Analysis of Boolean Functions based on Interaction Graphs and their influence in System Biology

Jayanta Kumar Das ${ }^{1}$,Ranjeet Kumar Rout ${ }^{1}$, Pabitra Pal Choudhury ${ }^{1}$
${ }^{1}$ Applied Statistics Unit, Indian Statistical Institute, Kolkata-700108, India.
Email:dasjayantakumar89@gmail.com, ranjeetkumarrout@gmail.com , pabitrapalchoudhury@gmail.com

Abstract

Interaction graphs provide an important qualitative modeling approach for System Biology. This paper presents a novel approach for construction of interaction graph with the help of Boolean function decomposition. Each decomposition part (Consisting of 2-bits) of the Boolean functions has some important significance. In the dynamics of a biological system, each variable or node is nothing but gene or protein. Their regulation has been explored in terms of interaction graphs which are generated by Boolean functions. In this paper, different classes of Boolean functions with regards to Interaction Graph with biologically significant properties have been adumbrated.

Keyword. Boolean Function; Decomposition Method;Interaction Graph

1 Introduction

Biological components (such as genes, proteins etc.) are continuously interacting through paths and their interaction regulates the system into complex global dynamic behavior [1] and Biologists are currently wasting a lot of time and effort in searching for all of the available information form biological regulatory networks of biological components. Dynamics of the network can be described by recurrence of synchronous iteration of Boolean function which can be used to form Boolean Network. Again On the other hand topology of the network can be described by a sign directed graph. . An interaction graph talks about the positive and negative influences between components. A signed directed graph having one vertexes which considered to be components, indicates the static abstraction of Biological Network [1, 2, 3].

Boolean functions have huge application in the theory of computer science, cellular Networks etc. [4, 5, 6] and Boolean Networks in System Biology have been elaborately discussed in [5]. Boolean networks (BNs) are extensively used to model biological regulatory networks $[7,8,9,10,11]$ i.e. to study the interactions between Biological components such as genes, proteins etc. Each Boolean Network has
some Biological Components which are independently represented by local logical Boolean functions and associates with a Boolean value for each component in Boolean Networks. All Boolean functions are not accurately reflecting the behaviors of Biological systems and it is imperative to recognize classes of Boolean functions with biologically relevant properties. A subset of Boolean functions having noble characteristics of dynamics of Boolean networks is constructed. These functions have significance for determining their potential in a model. One such notable class and their biological properties have been introduced by Kauffman[7, 8] . To identify Boolean network, which are biologically relevant is a major problem as the number of Boolean functions and the size of the state space of Boolean networks are growing exponentially [1] with the increase of components. Different technique such as classical analysis, model checking may be intractable with large complex systems. A number of operations can be carried out on Interaction graph to make biologically relevant predictions about a regulatory system and Interaction Graph can also be used for predicting qualitative aspects of system biology. Fundamental issues in the analysis of Interaction graphs are the enumeration of paths and cycles (feedback loops) and calculation of shortest positive or negative paths [12, 13, 14]. Some static analysis of Boolean Networks through Interaction graph has been studied in [1].

In this paper, analysis of the Boolean functions through interaction graph have been discussed by partitioning n-variable Boolean function into 2 fixed bits. Here we present a slightly different approach from [1] with regards to the definition of Interaction graph. Partitioning of a Boolean function into 2 bits helps us to identify an edge or arc and cycle on interaction graph. Arcs and Cycles on Interaction Graph are basically responsible for static analysis of Boolean Network. First we will give a formal definition of Interaction Graph based on partitioning method and then classify the Boolean function based on Interaction Graph. In section 2, decomposition technique is discussed and thereby Interaction Graph and their matrix representation are given. Section 3, Boolean functions have been analyzed with regards to Interaction Graph and section 4 deals with concluding remarks emphasizing the key factors of the entire analysis.

2 Definition and Notations

Given any Boolean function $f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ of n-variable is a mapping from $\{0,1\}^{n} \rightarrow\{0,1\}$ which are having the string of bit length 2^{n} bits. Decomposition of a Boolean function of n-variable is the segmentation of the function into 2^{n-1} functions with respect to inputs for all possible combination of fixed variables $n-1$. Output of each segmented function is two bits string which are fixed $(00,01,10,11)$. Decomposition technique of any Boolean function with a single and $n-1$ variable has been given in section 2.1.

$2.1 D_{i}(f)$ - Decomposition

D_{i}-Decomposition of any Boolean function f in input x_{i} is the segmentation of f into two functions f_{0}^{i} and f_{1}^{i} which are defined by all possible inputs x_{i} where $i \in\{1,2,3, \ldots, n\}$.

$$
D_{i}(f):\left\{\begin{array}{l}
f_{0}^{i}=x_{1}, x_{2}, x_{3}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n} \\
f_{1}^{i}=x_{1}, x_{2}, x_{3}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}
\end{array}\right\}
$$

The bit string representations of f_{0}^{i} and f_{1}^{i} are called decomposition fragments of the $D_{i}(f)$ Decomposition having the length of bits string for each decomposition fragment is 2^{n-1}. To decompose a n-variable Boolean function from $i^{t h}$ to $j^{t h}$ position having $(n-1)$ number of variables for each segment is defined as follow,

$$
D_{i, \ldots, j}(f):\left\{\begin{array}{c}
f_{0, \ldots, 0}^{i, \ldots j}=f\left(x_{1}, \ldots, 00 \ldots 00, \ldots, x_{n}\right) \\
\cdot \\
\cdot \\
\cdot \\
f_{1, \ldots, 1}^{i, \ldots j}=f\left(x_{1}, \ldots, 11 \ldots 11, \ldots, x_{n}\right)
\end{array}\right\}
$$

Where i and $j \in 1,2,3, \ldots, n$
Example 1. Let consider a 3-variable Boolean function $f_{21}\left(x_{1}, x_{2}, x_{3}\right)$ with the bits string 00010101. We have taken $2(\mathrm{n}-1)$ variable at a time to decompose f as it is 3 -variable Boolean function. So there are 3 decomposition fragments of the function f_{21} and they are shown below;

$$
D_{23}(f):\left\{\begin{array}{l}
f_{00}^{23}=11 \\
f_{01}^{23}=00 \\
f_{10}^{23}=10 \\
f_{11}^{23}=00
\end{array}\right\} \quad D_{13}(f):\left\{\begin{array}{l}
f_{00}^{13}=11 \\
f_{01}^{13}=00 \\
f_{10}^{13}=10 \\
f_{11}^{13}=00
\end{array}\right\} \quad D_{12}(f):\left\{\begin{array}{l}
f_{00}^{12}=10 \\
f_{01}^{12}=10 \\
f_{10}^{12}=10 \\
f_{11}^{12}=00
\end{array}\right\}
$$

Here $D_{23}(f)$ indicates decomposition of the function f_{21} with regards to variable x_{2} and x_{3} and so on. The definition of Interaction Graphs with regards to decomposition technique and the analysis of Interaction Graph can be detected with the help decomposition fragments of any Boolean function.

2.2 Interaction Graph (I.G) of f

The Interaction graph of f, denoted by $G(f)=(V, E)$, is the sign directed graph on vertexes set $V \in\{1,2, \cdots n\}$ corresponds to nodes and edges set $E \in\{+,-\}$, an arc (positive or negative) between nodes. For all $i, j \in V$, there exist an arc $i \longrightarrow j$ if and only if there exist at least one $D_{i, \ldots, j}(f)=01$ or 10 in decomposition fragments for positive and negative arc respectively.

Example 2. Let consider three 3-variable Boolean functions $f_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \bigvee\left(x_{2} \wedge x_{3}\right), f_{2}\left(x_{1}, x_{2}, x_{3}\right)=$ $x_{1} \bigwedge x_{2} \bigwedge x_{3}, f_{3}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \bigwedge x_{2}\right) \bigwedge x_{3}$ with the bits string 00010101, 00000001 and 1001000 respectively. The Decomposition fragments of the three functions f_{168}, f_{128} and f_{17} are shown below;

$$
\begin{gathered}
D_{23}\left(f_{1} / f_{2} / f_{3}\right):\left\{\begin{array}{l}
f_{00}^{23}=00 / 00 / 11 \\
f_{01}^{23}=01 / 00 / 00 \\
f_{10}^{23}=00 / 00 / 00 \\
f_{11}^{23}=11 / 01 / 00
\end{array}\right\} \quad D_{13}\left(f_{1} / f_{2} / f_{3}\right):\left\{\begin{array}{l}
f_{00}^{13}=00 / 00 / 10 \\
f_{01}^{13}=01 / 00 / 00 \\
f_{10}^{13}=00 / 00 / 10 \\
f_{11}^{13}=11 / 01 / 00
\end{array}\right\} \\
D_{12}\left(f_{1} / f_{2} / f_{3}\right):\left\{\begin{array}{l}
f_{00}^{12}=00 / 00 / 10 \\
f_{01}^{12}=00 / 01 / 00 \\
f_{10}^{12}=00 / 01 / 10 \\
f_{11}^{12}=01 / 01 / 00
\end{array}\right\}
\end{gathered}
$$

Here three Boolean functions for 3 -variable and there are 3 decomposition segments for each function. So there are total $3 \times 3=9$ decomposition segments. Output for each decomposition segments (first segment for function f_{168}, second segment for function f_{128} and third segment for f_{17} and so on are shown . To represent edges connectivity of these three functions (three functions represents corresponding three nodes 1,2 and 3 respectively) of the Interaction Graph of running Example 2 is shown in Fig 1.

Fig. 1. I.G for functions f_{168}, f_{128} and f_{17}

2.3 Matrix Representation of Interaction Graph

Since a graph is completely determined by specifying either its adjacency structure or its incidence structure, these specifications provide far more efficient ways of representing a large or complicated
graph than a pictorial representation. As computers are more adept at manipulating numbers than at recognizing pictures, it is standard practice to communicate the specification of a graph to a computer in matrix form. We can represent node to node (vertex to vertex) connectivity of Interaction Graph by the matrices. For n nodes size of the matrix will be $n \times n$ i.e. a square matrix $M=\left[a_{i j}\right]$ whose both the n rows and n columns correspond to the n vertices shown in TABLE 1 such that

$$
a_{i j}=\left\{\begin{array}{c}
1, \text { if ith node is connected to jth node by positive edge } \\
-1, \text { if ith node is connected to jth node by negative edge } \\
0, \text { otherwise }
\end{array}\right\}
$$

As Interaction Graph is signed directed Graph and direction of edges will be ith row to jth column $(i \longrightarrow j)$ as each column is considered an individual Boolean function from node 1 to node n, then each row from 1 to n represents the output (1 for $01,-1$ for 10 and 0 for 11 or 00) of decomposition segment 1 , segment $2 \ldots$ segment n respectively and vice versa. So the value of each cell will be 1 , or -1 , or 0 .

Table 1: Representation of $n \times n$ Matrix

$i \downarrow j \longrightarrow$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	\cdot	\cdot	\cdot	$\mathbf{n - 2}$	$\mathbf{n - 1}$	\mathbf{n}
$\mathbf{1}$										
$\mathbf{2}$										
$\mathbf{3}$										
$\mathbf{4}$										
.										
.										
.										
$\mathbf{n - 2}$										
$\mathbf{n - 1}$										
\mathbf{n}										

We represent two separate Matrixes i.e. Positive Matrix $(M+)$ and Negative Matrix ($M-$) for positive edges and negative edges connectivity among nodes respectively for running Example 2 shown below in Table 2. From $M+$, we can see that there exist paths from node 1 to node 1 (self-loop), node 1 to node 2 and node 1 to node 3 which are represented in column 1 and so on. And from M - there exist paths node 2 to node 3 and node 3 to node 3 .

Table 2: Representation of 3×3 both Positive Matrix (M+) and Negative Matrix (M-)

$\mathrm{M}+$				$\mathrm{M}-$			
$i \downarrow j \longrightarrow$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$i \downarrow j \longrightarrow$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	1	1	0	$\mathbf{1}$	0	0	0
$\mathbf{2}$	1	1	0	$\mathbf{2}$	0	0	-1
$\mathbf{3}$	1	1	0	$\mathbf{3}$	0	0	-1

3 Analysis of Boolean Function

This section provides analysis of Boolean functions with regards to their symmetrical Interaction graphs. For each case we classify the two sets of Boolean functions i.e. Positive Boolean Functions (PBF) and Negative Boolean Function (NBF) both binary and decimal value (DV) having similar Interaction graphs separately with positive edges and negative edges respectively.

3.1 Only Positive or Negative Edges/Cycles in I.G

The Interaction graphs $G(f)$ have either only positive edges and positive cycles if $D_{i, \ldots, j}(f)=01$ or only negative edge and negative cycle if $D_{i, \ldots, j}(f)=10$ for all $(i, j) \in 1,2,3, . ., n$. Thus the Graph $G(f)$ using this type of functions may not always have a path $i \longrightarrow j \in G(f)$ and thereby may not always cycles of any length. List of functions (for $n=2,3$ and 4 variable) which are satisfied this condition are shown in Table 3 separately for positive and negative functions. For $n=2$ there are total $4+4=8$ functions, for $n=3$ there are total $18+18=36$ functions and for $n=4$ there are total $166+166=332$ functions.

Example 3: Fig. 2(a) shown Interaction Graph of 3 Boolean functions f_{128}, f_{168} and f_{192} having positive edges only.

Example 4: Fig. 2(b) shown Interaction Graph of 3 Boolean functions f_{23}, f_{51} and f_{3} having negative edges only.

Fig. 2.(a) I.G for functions f_{128}, f_{168} and f_{192}, (b) I.G for functions f_{23}, f_{51} and f_{3}.

3.2 All Positive or All Negative Edges/Cycles in I.G (complete graph)

The Interaction graphs $G(f)$ (Complete I.G) have either all positive edge and positive cycle iff $D_{i, \ldots, j}(f)=$ 01 or all negative edge and negative cycle iff $D_{i, \ldots, j}(f)=10$ for all $(i, j) \in 1,2,3, \cdots, n$. Thus the Graph $G(f)$ using this type of functions always have a path $i \longrightarrow j \in G(f)$ and thereby cycles of any length. List of functions (for $\mathrm{n}=2,3$ and 4 variable) which are satisfied this condition are shown in Table 4 separately for positive and negative functions. For $n=2$ there are total $2+2=4$ functions, for $n=3$ there are total $9+9=18$ functions and for $n=4$ there are total $114+114=228$ functions.

Example 5: Fig. 3(a) shown Interaction Graph of 3 Boolean functions f_{128}, f_{168} and f_{200} having positive edges only.

Example 6: Fig. 3(b) shown Interaction Graph of 3 Boolean functions f_{55}, f_{21} and f_{7} having negative edges only.

Fig. 3.(a) I.G for functions f_{128}, f_{168} and f_{200}, (b) I.G for functions f_{55}, f_{21} and f_{7}.

3.3 Nested Canalizing Functions (NCFs) with I.G

Not all Boolean functions reflect the behavior of biological systems and it is imperative to recognize the biologically relevant Boolean functions. One such class of Boolean functions is nested canalyzing function having small limit cycles and small average height in state space graph. In order to reduce the chaotic behavior and to attain stability in the gene regulatory network, nested Canalizing Functions (NCFs) are best suited. NCFs and its variants have a wide range of applications in systems biology $[15,16,17,18]$. So identification of all n-variable NCFs will be helpful for studying Boolean networks and hence biological networks.

If the Interaction graph $G(f)$ has no cycle, then iteraction graph [1] has a unique fixed point. Nested canalizing functions carry special characteristics of an Interaction Graph. NCFs are connected to all components with self-loop in I.G. Thats why all the nested canalizing Boolean functions can be used to generate graph with cycle having both positive and negative edges simultaneously. Nested Canalizing
functions [18] which are satisfied these conditions are shown in Table 5 . For $n=2$-variable there are total 8 functions, for 3 -variable there are total 64 functions.

Example 7: Fig. 4. shown Interaction Graph of 3 Nested Canalizing functions f_{1}, f_{8} and f_{47} having three positive edges and six negative edges.

Fig. 4. I.G for functions f_{1}, f_{8} and f_{47}

4 Conclusion

In this paper, an attempt has been made for designing interaction graphs using Boolean function decomposition and various classes of Boolean functions are obtained to model a biological system with the help of interaction graph. In this method, parallel edges are not counted between two consecutive nodes for an Interaction Graph. Further study can be extended for counting the number of Boolean functions for n-variable and their applications towards static analysis of biologically regulated network. By knowing the functions, which are used to represent the genes/proteins, we can predict the characteristics of these functions and thereby help to the understanding of different biological networks through the pathways.

Table 3: Functions List For Section 3.1

VARIABLE	PBF	DV	NBF	DV
$\mathrm{n}=2$	1000	8	0111	7
	1010	10	0101	5
	1100	12	0011	3
	1110	14	0001	1
$\mathrm{n}=3$	10000000	128	01111111	127
	10001000	136	01110111	119
	10100000	160	01011111	95
	10101000	168	01010111	87
	10101010	170	01010101	85
	11000000	192	00111111	63
	11001000	200	00110111	55
	11001100	204	00110011	51
	11100000	224	00011111	31
	11101000	232	00010111	23
	11101010	234	00010101	21
	11101100	236	00010011	19
	11101110	238	00010001	17
	11110000	240	00001111	15
	11111000	248	00000111	7
	11111010	250	00000101	5
	11111100	252	00000011	3
	11111110	254	00000001	1
$\mathrm{n}=4$	1000000000000000	32768	0111111111111111	32767
	1000000010000000	32896	0111111101111111	32639
	1000100000000000	34816	0111011111111111	30719

	-	.	-	.
	1110111011001000	61128	0001000100110111	4407
	1110111011001100	61132	0001000100110011	4403
	1110111011100000	61152	0001000100011111	4383

References

[1] Pauleve L, Richard A, Stastic Analysis of Boolean Networks Based on Interaction graph: A survaey, Springer, Electronics notes Theoretical Computer scinece 284:93-104, 2012.
[2] Huber W, Carry VJ, Long L, Falcon S, Gentleman R, Graphs in molecular biology, BMC Bioinformatics 8(Suppl 6):S8, 2007.
[3] Richard A, Positive circuits and maximal number of fixed points in discrete dynamical systems, Discrete Applied Mathematics 157 pp. 3281 3288, 2009.
[4] Golomb S W, On the classification of Boolean functions IRE transactions on circuit theory Vol. 06, Issue. 05, pp.176-186, 1959.
[5] Slepian D, On the number of symmetry types of Boolean functions of n variables, Society for industrial and Mathematics Vol. 5, No. 2, pp. 185-193, 1954.
[6] Rout R K, Choudhuey P P and Sahoo S, Classification of Boolean Functions Wrere Affine Functions Are Uniformly Distributed, Hindawi Publishing Corporation Journal of Discrete Mathematics Volume 2013, Article ID 270424, 12 pages http://dx.doi.org/10.1155/2013/270424, 2013.

Table 4: Functions List For Section 3.2

VARIABLE	PBF	DV	NBF	DV
$\mathrm{n}=2$	1000	8	0111	7
	1110	14	0001	1
$\mathrm{n}=3$	10000000	128	01111111	127
	10101000	168	01010111	87
	11001000	200	00110111	55
	11100000	224	00011111	31
	11101000	232	00010111	23
	11101010	234	00010101	21
	11101100	236	00010011	19
	11111000	248	00000111	7
	11111110	254	00000001	1
$\mathrm{n}=4$	1000000000000000	32768	011111111111111	32767
	1000100010000000	34944	0111011101111111	30591
	1010000010000000	41088	0101111101111111	24447

	.	.	.	
	1111100011100000	63712	0000011100011111	1823
	1111100011101000	63720	0000011100010111	1815
	1111100011110000	63728	0000011100001111	1807

Table 5: Functions List For Section 3.3

VARIABLE	DV	BF	DV	BF	DV	BF	DV	BF
$\mathrm{n}=2$	1	0001	8	1000	2	0010	11	1011
	4	0100	13	1101	7	0111	14	1110
	1	00000001	2	00000010	4	00000100	7	00000111
	8	00001000	11	00001011	13	00001101	14	00001110
	16	00010000	19	00010011	21	00010101	31	00011111
	32	00100000	35	00100011	42	00101010	47	00101111
	49	00110001	50	00110010	55	00110111	59	00111011
	64	01000000	69	01000101	76	01001100	79	01001111
	81	01010001	84	01010100	87	01010111	93	01011101
	112	01110000	115	01110011	117	01110101	127	01111111
	128	10000000	138	10001010	140	10001100	143	10001111
	162	10100010	168	10101000	171	10101011	174	10101110
	176	10110000	179	10110011	186	10111010	191	10111111
	196	11000100	200	11001000	208	11010000	213	11010101
	220	11011100	223	11011111	224	11100000	234	11101010
	236	11101100	239	11101111	241	11110001	242	11110010
	244	11110100	247	1110111	248	11111000	251	11111011
	253	11111101	254	1111110	205	11001101	206	11001110

[7] Kauffman S A, Metabolic stability and epigenesis in randomly connected nets,"Journal of Theoretical Biology 22 pp. 437467, 1969.
[8] Kauffman S A, Origins of Order Self-Organization and Selection in Evolution,Oxford University Press, 1993.
[9] Thomas R, Boolean formalization of genetic control circuits, Journal of Theoretical Biology 42, pp. 563 585, 1973.
[10] Thomas R and dAri R, Biological Feedback,CRC Press, 1990.
[11] Thieffry D, Dynamical roles of biological regulatory circuits,Brief Bioinform, 8:220-225, 2007.
[12] Klamt S, and Kamp A von, Computing paths and cycles in biological interaction graphs, BMC Bioinformatics 10:181 doi:10.1186/1471-2105-10-181, 2009.
[13] Cinquin O, Demongeot J, Positive and negative feedback: striking balance between necessary antagonists, J theor Biol 216:229-241, 2012.
[14] Remy E, Ruet P and Thieffry D, Graphic requirements for multistability and attractive cycles in a boolean dynamical framework, Advances in Applied Mathematics 41, pp. 335 350, 2008.
[15] Hinkelmann F and Jarrah A S, Inferring Biologically Relevant Models: Nested Canalyzing Functions, International Scholarly Research Network ISRN BiomathematicsVolume 2012, Article ID 613174, 7 pages doi:10.5402/2012/613174, 2012.
[16] Murrugarra D and Laubenbacher R, The Number of Multistate Nested Canalyzing Functions,Physica D: Nonlinear Phenomena Volume 241, Issue 10, Pages 929-938, 2012.
[17] Jarrah A S, Raposa B and Laubenbacher R, Nested Canalyzing Unate Cascade, and Polynomial functions, Physica D 233(2): 167-174, 2007.
[18] Ray C, Das J K and Choudhury P P, On Analysis and Generation of Some Biologically Important Boolean Functions, Conference Presented in International Symposium on CDSA -2014 http://arxiv.org/abs/1405.2271.

