaction graphs G(f) have either only positive edges and positive cycles if Di,...,j(f) = 01 or

only negative edge and negative cycle if Di,...,j(f) = 10 for all (i, j) ∈ 1, 2, 3, .., n. Thus the Graph G(f)

using this type of functions may not always have a path i −→ j ∈ G(f) and thereby may not always

cycles of any length. List of functions (for n=2, 3 and 4 variable) which are satisfied this condition are

shown in Table 3 separately for positive and negative functions. For n = 2 there are total 4 + 4 = 8

functions, for n = 3 there are total 18 + 18 = 36 functions and for n = 4 there are total 166 + 166 = 332

functions.

Example 3: Fig. 2(a) shown Interaction Graph of 3 Boolean functions f128, f168 and f192 having

positive edges only.

Example 4: Fig. 2(b) shown Interaction Graph of 3 Boolean functions f23, f51 and f3 having

negative edges only.

(a) (b)

Fig. 2.(a) I.G for functions f128, f168 and f192, (b) I.G for functions f23, f51 and f3.
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3.2 All Positive or All Negative Edges/Cycles in I.G (complete graph)

The Interaction graphs G(f) (Complete I.G) have either all positive edge and positive cycle iff Di,...,j(f) =

01 or all negative edge and negative cycle iff Di,...,j(f) = 10 for all (i, j) ∈ 1, 2, 3, · · · , n. Thus the Graph

G(f) using this type of functions always have a path i −→ j ∈ G(f) and thereby cycles of any length.

List of functions (for n=2, 3 and 4 variable) which are satisfied this condition are shown in Table 4

separately for positive and negative functions. For n = 2 there are total 2 + 2 = 4 functions, for n = 3

there are total 9 + 9 = 18 functions and for n = 4 there are total 114 + 114 = 228 functions.

Example 5: Fig. 3(a) shown Interaction Graph of 3 Boolean functions f128, f168 and f200 having

positive edges only.

Example 6: Fig. 3(b) shown Interaction Graph of 3 Boolean functions f55, f21 and f7 having

negative edges only.

(a) (b)

Fig. 3.(a) I.G for functions f128, f168 and f200, (b) I.G for functions f55, f21 and f7.

3.3 Nested Canalizing Functions (NCFs) with I.G

Not all Boolean functions reflect the behavior of biological systems and it is imperative to recognize

the biologically relevant Boolean functions. One such class of Boolean functions is nested canalyzing

function having small limit cycles and small average height in state space graph. In order to reduce the

chaotic behavior and to attain stability in the gene regulatory network, nested Canalizing Functions

(NCFs) are best suited. NCFs and its variants have a wide range of applications in systems biology

[15, 16, 17, 18]. So identification of all n-variable NCFs will be helpful for studying Boolean networks

and hence biological networks.

If the Interaction graph G(f) has no cycle, then iteraction graph [1] has a unique fixed point. Nested

canalizing functions carry special characteristics of an Interaction Graph. NCFs are connected to all

components with self-loop in I.G. Thats why all the nested canalizing Boolean functions can be used to

generate graph with cycle having both positive and negative edges simultaneously. Nested Canalizing
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functions [18] which are satisfied these conditions are shown in Table 5. For n = 2-variable there are

total 8 functions, for 3-variable there are total 64 functions.

Example 7: Fig. 4. shown Interaction Graph of 3 Nested Canalizing functions f1, f8 and f47

having three positive edges and six negative edges.

Fig. 4. I.G for functions f1, f8 and f47

4 Conclusion

In this paper, an attempt has been made for designing interaction graphs using Boolean function de-

composition and various classes of Boolean functions are obtained to model a biological system with

the help of interaction graph. In this method, parallel edges are not counted between two consecutive

nodes for an Interaction Graph. Further study can be extended for counting the number of Boolean

functions for n−variable and their applications towards static analysis of biologically regulated net-

work. By knowing the functions, which are used to represent the genes/proteins, we can predict the

characteristics of these functions and thereby help to the understanding of different biological networks

through the pathways.
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Table 3: Functions List For Section 3.1

VARIABLE PBF DV NBF DV

1000 8 0111 7

n=2 1010 10 0101 5

1100 12 0011 3

1110 14 0001 1

10000000 128 01111111 127

10001000 136 01110111 119

10100000 160 01011111 95

10101000 168 01010111 87

10101010 170 01010101 85

11000000 192 00111111 63

11001000 200 00110111 55

n=3 11001100 204 00110011 51

11100000 224 00011111 31

11101000 232 00010111 23

11101010 234 00010101 21

11101100 236 00010011 19

11101110 238 00010001 17

11110000 240 00001111 15

11111000 248 00000111 7

11111010 250 00000101 5

11111100 252 00000011 3

11111110 254 00000001 1

1000000000000000 32768 0111111111111111 32767

1000000010000000 32896 0111111101111111 32639

1000100000000000 34816 0111011111111111 30719

. . . .

n=4 . . . .

. . . .

1110111011001000 61128 0001000100110111 4407

1110111011001100 61132 0001000100110011 4403

1110111011100000 61152 0001000100011111 4383
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