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Abstract A novel algorithm to solve the quadratic pro-
gramming problem over ellipsoids is proposed. This is
achieved by splitting the problem into two optimisation sub-
problems, quadratic programming over a sphere and orthog-
onal projection. Next, an augmented-Lagrangian algorithm
is developed for this multiple constraint optimisation. Ben-
efit from the fact that the QP over a single sphere can be
solved in a closed form by solving a secular equation [14]
and [16], we derive a tighter bound of the minimiser of the
secular equation. We also propose to generate a new psd
matrix with a low condition number from the matrices in
the quadratic constraints. This correction method improves
convergence of the proposed augmented-Lagrangian algo-
rithm. Finally, applications of the quadratically constrained
QP to bounded linear regression and tensor decompositions
are presented.

1 Introduction

Quadratic programming over a single sphere is one of ba-
sic optimisation problems and has been extensively studied.
For example, the problem was first considered as an eigen-
value problem with linear constraints NT x = t by Gander,
Golub and Matt [14]. After eliminating the linear constraint,
the constrained eigenvalue problem becomes a QP problem
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over a single sphere. The authors solved a secular equation
using an iterative algorithm which starts from an initial point
determined based on the eigenvalue of the quadratic term.

A similar study was presented by Hager as a mini-
mization of a quadratic function over a sphere [16]. Hager
also considered solving a rational function. Rojas, Santos
and Sorensen [30] developed a trust-region algorithm which
can be applied to this problem. Some extensions to solving
large-scale problems were proposed in [29, 32].

The spherically constrained QP (SCQP) problem was
reinvented many times. In [11], Chen and Gao presented
a globally optimal solution to the QP with a variable vec-
tor constrained inside a ball. They formulated the problem
as one-dimensional canonical duality problem and proposed
associated numerical algorithms.

For this particular problem, by considering the variable
vector in the Stiefel manifold, we can also apply optimiza-
tion algorithms on a manifold to solve this problem, e.g.,
using the ManOpt toolbox [7] or the Cran-Nicholson update
scheme [33].

A more sophisticated problem is that of minimizing a
convex quadratic function over an intersection of ellipsoids
xT Hm x = 1, bearing in mind that quadratic equalities char-
acterize non-convex sets. The non-convex quadratic optimi-
sation problem with quadratic equality constraints is known
to be NP-hard [3, 9, 21]. Nevertheless, since gradients and
Hessians of the constrained functions can be derived in an
analytical form, the problem can be solved using interior-
point algorithms for nonlinearly constrained minimization
[17]. Alternatively, one can cast a convex quadratic and
quadratically constrained optimization problem into a conic
optimization problem which can be solved efficiently, e.g,
using the Mosek optimisation toolbox [2]. The QP prob-
lem with quadratic inequality constraints can also be solved
efficiently using the Modified proportioning with gradient
projections [12, 13]. Some other common approaches are to
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Fig. 1 Flow chart of the Spherically Constrained QP and Quadratically Constrained QP and their novel applications presented in this paper.

convexify the problem using semidefinite relaxation tech-
niques [15], second-order cone programming [18], or mixed
SOCP-SDP relaxations [9].

For some particular cases, e.g., a quadratic function with
two quadratic constraints, [6] shows that under a suitable
assumption, the problem can be solved in polynomial time.
Similarly, with some simple convex relaxations the solution
can even return the optimal values [22].

In this paper, we develop algorithms for QP with
quadratic constraints xT Hm x = 1, and present novel ap-
plications of this optimisation. First, we consider the sim-
ple QP over a sphere. In the same spirit as Gander, Golub
and Matt [14], Hager [16], we solve the problem by finding
a root of a secular equation. Normalisation and conversion
methods are introduced to simplify the problem to the one
with a smaller number of parameters, when the vector in
the linear term comprises zero-entries, or when the matrix
in the quadratic term has identical eigenvalues. The conver-
sion is particularly useful for the SCQP for matrix variate in
Section 3. We show that the solution to such a constrained
QP problem can be deduced from a minimiser of a much
smaller similar QP for a vector variate. For the ordinary
SCQP, we present new results for finding good bounds of
the minimiser. To this end, we perform a slightly different
normalisation to that in [14] and [16]. With this new bound,
we can even find a good estimate to the global minimiser
through solving a truncated problem with a few terms. It is
shown that the solution can be found in closed form for some
particular cases without resorting iterative algorithms.

In Section 5, we present the linear regression with a
bound constraint and formulate it as an equivalent SCQP.
This problem has applications in deriving the norm correc-
tion method for the CANDECOMP/PARAFAC tensor de-
composition (CPD), and for developing the algorithm for
the bounded CPD [26].

In Section 6, we will present an algorithm to solve the
Quadratic programming over elliptic constraints. The prob-

lem with multiple constraints is split into two optimisa-
tion sub-problems, one is the quadratic programming over
a sphere, and the other being the orthogonal projection. An
augmented-Lagrangian algorithm is next developed for this
problem. We suggest generating a new psd matrix with a low
condition number from the matrices in the quadratic con-
straints. This correction method is proved to improve con-
vergence of the proposed augmented-Lagrangian algorithm.

We present novel applications of the quadratic program-
ming over a sphere to tensor decompositions, including find-
ing a best rank-1 tensor approximation to symmetric tensors
of order-4 [27], and constrained discrimination analysis.

In Section 8, we introduce constrained generalized
eigenvalue decomposition, in which eigenvectors impose
low-rank structures. The problem is then converted to sub-
problems related to the ordinary GEVD and the QP over
multiple quadratic constraints. Throughout the paper, we
provide many examples, including image deconvolution,
best rank-1 tensor approximation and image classification,
to verify and illustrate our algorithms. In addition, a flow
chart in Fig. 1 summarises the studied methods and their ap-
plications.

2 Quadratic Programming Over A Single Sphere

Consider a quadratic programming problem with a con-
straint that the variable vector is on a sphere, i.e., unit-length
vector.

Definition 1 (Quadratic Programming over a Single
Sphere) Given a positive semi-definite matrix Q of size
K × K and a vector b of length K, the quadratic program-
ming over a sphere solves the optimisation problem

min
1
2

xT Qx + bT x , s.t. xT x = 1 . (1)

For the case when b is a zero vector, the problem (1) be-
comes that of finding the smallest eigenvectors of the matrix
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Q. Here, we do not consider this case. In addition, the ma-
trix Q only needs to be symmetric so that the positive semi-
definite condition on matrix Q can be relaxed. We first show
that the QP in (1) can be converted to a problem whereby the
matrix Q is diagonal, and has positive eigenvalues. Then, we
simplify the optimization task to that with distinct eigenval-
ues and non-zero entries b.

2.1 Normalisation, reparameterization and simplication

We shall denote the eigenvalue decomposition of the matrix
Q in (1) by

Q = U diag(σ)UT

where σ = [0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σK] comprises the
eigenvalues of Q, U is an orthonormal matrix of size K × K,
which consists of eigen-vectors of Q.

Since the vector b is non-zero, we can perform the fol-
lowing normalisation and reparameterization

x̃ = UT x , c = UT b
‖b‖

,

s = [s1, . . . , sK]T , sk =
σk − σ1

‖b‖
+ 1

so that x̃ and c are unit-length vectors, x̃T x̃ = 1 and cT c = 1,
and s1 = 1 ≤ s2 ≤ · · · ≤ sK . Hence, the optimal solution x
to the QP problem in (1) can be derived from the following
QP

min
1
2

x̃T diag(s) x̃ + cT x̃, s.t. x̃T x̃ = 1 , (2)

where cT c = 1 and s = [s1 = 1 ≤ s2 ≤ · · · ≤ sK].
We next show that the problem (2) can be simplified to

the case with distinct eigenvalues, i.e., s1 < s2 < · · · < sK .
We shall denote by J the number of distinct eigenvalues,

s̃ = [s̃1 = 1 < s̃2 < · · · < s̃J], over a set of K eigenvalues, sk,
in (2), and classify c = [c1, c2, . . . , cJ] into J sub-vectors,
whereby each c j consists of entries ck such that sk = s̃ j, i.e.,
c j = [ck∈I j ], where I j = {k : sk = s̃ j}. In addition, we shall
define a vector

c̃ = [‖c1‖, ‖c2‖, . . . , ‖cJ‖] .

Then, the following relation holds, the proof of which is pro-
vided in Appendix A.

Lemma 1 The minimiser to (2) can be deduced from the
minimiser to an SCQP with distinct eigenvalues, that is

min
1
2

zT diag(s̃) z + c̃T z subject to zT z = 1 ,

as xI j =
z j

‖c j‖
c j, for a non zero vector c j, or an arbitrary

vector on the ball ‖xI j‖
2 = z2

j for a zero c j, j = 1, . . . , J.

In the sequel, Sections 2.3-2.5 show that for most cases
with zero entries c̃ j = 0, e.g., when j > 1, the optimal z?j is
zero. Hence, x̃I j is also a zero vector.

Next, we consider the case when the entries of the vector
c are nonzero. The case with zero entries ck can be deduced
from the former case.

2.2 The case when all ck are non-zeros

The Lagrangian function of the problem in (2) is given by

L(x̃, λ) =
1
2

x̃T diag(s) x̃ + cT x̃ −
1
2
λ(x̃T x̃ − 1) .

Following the first-order optimality condition, there exists a
Lagrange multiplier λ such that

∂L(x̃, λ)
∂x̃

= (diag(s) − λI)x̃ + c = 0. (3)

Since ck are non-zeros, the multiplier λ must not be any sk,
i.e., λ , sk for k = 1, . . . ,K, thus implying that the min-
imiser x̃? can be expressed as

x̃? =

[
c1

λ − s1
, . . . ,

cK

λ − sK

]
and the Lagrangian function at x̃? is given by

L(x̃?, λ) =
1
2

K∑
k=1

c2
k sk

(λ − sk)2 +

K∑
k=1

c2
k

λ − sk
−
λ

2

K∑
k=1

c2
k

(λ − sk)2 +
λ

2

=
λ

2
+

1
2

K∑
k=1

c2
k

λ − sk
.

This leads to finding a root λ of the first derivative f ′(λ), as

f ′(λ) = 1 −
K∑

k=1

c2
k

(λ − sk)2 , (4)

which minimises the following function

min
λ

f (λ) = λ +

K∑
k=1

c2
k

λ − sk
. (5)

The secular equation in (4) is in a similar form to those de-
rived in [14] and [16], but here, the coefficients ck are with
an additional constraint cT c = 1 and s1 = 1. This con-
straint will later help to derive a tighter bound for the roots
of f ′(λ) = 0.

We will next show that the minimiser λ? is a minimum
root of f ′(λ). To this end, we first illustrate that f ′(λ) has a
root less than s1 = 1, and prove that this root is the global
minimiser to f (λ).

Lemma 2 The first derivative of f (λ) in (5) has only one
root λ < s1 = 1, which lies in the interval (0, 1 − |c1|).

Lemma 3 The solution to the problem in (5) is the minimum
root of the first derivative of f (λ).
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Fig. 2 Illustration of the polynomial p(t) = t4 + 2d t3 + (d2 − 1) t2 −

2c2d t − c2d2 with c2 = 0.5 and various d, and its unique roots in the
interval [c, 1].

Proofs of Lemmas 2 and 3 are given in Appendices B-
C. We proceed to show that λ? can be found with a tighter
bound.

Lemma 4 The function f (λ) in (5) has a unique global min-
imizer in the interval (1 − t1, 1 − t2), where t1 and t2 are
the roots which lie in the interval of [|c1|, 1] of two degree-4
polynomials p1(t) and p2(t), given by

pi(t) = t4 + 2di t3 + (d2
i − 1) t2 − 2c2

1di t − c2
1d2

i

where d1 = s2 − s1 and d2 = sK − s1.

We provide proof of Lemma 4 in Appendix D, and illus-
trate the polynomials pi(t) in [0, 1] for various di in Fig. 2.
The roots ti approach |c1| when di are large, and 1 when di

are small.
If sK = s2, i.e., (K − 1) eigenvalues s2, s3, ..., sK are

identical, then t1 = t2 = t?, and λ = 1 − t? is a root of
f ′(λ) = 0. When s2 and sK are relatively close, the bound
[1 − t1, 1 − t2] is tight and provides a good approximation to
the root λ as illustrated in Fig. 2.

When d1 ≥ 1, it follows that d2 ≥ 1, and the bound width
(t1 − t2) is relatively small. For example, when d2 = 2d1 and
d1 > 1, the bound width (t1 − t2) is often less than 0.1, while
the width is even less than 0.01 when d1 exceeds 3, and is
less than 0.001 when d1 ≥ 10, despite of values of sK , as
seen in Fig 3 for the cases d2 = 2d1 and d2 = 1000d1.

In general, the bound width (t1−t2) is tight when d1 ≈ d2,
i.e., the eigenvalues s2, . . . , sK are located in a narrow range,
or when d1 exceeds 1, i.e., s2 > 2. However, the bound width
is not sufficiently good when d1 < 1 < d2, especially when
d1 is small, t1 approaches 1, and t2 approaches |c1|. Hence,
there is no much improvement on the bound for λ, compared
to the obvious bound [0, 1 − |c1|].

In order to improve the bound of the minimiser λ?, when
s2 − s1 < 1, we propose to solve a similar equation to (4)
but with a smaller number of terms. We shall refer it to as
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Fig. 3 Illustration of the bound width (t1 − t2) when d2 = 2d1 and
d2 = 1000d1 for various values of c1 = c.

the truncated problem. Let c̃L =

√∑K
k=L c2

k . We define a set

of equations f (L)
l (λ) and f (L)

u (λ) constructed from the first L
terms of the equation f ′(λ) in (4)

f (L)
l (λ) = 1 −

L∑
l=1

c2
l

(sl − λ)2 −
c̃2

L+1

(sL+1 − λ)2 ,

f (L)
u (λ) = 1 −

L∑
l=1

c2
l

(sl − λ)2 −
c̃2

L+1

(sK − λ)2 .

Lemma 5 The roots λ?l,L of f (L)
l (λ) and the roots λ?u,L of

f (L)
u (λ) in [0, 1 − |c1|] are unique, and form the lower and

upper bounds of the root λ? of f ′(λ) in (4)

λ?l,1 ≤ λ
?
l,2 ≤ · · · ≤ λ

?
l,K−2 ≤ λ

? ≤ λ?u,K−2 ≤ · · · ≤ λ
?
u,2 ≤ λ

?
u,1 .(6)

The proof is given in Appendix E. We note that the bound
derived in Lemma 4 is a particular case of Lemma 5 with
λ?l,1 = 1 − t1 and λ?u,1 = 1 − t2.

Lemma 5 states that we can obtain a tighter bound for the
minimiser λ? of f ′ by solving a truncated secular equation
with only a few terms c2

l
(sl−λ)2 . The method is particularly use-

ful when the first L eigenvalues, s1, s2, ..., sL, are very close
to each other, while sL+1 exceeds 1 significantly.
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(b) The case with 10 eigenvalues smaller than 2.

Fig. 4 Illustration of a bound width of λ by solving the reduced prob-
lem using L terms. The bound width can be less than 0.001 when solv-
ing the truncated equations with dozens of terms.

Example 1 In Fig. 4, we demonstrate good estimates of the
minimiser λ? of the equation f ′(λ) which has K = 1000
terms. The eigenvalues sk are randomly generated such that
some of the first T eigenvalues, sk, are smaller than 2,
where T = 5 or 10. The eigenvalues, sk, are plotted in
Fig. 4. The bound width (λ?u,L − λ

?
l,L) is computed for var-

ious L = 1, 2, . . . ,K − 1. For the first case, we can obtain
a bound of less than 0.01 when solving the truncated prob-
lem of only 4 or 5 terms. For the second case, a bound of less
than 0.01 is achieved when solving a truncated equation with
L = 11 terms. The bound is tighter, less than 10−3 when the
truncated equation has 20-40 terms. Moreover, solving the
truncated problems with 200 terms provides good approx-
imation to the global minimiser λ with an error less than
10−5.

2.3 The case when more than one coefficients cn are zeros

Assume that there are more than one zero coefficients cl = 0,
we then denote their index set by I0 = {l : cl = 0}, and

by n the smallest index of this set, i.e., cn = 0. We shall
first show that the entries x̃?l of the minimiser x̃? are zeros,
where l ∈ I0 and l , n, and the optimization problem can be
converted to the case with only one zero coefficient cn = 0.

The objective function (2) can be rewritten as

min

1
2

∑
k<I0

sk x̃2
k +

∑
k<I0

ck x̃k

 +
1
2

∑
l∈I0

x̃2
l sl , s.t. x̃T x̃ = 1

and achieves a minimum when the subset of the variables
x̃I0 = [x̃l : l ∈ I0] is a minimiser of the following problem

min
∑
l∈I0

x̃2
l sl s.t. x̃T

I0
x̃I0 = r

where r = 1 −
∑

k<I0
x2

k > 0. The problem now boils down
to finding an eigenvector associated with the smallest eigen-
value, i.e., sn, of the diagonal matrix diag(sI0 ). This implies
that x̃2

n = r, and the other entries x̃l are zeros, where l ∈ I0,
l , n. The problem is now simplified into a problem formu-
lated for sk and ck where k ∈ {1, . . . ,K} \I0∪{n}, which has
at most one zero coefficient cn = 0. We will next show that
xn is also zero if n > 1.

2.4 The case when only one coefficient cn is zero with n > 1

Lemma 6 When there is only one cn = 0 with n > 1, the
n-th variable of the minimiser is zero, i.e., x̃?n = 0.

The proof of this case is given in Appendix F. In sum-
mary, as shown in this and previous sub-sections, if the coef-
ficients cn, with n > 1, are zeros, the corresponding parame-
ters of the minimiser x̃n are zeros as well, and the remaining
variables are a solution to a similar problem but with a re-
duced number of parameters.

2.5 The case when c1 = 0

When c1 = 0, we consider the two sub-cases, when d =∑K
k>1

c2
k

(sk−1)2 is less than or greater than 1.

Lemma 7 Consider the case c1 = 0, let d =
∑K

k>1
c2

k
(sk−1)2 .

– If d ≤ 1, then the following x̃? is a minimiser to the
problem in (2)

x̃?k =
ck

1 − sk
, k > 1

and x̃?1 can take one of the two values ±
√

1 − d.
– Otherwise, the minimiser has x̃1 = 0, and the remaining

(K−1) variables [x̃2, . . . , x̃K] are a solution to a reduced
problem

min
∑
k>1

1
2

sk x̃2
k + ck x̃k , s.t.

∑
k>1

x̃2
k = 1 . (7)

Proof of Lemma 7 is presented in Appendix G.
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2.6 Algorithm

Steps to solve the QP over a sphere are summarised in Algo-
rithm 1. The algorithm first normalizes the parameters b and
Q, and converts the considered problem to a QP problem
with a diagonal matrix diag(s), s1 = 1 and cT c = 1.

Zero coefficients cl, where l > 1, are verified in order to
simplify the problem to that with a fewer number of param-
eters of sI and cI, where I = {1} ∪ {l : cl , 0, l > 1} is the
index set of 1 and non-zeros cl.

Next, identical eigenvalues, sk, are identified and the
problem is simplified again to the one with distinct eigen-
values.

For the reduced problem with s̃ and c̃, the solution can
be found in closed-form in the following particular cases

– c̃1 = 0
– s2 > s1 = 1
– d =

∑
k>1

c̃2
k

(s̃k−1)2 < 1 .

In other cases, we find the lower and upper bounds of
the minimiser λ? by finding roots of two polynomials of
degree-4 or by solving truncated equations with a few ra-
tional terms. The global minimiser is then found using an
iterative algorithm in the estimated bounds.

Example 2 (SCQP as a tool for image deconvolution)

This example demonstrates an application of the SCQP to
image deconvolution. Consider a grayscale image of size
64 × 64 (see Fig. 5(top)), where each pixel is blurred by
vertical motion of the width of 5 pixels above and below

y = H s

where s and y are vectorisations of the original and blurred
images, respectively, and H is a sparse blurring matrix. We
note that this matrix is of size 4096 × 4096, and has rank of
4094. In order to reconstruct the image s, one can apply the
Wiener filtering or equivalently solve an optimisation prob-
lem which minimises the approximation error and the dif-
ference between each pixel and those surrounding it, i.e., to
enhance smoothness in the image [28], as

min
x̂

‖y − Dx̂‖22 + µ‖L x̂‖22

where µ > 0, and L is the discrete Laplacian, which plays
a role of a high-pass filter. Different from the regularization
filter, we express the estimated image as x̂ = αx where x is a
unit-length vector, xT x = 1, and minimise the reconstruction
error

min
α,x
‖y − αDx‖22 = ‖y‖22 + α2 xT Qx − 2αbT x, s.t. ‖x‖22 = 1,

where Q = DT D and b = DT y. It is obvious that the optimal
α? is given by

α? =
bT x

xT Qx
, (8)

Algorithm 1: Spherically Constrained Quadratic Pro-
gramming (SCQP)

Input: Q and b
Output: x minimises 1

2 xT Qx + cT x, s.t., xT x = 1
begin

1 Eigenvalue decomposition Q = U diag(σ) UT

2 s = σ−σ1
‖b‖ + 1, c = UT b

‖b‖
3 I0 = {l : cl = 0, l > 1}, I = {1, . . . ,K} \ I0 , K̃ = card(I)

4 s̃ = sI, c̃ = cI
if c̃1 = 0 then

5 d =
∑

k∈I
c̃2

k
(s̃k−1)2

if d < 1 and s̃2 > s̃1 = 1 then
6 x̃1 = 1 ±

√
d, x̃k = c̃k

1−s̃k
, k = 2, . . . , K̃

else
7 x̃ = qps nnz(s̃(2 : K̃) − s̃(2) + 1, c̃(2 : K̃))
8 x̃ = [0, x̃];

else
9 x̃ = qps nnz(s̃, c̃)

10 xI0 = 0, xI = x̃
11 x← U x

function x = qps nnz(s, c)
Input: s = [s1 = 1 ≤ s2 ≤ . . . ≤ sK], unit-length vector c,

cT c = 1 and ck , 0
Output: x minimises 1

2 xT diag(s)x + cT x, s.t., xT x = 1
begin

12 Compute the roots t1 and t2 in [|c1|, 1) of the polynomials
pi(t) = t4 + 2di t3 + (d2

i − 1) t2 − 2c2
1di t − c2

1d2
i , where

d1 = s2 − s1 and d2 = sK − s1

13 Find a root λ in (1 − t1, 1 − t2) of f (λ) = 1 −
∑

k
c2

k
(λ−sk)2

14 x = [x1, . . . , xK] where xk = ck
λ−sk

and x is a solution to the following SCQP

min xT Qx +
2
α

bT x , s.t. xT x = 1 . (9)

Following this, we perform an alternating estimation process
between x and α. We first initialize a unit-length vector x,
compute α as in (8), then update x by solving (9), and update
α again. The process is executed until there is no significant
change in the object function value.

In Fig. 5, we show the reconstructed image using the reg-
ularisation filtering with µ = 0.0025. The image achieved a
PSNR = 24.6 dB. The image reconstructed using the SCQP
based method obtained a PSNR = 49.05 dB after 672 itera-
tions, as shown in Fig. 5(bottom). We note that the perfor-
mance of the regularization filtering is affected by the choice
of the regularisation parameter µ.

2.7 QP with inequality constraint xT x ≤ 1

For completeness of this section, we now present the QP
with an inequality quadratic constraint

min
1
2

xT Qx + bT x, s.t. xT x ≤ 1 . (10)
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Fig. 5 Image deconvolution in Example 2. (Top) Comparison between
reconstructed images using the regularization filtering and the SCQP-
based reconstruction method. (Bottom) Objective function values and
PSNR of the estimated image change over the iterations.

First, the vector x is expanded by an extra parameter z1,
where z2

1 = 1 − xT x , to yield a new unit length vector
z = [z1, x1, . . . , xK]T . The vector z is a global minimiser to
the following SCQP

min
1
2

zT
[

0
Q

]
z + bT

z [0, bT ], s.t. zT z = 1 .

Or, in other words, z̃ =

[
z1

x̃

]
is a minimiser to a simplified

problem

min
1
2

z̃T diag(sz) z̃ + cT
z z̃, s.t. z̃T z̃ = 1

where cz = [0, cT ]T and sz = 1
‖b‖ [0,σ] + 1. Since the first

entry cz(1) is zero, the problem falls into the case stated in

Lemma 7. This can happen in two cases for

d =

K∑
k=1

c2
k

(sz(k + 1) − 1)2 = ‖b‖2
K∑

k=1

c2
k

σ2
k

– If d ≤ 1, we obtain a solution x̃k = ‖b‖
ck

σk
,

– Otherwise, z̃1 = z1 = 0, and we solve a QP with the
equality constraint xT x = 1.

Example 3 (A toy example) We replicate Example 1 in

[11] for a minimization problem (10) with Q =

[
−1 0
0 1

]
,

b =

[
0

1.8

]
. In order to solve the problem, we expand Q with

one row and column of zeros, and b with one zero entry.
The newly expanded matrix of Q has eigenvalues [−1, 0, 1].
After the normalisation of b and Q, we obtain the expanded
parameters

c = [0,
b
‖b‖

] = [0, 0, 1]T ,

and the shifted eigenvalues

s =
[−1, 0, 1]T + 1

‖b‖
+ 1 = [1, 1.5556, 2.1111]T .

Since c2 is zero, x̃2 = 0, the problem boils down to finding
the two variables [x̃1, x̃3]. Since c1 is zero, and d =

c2
3

(s3−1)2 =

0.81 < 1, according to Lemma 7,

x̃3 =
c3

s3 − 1
= −0.9

and x̃1 can take one of two values, x̃1 = ±

√
1 − x̃2

3 =

±0.4359. Finally, we convert x̃ = [±0.4359, 0,−0.9]T to the
original space of the expanded vector x by multiplying it
with the eigenvectors of Q to give

x =


0 1 0
1 0 0
0 0 1

 x̃ = [0,±0.4359,−0.9]T .

That is, there are two global minimisers [±0.4359,−0.9]T .
Fig. 6 illustrates the solution of the problem, where the
shaded region shows the objective function when the points
[x1, x2] are on a unit circle.

Example 4 We now change the vector b in the previous ex-
ample to [0, 3]T . With this setting, the vector is still c =

[0, 0, 1], but the eigenvalues are s = [1, 1.3333, 1.6667].
Again, since c2 = 0, we still have x̃2 = 0. However, because
d =

c2
3

(s3−1)2 = 2.25 > 1, according to Lemma 7, x̃1 = 0. We
need to find only x̃3. For this particular case, it turns out that
x̃3 = −1. Finally the global minimiser is [0,−1]T .
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Fig. 6 Minimization of a quadratic function in a sphere in Exam-
ple 3 has two global minimisers [±0.4359,−0.9], which are red “cross”
points.

3 SCQP with Matrix-variates

Consider an extension of the SCQP in (1) for a matrix-
variate. The problem can be formulated for a matrix X of
size I × R as

min f (X) =
1
2

tr(XT QX) + tr(BT X) s.t. ‖X‖2F = 1 (11)

where Q is a psd matrix of size I× I and B is of size I×R. A
straightforward approach to (11) is to rewrite it in the form
of an ordinary SCQP for the vectorisation vec(X),

min f (X) =
1
2

vec(X)T (IR ⊗Q) vec(X) + vec(B)T vec(X)

s.t. ‖X‖F = 1 ,

and then apply the algorithm in the previous section to find
X. The symbol “⊗” stands for the Kronecker product.

An alternative method would be to rewrite the objective
function in a form similar to (2), as

f (X) =
1
2

xT (IR ⊗ diag(σ))x + vT x

where x = vec
(
XT U

)
, v = vec

(
BT U

)
and Q = U diag(σ)UT

is an EVD of Q. Due to the Kronecker product, each eigen-
value σi, i = 1, . . . , I, is replicated R times. Hence, accord-
ing to Lemma 1, we can deduce the minimiser to (11) from
the minimiser z? to an SCQP of a smaller scale

min
1
2

zT diag(σ)z + cT z s.t. zT z = 1 ,

where c = [c1, . . . , cI], ci = ‖BT ui‖. More specifically, xi =
zi

ci
BT ui for a nonzero coefficient ci. Otherwise, xi is often a

zero vector for a zero ci, except only the case c1 = 0.

4 SCQP for large scale data

The most computationally demanding step in the closed-
form method for SCQP is the EVD of the matrix Q of size

K × K. When the vector x comprises hundreds of thousands
of entries, this computation may not be executed in a com-
puter. To this end, we convert the large scale SCQP to sub-
problems of smaller scale, each of which can be solved in
closed-form.

First we partition the index set I = [1, 2, . . . ,K] into L
disjoint segments Il of size Kl, K = K1 + K2 + · · ·+ KL, such
that EVDs of matrices of size Kl × Kl can be performed on
a computer. For each sub-vector xl = x(Il), we denote by
αl and x̃l its `2-norm and normalized vector, l = 1, . . . , L,
respectively, i.e., x(Il) = αl x̃l where x̃T

l x̃l = 1. We also
denote a complement set by Il̄ = {1, . . . ,K} \ Il. Similarly,
we define αl̄ and sub-vectors x̃l̄, bl and bl̄. Note that xT x =

α2
l + α2

l̄
= 1 and αl̄ = ‖αm,l‖2. Hence, the vector [αl, αl̄]T

also has a unit length.
For convenience, we consider again the SCQP problem

for x

min
x

y =
1
2

xT Qx + bT x s.t. xT x = 1 (12)

and rewrite it as SCQP sub-problems for unit-length vectors
[αl, αl̄]T and x̃l, for l = 1, . . . , L. For example, an SCQP for
only two parameters [αl, αl̄]T is given by

min y =
1
2

[αl, αl̄]Tl[αl αl̄]
T + [αl, αl̄] u (13)

s.t. α2
l + α2

l̄ = 1

where Tl =

[
x̃T

l Ql,l x̃l x̃T
l Ql,l̄ x̃l̄

x̃T
l Ql,l̄ x̃l̄ x̃T

l̄
Ql̄,l̄ x̃l̄

]
is of size 2 × 2 and u =

[bT
l x̃l, bT

l̄ x̃l̄]T . The above problem can be straightforwardly
solved in a closed-form, while keeping x̃l fixed. Once αl and
αl̄ are updated, the other scaling coefficients αm for m , l are
then scaled by a factor of

αl̄

‖αm,l‖2

αm,l ←
αl̄

‖αm,l‖2
αm,l . (14)

Next we rewrite the SCQP for x in (12) as an SCQP for x̃l,
for l = 1, . . . , L, while keeping the other parameters fixed as

min
x̃l

y =
α2

l

2
x̃T

l Ql,l x̃l + αl(bl + Ql,l̄xl̄)
T x̃l + cl (15)

s.t. x̃T
l x̃l = 1 ,

where cl is independent of x̃l. Because Ql,l are of relatively
small sizes Kl ×Kl, update of x̃l can be proceeded in closed-
form.

Finally, by alternating between the updates in (13), (14)
and (15), we can update entire parameters αl and x̃l. We
summarise the update procedure in Algorithm 2. For each
partitioning of [1, . . . ,K], EVDs of Ql,l are computed only
once, then we perform an inner loop to update x̃l and αl until
there is no further improvement.
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Algorithm 2: Block update for large scale SCQP

Input: Q and b
Output: x minimises 1

2 xT Qx + cT x, s.t., xT x = 1
begin

repeat
1 Partition {1, 2, . . . ,K} into L disjoint segments in random
2 Precompute EVD of Ql,l for l = 1, . . . , L

repeat
for l = 1, . . . , L do

3 Solve SCQP in (15) to update x̃l of length Kl
4 Solve SCQP in (13) to update [αl, αl̄]
5 Adjust αm,l ←

αl̄
‖αm,l‖2

αm,l

until a stopping criterion is met
until a stopping criterion is met

5 Linear Regression with Bound Constraint

Another problem, which can be formulated as SCQP, is the
linear regression with a constrained bound on the regression
error

min
x

‖x‖2 subject to ‖y − Ax‖ ≤ δ , (16)

where y is a vector of length I of dependent variables, A is a
regressor matrix of size I×K and δ a nonnegative regression
bound.

It is obvious that if δ ≥ ‖y‖, then the zero vector x =

0 is a minimiser to (16). Therefore, in order to achieve a
meaningful regression, the regression bound δ needs to be
in the following range.

Lemma 8 (Range of the bound δ) The problem (16) has a
minimiser of nonzero entries when

‖Π⊥A y‖ ≤ δ < ‖y‖

whereΠ⊥A is an orthogonal complement of the column space
of A.

Proof Let U be an orthogonal basis for the column space of
A. Then

δ2 ≥ ‖y − Ax‖2 = ‖UT y − UT Ax‖2F + ‖Π⊥A y‖2 ≥ ‖Π⊥A y‖2 .

For simplicity, we assume that A is full rank matrix, oth-
erwise, we solve the problem with a compressed regressor
matrix with a smaller bound

min ‖x‖2 subject to ‖ŷ − Âx‖ ≤ δ̂

where ŷ = UT y, Â = UT A, and δ̂2 = δ2 − ‖Π⊥A y‖2.
We shall now derive an equivalent SCQP to the problem

in (16). We first show that the inequality sign in (16) can be
replaced by the equal sign.

Lemma 9 The minimiser to (16) is the minimiser to the fol-
lowing problem

min
x

‖x‖2 s.t. ‖y − Ax‖ = δ (17)

See the proof in Appendix H.
The proposed algorithms to solve the problem in (17)

are presented for two cases, when the length of x does not
exceed the number of dependent variables, K ≤ I, and when
K > I.

5.1 The case when K ≤ I

We first consider the case when the matrix of regressors A
is of full column rank, K ≤ I. Let A = U diag(s)VT be an
SVD of A, where V is an orthonormal matrix of size K × K,
and s = [s1, . . . , sK] > 0. Hence Π⊥A = I − U UT .

Let ŷ = UT y, δ̂ =

√
δ2 − ‖Π⊥A y‖2, z =

1
δ̂

(ŷ −

diag(s)VT x), then

x = V diag(s−1)(ŷ − δ̂z)

‖x‖2F = (ŷ − δ̂z)T diag(s−2)(ŷ − δ̂z)

‖y − Ax‖2 = ‖UT y − diag(s)VT x‖2F + ‖Π⊥A y‖2

= δ̂2 ‖z‖2 + ‖Π⊥A y‖2 .

By this reparameterization, the problem in (17) becomes an
SCQP which can be solved in closed-form

min
z

zT diag(δ̂s−2)z − 2 ŷT diag(s−2)z s.t. zT z = 1.

5.2 The case when K > I

For this case, we develop an iterative algorithm, at each iter-
ation, wherebt the problem (17) is rewritten as a subproblem
with an invertible regressor matrix. To this end, we first gen-
erate an initial feasible point x(0) such that ‖y − Ax(0)‖ = δ.

We then select a sub matrix AI of A such that AI is
invertible, 2 ≤ card(I) ≤ I and at least one entry x(0)

k∈I is
non-zero. Let z(0)

I
= y −

∑
k<I ak x(0)

k , then

‖y − Ax‖ = ‖z(0)
I
− AI x(0)

I
‖ = δ.

By fixing the parameters xk, k < I, the new estimate x(1)
I

of
xI is a minimiser to the following problem

x(1)
I

= arg min
xI

‖xI‖2 subject to ‖z(0)
I
− AIxI‖ = δ.

Since AI is invertible and x(0)
I

is a non-zero point which
holds the constraint, the above constrained QP has a non-
zero global minimiser, which can be solved in closed-form
as in the case in Section 5.1. As a result of this update, the
new estimate x(1) still holds the constraint, and

‖x(1)‖2 = ‖x(0)‖2 − ‖x(0)
I
‖2 + ‖x(1)

I
‖2 ≤ ‖x(0)‖2 .

The algorithm then selects another index set I, and contin-
ues updating the entries xI by a non-zero x(t)

I
. This alternat-

ing update scheme generates a sequence of estimates x(t),
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which preserve the constraint ‖y−Ax(t)‖ = δ, while keeping
their norm non-increasing, ‖x(t)‖ ≤ ‖x(t−1)‖ ≤ . . . ≤ ‖x(0)‖.

The linear regression with a bound error constraint has
found novel applications in the error preserving correction
methods for the Canonical Polyadic tensor Decomposition
or the CPD with bounded norm of rank-1 tensors [26].

6 Quadratic Programming with Elliptic Constraints

Consider a QP with multiple quadratic constraints, each rep-
resenting an ellipsoid, so that the feasible set is an inter-
section of the ellipsoids. This problem has been extensively
studied in the literature, and arise in many applications in
phase recovery, power flow, MIMO detection, quadratic-
assignment, sensor-network localization, max-cut problems.
For comprehensive review of the problem and its applica-
tions, we refer to [23, 25].

Definition 2 (Quadratic programming over ellipsoids)
Consider a positive semi-definite matrix Q of size K × K,
a vector b of length K, and a set of M positive semi-definite
matrices Hm. The quadratic programming over ellipsoids
solves the optimisation problem

min
1
2

xT Qx + bT x (18)

s.t. xT Hm x = 1, m = 1, . . . ,M .

The constraints in the above programming are given in a
simple form without linear terms as in the objective func-
tion. In practice, however, the full quadratic forms can be
converted to the homogenised form of the parameter vector[
1, xT

]T
, e.g.,

[
1, xT

] [0 bT

b Q
] [

1
x

]
[25].

In addition, the case with inequality constraints, i.e.,
xT Hmx ≤ 1, can also be converted to the equality constraints
by introducing additional variables s = [s1, s2, . . . , sM] such
that

1 = xT Hmx + s2
m = [xT , sT ]

[
Hm

emeT
m

] [
x
s
]
.

For the above quadratically constrained quadratic pro-
gramming (QCQP) problem, we can apply relaxations
to find approximate solutions, e.g., the Lagrangian and
Semidefinite Programming (SDP) based relaxations. The
SDP relaxation introduces a symmetric matrix of rank-1,
X = xxT , and relaxes the condition to the semidefinite con-
dition X � xxT . The quadratic objective and constraint func-
tions can then be rewritten in linear form, see [4, 5, 19] for
relaxations for QCQP.

Different from the existing methods, we introduce an
augmented Lagrangian based algorithm for the problem in
(18). The constraints over multiple ellipsoids are interpreted
as a constraint over a sphere and an orthogonal projec-
tion. In order to achieve this, we define symmetric matrices

Algorithm 3: Augmented Lagrangian Algorithm for
QCQP

Input: Matrices Q, D1, . . . , DN and b
Output: x minimises 1

2 xT Qx + bT x, s.t., xT x = 1,
xT Dn x = 0

begin
1 Initialize y and z as zero vectors and γ > 0

repeat
2 T = reshape(z − y

γ
, [K × K]), Tx = 1

2 (T + TT )
3 x = QPS(Q + γI − 2γTx, b)
4 z = Π⊥D(x ⊗ x +

y
γ

)
5 y← y + γ(x ⊗ x − z)
6 Adjust γ ← αγ if the objective function tents to a slow

convergence
until a stopping criterion is met

Dn = H1 − Hn+1, and rewrite the optimisation problem in
(18) in the form of

min
1
2

xT Qx + bT x

s.t. xT H1 x = 1, xT Dn x = 0, n = 1, . . . ,N

or in the following form

min
1
2

x̃T Q̃ x̃ + b̃T x̃ (19)

s.t. x̃T x̃ = 1 and x̃T D̃n x̃ = 0, n = 1, . . . ,N

after a reparameterization

x̃ = FT x , Q̃ = F−1QF−1 T ,

b̃ = F−1b , D̃n = F−1DnF−1 T ,

where F is the Cholesky factor matrix of H1 = F FT .
For simplicity of notation, we will solve the problem in

(19) with parameters Q, Z and b and variables x with xT x =

1, that is

min
1
2

xT Q x + bT x̃ (20)

s.t. xT x = 1,

xT Dn x = 0, n = 1, . . . ,N .

6.1 An Augmented-Lagrangian algorithm for QCQP

In order to solve the QCQP in (20), we split the problem into
two subproblems, each with a single constraint, by introduc-
ing an additional variable z

min f (x) + g(z) s.t. z − x ⊗ x = 0 (21)

where f (x) is the function of x over a sphere for the opti-
mization problem

min
1
2

xT Q x + bT x , subject to xT x = 1,
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and g(z) represents the projection onto subspace span by
orthogonal complement of D = [vec(D1) , . . . , vec(DN)],
DT z = 0.

The augmented Lagrangian function of the problem (21)
is given by

L(x, y, z) = f (x) + g(z) + yT (x ⊗ x − z) +
γ

2
‖x ⊗ x − z‖2

where γ > 0. The algorithm consists of update rules for the
variables x, z and y

x = arg min f (x) + yT (x ⊗ x − z) +
γ

2
‖x ⊗ x − z‖2 , (22)

z = arg min g(z) + yT (x ⊗ x − z) +
γ

2
‖x ⊗ x − z‖2 , (23)

y ← y + γ(x ⊗ x − z) . (24)

6.2 Estimation of x

The optimisation problem in (22) can indeed be written as
an SCQP, as follows

x = arg min f (x) + yT (x ⊗ x − z) +
γ

2
‖x ⊗ x − z‖2

= arg min f (x) +
γ

2
‖x ⊗ x − z +

y
γ
‖2 (25)

= arg min f (x) +
γ

2
(xT x)2 − γ(x ⊗ x)T (z −

y
γ

)

= arg min
1
2

xT (Q + γI − 2γTx) x + bT x s.t. xT x = 1 ,

(26)

where Tx = T+TT

2 is a symmetric matrix of size K × K,
T = reshape(z − y

γ
, [K × K]). At each iteration to update

x, we reshape the vector (z − y
γ
) to a matrix of size K × K,

and then construct a symmetric matrix Tx. The matrix Q
is changed by a term γTx, while the vector b is preserved.
The last equation indicates that the vector x can be found in
closed-form using Algorithm 1.

6.3 Estimation of z

The vector z is updated as a minimiser to the following prob-
lem

z = arg min g(x) + yT (x ⊗ x − z) +
γ

2
‖x ⊗ x − z‖2

= arg min g(x) +
γ

2
‖z − x ⊗ x −

y
γ
‖2

= arg min ‖z − x ⊗ x −
y
γ
‖2 s.t. DT z = 0

= Π⊥D(x ⊗ x +
y
γ

) , (27)

where Π⊥D(z) is the orthogonal projection of the vector z onto
the orthogonal complement of the column space of D, e.g.,

Π⊥D(z) = z − D (DT D)−1 DT z.

6.4 Algorithm for QCQP

An augmented Lagrangian based algorithm for QCQP in-
cluding the updates in (26) and (27) is summarised in Algo-
rithm 3. The vectors y and z are initialised as zeros, while
the parameter γ is set to a sufficiently high value. Experi-
ments show that running the algorithm with a small γ at the
beginning will decrease the objective function quickly, but it
may make the algorithm unstable after several to a dozen of
iterations. However, setting γ to a too large value will slow
down the convergence of the algorithm. In order to obtain
a good setting, we should run the algorithm for a few itera-
tions for various values of γ, then choose the setting which
gives a good convergence result. The algorithm is then exe-
cuted using the chosen parameters. In our experience, γ can
be set to a fraction of the minimum condition number of Hm,
while the associated matrix Hm should be chosen to present
the quadratic constraint, i.e., xT Hmx = 1.

During the estimation process, the high value of param-
eter γ should be reduced if the objective function becomes
stable, or yields a slow convergence. However, reducing γ

too much can cause a divergence, and the parameters should
be corrected.

6.5 Linearisation for the update of x

As per derivation in (26), x is updated as a minimiser of
an SCQP. The algorithm iterates to update x over z and
y. As in Algorithm 1, at each iteration to update x, one
needs to compute the eigenvalue decomposition of the ma-
trix Q + γI − 2γTx, which is changed by a term Tx. In order
to accelerate the update rule, we perform the following lin-
earisation which can bypass the matrix Tx in the quadratic
term.

From (25), x is updated as a minimiser to an SCQP

x = arg min f (x) +
γ

2
‖x ⊗ x − z +

y
γ
‖2

= arg min f (x) +
γ

2
‖xxT − Tx‖

2
F .

Now, we replace the second term in the above problem by
its linearization at the previous update denoted by xo

x = arg min f (x) +
γ

2

c(xo) +

(
∂c(x)
∂x

(xo)
)T

(x − xo)

+µ‖x − xo‖
2
F

)
= arg min f (x) +

γ

2

(
4(xoxT

o − Tx)xo

)T
x +

γµ

2
‖x − xo‖

2
F

= arg min f (x) + 2γ xT
o (xoxT

o − Tx) x +
γµ

2
‖x − xo‖

2
F

= arg min
1
2

xT (Q + γµI) x + (b + γ(2 − µ)xo − 2γTxxo)T x

(28)

s.t. xT x = 1
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where c(x) = ‖xxT − Tx‖
2
F and µ > 0.

The optimisation in (28) shows that the quadratic term
adjusts Q by a term γµI, i.e., shifting its eigenvalues by γµ.
So we need not decompose the matrix Q again. Different
from the update in (26), the linear term changes by the pre-
vious estimate of x.

For this new update (28), the algorithm is computation-
ally cheaper, and still preserves the convergence as that in
(26).

6.6 Generating a positive definite matrix H1

In the conversion of the QCQP problem in (18) to the prob-
lem (20), the constraints over multiple ellipsoids are inter-
preted as a constraint over a sphere and orthogonality con-
straints. Choosing a psd matrix Hk from the set of matrices
Hn plays an important role and affects the entire estimating
process. Here, a simple condition is that the selected matrix
Hk should have a low condition number. In some cases, it is
better to generate a new psd matrix Hα rather than choosing
one among Hn. The new matrix Hα should have a condi-
tion number as small as possible by solving an eigenvalue
problem (EVP) [8]

minα,γ γ , s.t. I < Hα < γI

where Hα =
∑N

n=1 Hnαn.
The problem can also be formulated as a semidefinite

programming (SDP) problem, which can be solved using the
SEDUMI or TFOCS toolboxes. The generated matrix Hα is

then scaled by a factor of

 N∑
n=1

αn

, so that it satisfies the

quadratic constraint xT Hαx = 1.
Alternatively, the matrix Hα can be generated so that its

Frobenius norm is minimum, i.e.,

min ‖Hα‖
2
F

subject to Hα =

N∑
n=1

Hnαn,

N∑
n=1

αn = 1, αn ≥ 0.

For the latter problem, we define a matrix H =

[vec(H1) , . . . , vec(HN)], and find a vector α = [α1, . . . , αN]
in a quadratic programming with a linear constraint

min αT (HT H)α, s.t. 1T α = 1, αn ≥ 0.

Example 5 (Effects of the condition number of the psd
matrix involving in the quadratic constraint)

In this example, we consider a QP problem of a psd ma-
trix Q of size 10×10 over quadratic constraints for three psd
matrices H1, H2 and H3. The linear term in the QP problem
is with a zero vector b. The matrices are randomly gener-
ated, and the condition numbers of Hn are 185.7, 12403 and
1000.1, respectively. Since the second matrix H2 has a high

condition number, we generate a new psd matrix H̃2 from
H1, H2 and H3 as described in Section 6.6. The new matrix
has a low condition number of 8.9, and is used in place of
the matrix H2.

In the first analysis, we compare the performances
and convergence behaviour of the QCQP algorithm (Al-
gorithm 3) when each matrix, either Hi or H̃2, is selected
to represent the quadratic constraint, i.e., xT Hix = 1, and
the remaining two matrices represent the orthogonality con-
straints of the parameter vector z. There are four possible
selections of the matrix. The parameter γ is fixed to 0.1 in
the test. Fig. 7 shows the objective values to illustrate the
convergence and final performance, and the `2-norm of the
orthogonality constraints ‖DT (x ⊗ x)‖22 to verify if all the
quadratic constraints xT Hix = 1 are achieved. The results
indicate that when the matrix with a high condition num-
ber, H2 or H3, plays as a quadratic constraint, the algorithm
converges to a false local minima, which do not satisfy the
orthogonality constraints DT (x ⊗ x) = 0.

When running the optimisation with a quadratic con-
straint over the matrix H1 or H̃2, the algorithm converges to
the same value of 4.8659×10−4 with a norm ‖DT (x⊗ x)‖22 at
level of 10−7 and 10−10, respectively. An important result is
that the algorithm needs only 526 iterations to achieve such
high accuracy with the matrix H̃2, while it needs at least
10000 iterations for the problem with a quadratic constraint
over the matrix H1.

The results imply that when the matrix involved in the
quadratic constraint has a large condition number, the opti-
misation becomes hard, and the algorithm demands a large
number of iterations. It even can converge to a local mini-
mum if the step size γ is not chosen properly. This is clear
because the QCQP conversion requires the Cholesky de-
composition of an ill-conditioned matrix. For this case, gen-
erating a new psd matrix with a lower condition number is
suggested to replace the one of ill condition. An alterna-
tive method is to run the algorithm with a relatively higher
step size. For example, when running the algorithm with
γ = 100, the algorithm converges to the (global) minimum,
but it needs 200.000 iterations as illustrated in Fig. 8.

We note that the optimization problem in (20) can be
solved using the interior-point algorithm. We verify this
method in three optimisation problems, each corresponding
to a matrix Hi. The results show that the method converges
twice to a false local minimum with an objective value of
0.0017.

Example 6 (Effect of the step size γ)

As shown in the previous example, a large step size γ can be
useful when the QCQP problem is hard. In this example, we
use the same matrices as in Example 5, and compare conver-
gence behaviour of the proposed algorithm when γ is varied
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Fig. 7 Illustration of performances of the proposed algorithm in Ex-
ample 5. The algorithm demands a huge number of iterations, but con-
verges to local minima, when the quadratic constraint xT Hx = 1 is
constrained over the matrix H2 or H3. The algorithm quickly converges
when the quadratic constraint is accompanied by the matrix H̃2.

in the range of [0.001, 1000]. We plot the objective func-
tion values, i.e., xT Qx to illustrate the convergence of the
proposed algorithm, and the `2-norms of the orthogonality
constraints on x⊗ x, i.e., ‖DT (x⊗ x)‖2 in Fig. 9. A relatively
large step size, e.g., γ = 10, 100, 1000, enforces the orthog-
onality constraints on the parameter vector quickly, but it
reduces the objective value slowly; hence, it slows down the
overall convergence. However, a very small step size, e.g.,
γ = 0.01, may make the algorithm diverge, while the orthog-
onality constraints cannot be enforced on x⊗ x. Selection of
an appropriate step size affects the overall convergence. For-
tunately, we can choose the step sizes in quite a wide range.
In this example, γ = 0.01 is possibly the best selection, but
γ = 1 and 10 are also good choices, although the algorithm
may need a more iterations.

Example 7 (Performance of the linearisation method)

In this example, we verify performance of Algorithm 3, but
x is updated using the linearization method in Section 6.5.
The parameters are initialised as in the previous examples.
The step-size µ is set to the step size γ, and is varied in the
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Fig. 8 Illustration of performances of the proposed algorithm in Ex-
ample 5. The algorithm converges slowly after 200000 iterations when
running with a high step size γ = 100.

same range as in Example 6. The objective values and norm
of the constraints are plotted in Fig. 10. Compared to the
results shown in Fig. 9, there is not much difference in the
convergence of the proposed algorithm using the two update
rules for x.

Example 8

In this example, we present results from 100 simulations
with a similar settings to those in Example 5. In each run,
the matrices are randomly generated. The step size γ is set
to α κH , where α is in a range of 10−4 to 104, and κH de-
notes the smallest condition number of the matrices Hm.
We verify performance of the constrained QP problems in
which the matrix H is generated to have a minimum con-
dition number. In addition, we compare the performance of
the proposed algorithm with those using the interior-point
algorithm for constrained nonlinear minimization. In order
to assess the performance, we compute the relative objective
errors, i.e., a relative error between the objective value and
the best (smallest) objective value among all objective val-
ues obtained by the considered methods in each run, error of
the constraints, and the number of iterations. Fig. 11 shows
empirical cumulative distribution functions of the measures
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Fig. 9 Performance of the algorithm in Example 5 over a range of
γ. A relatively large γ enforces the orthogonality constraints quickly,
but varies the objective value slowly; hence, it slows down the overall
convergence. A very small γ makes the algorithm diverge.

for two cases, with and without minimisation of the condi-
tion number. A setting of γ is considered good, if the algo-
rithm achieves a small relative error, e.g., less than 10−3, and
a small constraint error, e.g., ≤ 10−8.

As shown in Fig. 11, when the matrices H̃ have min-
imum condition numbers, the algorithm achieves good re-
sults with small relative errors, less than 10−4, with α =

{10−4, 10−3, . . . , 1}. Fig. 11(b-center) shows that in some
runs the outcome vectors x may not satisfy the con-
straints when α = 10−4 and 10−3. With the settings α =

{0.01, 0.1, 1}, the algorithm not only converges to the desired
solution but also requires a fewer iterations, especially when
α = 0.01. We note that when setting α to high values, e.g.,
≥ 10, the small constraint errors indicate that the outcome
satisfies the constraints, but the algorithm does not converge
to the global minimum within a predefined 100000 itera-
tions, e.g., α = 10 and 100, or it stops because the objective
function does not appear to improve significantly, e.g., for
α ≥ 1000.

For the case without the correction of the condition num-
ber, although the algorithm converges with α = 10−3, 10−2,
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Fig. 10 Performance of the proposed algorithm using the linearisation
update rule for x in Example 5 for a range of values of γ. A rela-
tively large value of γ enforces the orthogonality constraints quickly,
but varies the objective value slowly; hence, it slows down the overall
convergence. A very small γ makes the algorithm diverge.

it often demands a huge number of iterations, as illustrated
in Fig. 11(a-right).

Compared to the performance of the interior point algo-
rithm (IP), the results indicate that the IP algorithm attains a
convergence ratio of 75% to converge to the best solutions.
The augmented Lagrangian algorithm with appropriate step-
sizes, i.e., when α = {0.001, 0.01, 0.1}, attains a convergence
ratio of 89%.

7 Best Rank-1 Tensor Approximation to Symmetric
Tensor of Order-4

We now present a novel application of the quadratic min-
imisation over a sphere to finding a best rank-1 tensor ap-
proximation of an order-4 symmetric tensor. The concept
of the symmetric tensor is extended from the symmetric
matrix, i.e., invariant under any permutation of its indices.
Symmetric tensors can be cumulant tensors, or derivative
tensors of the second Generalised Characteristic Functions
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(a) Empirical CDP of errors and number of iterations in solving QCQP with matrices Hm.
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(b) Empirical CDP of errors and number of iterations in solving QCQP with a generated matrix H̃ having low condition number.

Fig. 11 Performance comparison in solving the QP with three quadratic constraints.

[1, 10, 20, 34], or tensors representing similarity or interac-
tion between groups of identities used for clustering [24,31].

We consider an order-4 tensor Y which is symmetric,
i.e., y(i1, i2, i3, i4) = y( j1, j2, j3, j4), where [ j1, j2, j3, j4] is
any permutation of indices [i1, i2, i3, i4]. The best rank-1 ten-
sor approximation to the tensor Y is to minimize the follow-
ing approximation error

min
λ,x

‖Y − λ x ◦ x ◦ x ◦ x‖2F (29)

where λ x ◦ x ◦ x ◦ x represents the best rank-1 tensor to
approximate Y, and x is a unit-length vector, xT x = 1. For
shorthand notation, we denote x ◦ x ◦ x ◦ x = x(4). By ex-
panding the Frobenious norm (29) as

‖Y − λ x(4)‖2F = ‖Y‖2F + λ2 − 2 λ 〈Y, x(4)〉

it is straightforward to see that the optimal weight λ? is the
inner product between the tensor Y and the rank-1 tensor
x(4) = x◦x◦x◦x, that is, λ? = 〈Y, x(4)〉. Hence, the objective
function is rewritten as

min
x

‖Y‖2F − 2
(
Y • x(4)

)2
.

For a positive λ, we maximise the inner product to give

max 〈Y, x(4)〉 s.t. xT x = 1

and minimise the inner product for a negative λ, that is

min 〈Y, x(4)〉 s.t. xT x = 1 .

The final solution λ is that with the largest absolute value.
Both problems can be solved on a Riemannian or Stiefel
manifold using e.g., the Trust-Region solver [7]. Here, we
propose another method to solve the two above problems.

Let z = x ⊗ x, then the minimisation problem in (30)
becomes

min zT Qz s.t. z = x ⊗ x , and zT z = 1

where Q is a mode-(1,2) matricization of Y.
The augmented Lagrangian function of the above prob-

lem now becomes

L(x, y, z) = f (z) + yT (z − x ⊗ x) +
γ

2
‖z − x ⊗ x‖2 (30)

where f (z) is the objective function of the minimization of
zT Qz subject to zT z = 1. Variables x, z and y are sequen-
tially updated following the sequence

z = arg min f (z) + yT (z − x ⊗ x) +
γ

2
‖z − x ⊗ x‖2

= arg min
1
2

zT Qz + (y − γx ⊗ x)T z (31)

subject to zT z = 1

x = arg min yT (z − x ⊗ x) +
γ

2
‖z − x ⊗ x‖2

= arg min ‖z +
y
γ
− x ⊗ x‖2 (32)

y ← y + γ(z − x ⊗ x) . (33)

The unit-length vector z is a minimiser to a SCQP, whereas
x is the eigenvector associated with the largest eigenvalue of
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the symmetric matrix Ts = 1
2 (T + TT ), where

T = Z +
1
γ

Y ,

z = vec(Z) and y = vec(Y).

Example 9 (Best rank-1 tensor approximation to a sym-
metric tensor of order-4)

This example compares performance of our algorithm for
best rank-1 tensor approximation for symmetric tensor of
order-4, and the Riemannian trust-region solver in the
Manopt toolbox [7]. We generate 1000 random tensors of
size I × I × I × I, where I = 10 or 20, then matricize them so
that they will become symmetric tensors of order-4. The ten-
sors are normalized to have unit Frobenius norm. For each
run, the best approximation error ε? is defined as the small-
est error among approximation errors of the two methods:
Augmented Lagrangian method and the Riemannian trust-
region

ε = ‖Y − λ x(4)‖2F = 1 − λ2 .

Relative errors to the best approximation error ε−ε?

ε?
is then

assessed to measure performance of the approximation.
Fig. 12 shows the empirical cumulative distribution

functions of 1000 relative errors. The results indicate that
our algorithm based on the quadratic optimisation over
sphere achieves a higher success rate. For example, for the
case when I = 20, our algorithm attains an error less than
0.001 with a rate of 96.8%, whereas the trust-region solver
achieves a rate of 73.1% for the same error range. When
I = 10, the Augmented Lagrangian algorithm has a suc-
cess rate of 92.5% for a similar accuracy of 0.001, while the
trust-region algorithm has a quite low rate of 47.4%.

8 Generalized Eigenvalue Decomposition with Eigen
matrix of low rank structure

We now address a constrained generalised eigenvalue de-
composition which exploits the QCQP to derive an algo-
rithm. The considered problem is stated below.

Definition 3 (GEVD with eigen matrix having a low
rank structure) Consider a positive semi-definite matrix Q
of size IJ× IJ and a positive definite matrix S of size IJ× IJ.
We solve the following optimisation problem

min tr( XT Q X) s.t. XT B X = IR

to find a matrix X of size IJ ×R, where each column of X is
a vectorisation of a product of two matrices

xr = vec
(
Gr AT

)
(34)

and Gr are matrices of size I × S and A is of size J × S .
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Fig. 12 The empirical cumulative distribution functions of the relative
errors of two algorithms based on augmented Lagrangian and Rieman-
nian trust-region methods.

If we concatenate the matrices Gr into an order-3 tensor
of size I × S × R, the factor matrix X is a mode-(1,2) ma-
tricization of an order-3 tensor X of size I × J × R, defined
as

X = G ×2 A .

Because of scaling and rotation ambiguities, the matrix A
can always be normalized to be an orthogonal matrix. How-
ever, we do not exploit the orthogonality constraint on A
in its estimation, but perform orthogonal normalisation af-
ter each update. With the above interpretation, the matrix of
eigenvectors, X, is considered a block matrix in the tensor
train format of only two cores. For the GEVD in which the
matrix X is a block TT-matrix composed from more cores,
the problem in (3) becomes a local problem in an alternat-
ing algorithm to estimate the cores. The problem in (34) is a
constrained GEVD.



Quadratic Programming Over Ellipsoids 17

For this simple case, we can express the factor matrix as
X = [X](1,2) = [X]T

(3), and

X = (A ⊗ II)G (35)

where G = [vec(G1) , . . . , vec(GR)] and

X = [IJ ⊗G1, . . . , IJ ⊗GR]
(
IR ⊗ vec

(
AT

))
.

We now show that G can be estimated using a GEVD,
and A is a solution to a quadratic programming problem
with quadratic constraints. Our proposed algorithm alter-
nates the estimation of G and A.

8.1 Update of Gr

By exploiting the expression in (35), while fixing the matrix
A, we can find G in a GEVD, given by

min tr( GT QG G) s.t. GT BG G = IR

where

QG = (AT ⊗ II) Q (A ⊗ II) ,

BG = (AT ⊗ II) B (A ⊗ II).

8.2 Update of A

In order to derive the update rule for A, from (36), we can
rewritte the objective function as

tr(XT QX) =

R∑
r=1

xT
r Q xr

=

R∑
r=1

vec
(
AT

)T
(IJ ⊗Gr)T Q (IJ ⊗Gr) vec

(
AT

)
= vec

(
AT

)T
QA vec

(
AT

)
(36)

where

QA =

R∑
r=1

(IJ ⊗Gr)T Q (IJ ⊗Gr) .

Similarly, the quadratic constraint is rewritten for each pair
of columns xr and xs as

δr,s = xT
r Bxs

= vec
(
AT

)T
(IJ ⊗Gr)T B (IJ ⊗Gs) vec

(
AT

)
= vec

(
AT

)T
Br,s vec

(
AT

)
. (37)

for r, s = 1, . . . ,R, where

Br,s = (IJ ⊗Gr)T B (IJ ⊗Gs) . (38)

As a result of (36) and (37), the vector vec
(
AT

)
is a min-

imiser of a quadratic programming problem with R(R + 1)/2
quadratic constraints

min vec
(
AT

)T
QA vec

(
AT

)
subject to vec

(
AT

)T
Br,r vec

(
AT

)
= 1, r = 1, . . . ,R

vec
(
AT

)T
Br,s vec

(
AT

)
= 0, 1 ≤ s < r ≤ R .

Following the method in Section 6.6, we can generate a
matrix B with a low condition number from the matrices
Br,s, or choose a matrix with the smallest condition num-
ber among them, e.g., B1,1. Denote by F the factor matrix in
the Cholesky decomposition of the matrix B1,1 = FFT , and
introduce the following symmetric matrices of size JS × JS

Dr,r = F−1(B1,1 − Br,r)F−1 T , r = 2, . . . ,R

Dr,s = F−1(Br,s + BT
r,s)F

−1 T , 1 ≤ s < r ≤ R

and

Q̃A = F−1 QA F−1 T .

We can then find a = FT vec
(
AT

)
in the following con-

strained optimization based on Algorithm 3

min aT Q̃A a
subject to aT a = 1,

aT Dr,r a = 0, r = 2, . . . ,R,

aT Dr,s a = 0, 1 ≤ s < r ≤ R .

Example 10 (Discriminant analysis of hand-written dig-
its)

In this example, we illustrate an application of the proposed
algorithm for solving the constrained GEVD in (34). More
specifically, we perform a discriminant analysis on the train-
ing samples, which comprise handwritten images for digits
0, 1 and 2. The data is taken from the MNIST dataset. Im-
ages are of size 28 × 28, and their Gabor features are com-
puted for 8 orientations and 4 scales. The Gabor images are
scaled down to size 16 × 16, then vectorized and concate-
nated into a matrix of size 256 × 32. All digit images con-
struct an order-3 tensor of size 256 × 32 × 900, 300 images
for each digit. Ten random 10-fold cross-validations are per-
formed on 900 samples: 810 for training and 90 for the test
set.

Denote the matrix of training samples by Ytr, which is of
size 8192×810. We seek a projection matrix X of size 8192×
2 to extract 2 feature vectors F = YT

tr X which maximises the
Fisher score, a ratio of the between and with-in distances

max
tr( FT Sb F)
tr(FT Sw F)

where Sb and Sw are the between and with-in scattering ma-
trices constructed for the training samples. Alternating to the
maximisation of the trace-ratio, we solve the GEVD prob-
lem

max tr( XT Ytr Sb YT
tr X) ,

subject to XT Ytr Sw YT
tr X = I2.

Because each digit is represented by a vector of length
8192 (= 256× 32), which exceeds the number training sam-
ples of 810, the above ordinary linear discriminant analysis
often leads to over-fitting, and it is not applicable. To this
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Fig. 13 Scattering plot of hand-written digits using two extracted fea-
tures in Example 10.

end, we apply the constrained GEVD in (34). Columns of
the matrix X are constrained with a structure

xr = vec
(
Gr AT

)
.

In our example, G1 and G2 are of size 256 × 2 and A is of
size 32 × 2. The extracted features for training samples are
computed and used to train a simple LDA classifier. Using
the proposed algorithm, we obtain a classification accuracy
of 97.36% averaged over 10 × 10-fold cross-validations.

Fig 13 shows the scatter plot of samples plotted using
the two feature vectors, demonstrating that digits 0, 1 and 2
are distinguished.

9 Conclusions

We have introduced a robust solution to the SCQP problem
by imposing an error bound on the root of the underlying
secular equation. The method has been initially derived as
SCQP for matrix variate data, together with the related lin-
ear regression with an error bound constraint. In addition,
we proposed an algorithm for the QCQP problem which
treats QCQP as SCQP and an orthogonal projection. In the
process, the quadratic term within the quadratic constraint
is correctted by a term with a minimum condition num-
ber. This correction method has been shown to improve the
convergence of the proposed algorithm. Applications of the
SCQP and QCQP have been presented for image deconvo-
lution, tensor decomposition and constrained GEVD.

A Proof of Lemma 1

Proof We consider a simple case when some eigenvalues are identical,
e.g., s1 = s2 = · · · = sL < sL+1 < · · · < sK . If c1:L are all zeros, the
objective function is independent of x̃1:L = [x̃1, x̃2 . . . , x̃L]. Hence, x̃1:L
can be any point on the ball ‖x̃1:L‖

2 = d2 = 1 −
∑K

k=L+1 x̃2
k . Otherwise,

x̃1:L is a minimiser to a constrained linear programming while fixing
the other parameters x̃L+1, . . . , x̃K , in the form

min cT
1:L x̃1:L subject to ‖x̃1:L‖ = d

which yields

x̃1:L =
−d
‖c1:L‖

c1:L .

For both cases, we can define

z = [−d, x̃L+1, . . . , x̃K],

c̃ = [‖c1:L‖, cL+1, . . . , cK],

s̃ = [s1, sL+1, . . . , sK],

and perform a reparameterization to estimate z from a similar SCQP
but with distinct eigenvalues s̃, as

min
1
2

zT diag(s̃) z + c̃T z subject to zT z = 1 .

B Proof of Lemma 2

Proof It follows from the second derivative of f (λ), given by

f
′′

(λ) = −2
∑

k

c2
k

(sk − λ)3

that f
′′

(λ) < 0 for all λ < s1 = 1. That is, f ′(λ) monotonically de-
creases with λ < s1 = 1.

In addition, since sk ≥ 1, for all k, we have

f ′(0) = 1 −
K∑

k=1

c2
k

s2
k

≥ 1 −
K∑

k=1

c2
k = 0

and

f ′(1 − |c1|) = 1 −
K∑

k=1

c2
k

(1 − |c1| − sk)2 = 1 −
c2

1

c2
1

−

K∑
k=2

c2
k

(1 − |c1| − sk)2

≤ −

K∑
k=2

c2
k

(1 − |c1| − sk)2 ≤ 0 .

This implies that f ′(λ) has a unique root smaller than 1. Moreover, the
root lies in the interval [0, 1 − |c1|).

C Proof of Lemma 3

Proof Let λ1 be a root which is smaller than s1 = 1, and λ2 be another
root of f ′(λ). Then, according to Lemma 2, λ2 > 1 > λ1, and

K∑
k=1

c2
k

(λ1 − sk)2 =

K∑
k=1

c2
k

(λ2 − sk)2 = 1 . (39)

It can be shown that

f (λ2) − f (λ1) = λ2 − λ1 +

K∑
k=1

c2
k

λ2 − sk
−

c2
k

λ1 − sk

= (λ2 − λ1)

1 − K∑
k=1

|ck |

sk − λ1

|ck |

sk − λ2


≥ (λ2 − λ1)

1 −
√√√ K∑

k=1

c2
k

(λ1 − sk)2

√√√ K∑
k=1

c2
k

(λ2 − sk)2


= (λ2 − λ1)(1 − 1 × 1) = 0. (40)

This inequality is obtained by applying the Cauchy-Schwarz inequal-
ity, whereas (40) is obtained after replacing the optimal conditions in
(39). The equality case does not occur because of s1 − λ2 < 0, that is,
f (λ2) > f (λ1) and the minimiser λ? of f (λ) is the minimum root λ1 of
f ′(λ).
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D Proof of Lemma 4

Proof We first show that the polynomials pi(t) have unique roots in
[|c1|, 1]. The second-derivative of pi(t) is given by

p′′i (t) = 12t2 + 12dit + 2(d2
i − 1)

and has two roots t̄1,2 =
−3di ∓

√
3d2

i + 6

6
.

If di > 1, the roots t̄1,2 are negative. Hence, the first derivative p′i (t)
monotonically increases in [0,+∞). In addition, since

p′i (0) = −2c2
1di ≤ 0

p′i (t) has only one root in [0,+∞). Together with the fact that

pi(0) = −c2
1d2

i ≤ 0

pi(|c1|) = c2
1(c2

1 − 1) ≤ 0

pi(1) = di(di + 2)(1 − c2
1) ≥ 0,

the polynomial pi(t) has a unique root in [|c1|, 1].
If di ≤ 1, the second root t̄2 is non-negative, t̄2 ≥ 0. However,

since p′i (0) = −2c2
1di ≤ 0, the first derivative p′i (t) has only one root

in [0,+∞). Again as for the case d1 > 1, the polynomial pi(t) also has
unique root in [|c1|, 1].

As the definition of the root t2, we can prove that derivative f ′(s1−

t2) does not exceed zero, that is

f ′(s1 − t2) = 1 −
c2

1

t2
2

−

K∑
k=2

c2
k

(sk − s1 + t2)2 ≤ 1 −
c2

1

t2
2

−

∑K
k=2 c2

k

(sK − s1 + t2)2

= 1 −
c2

1

t2
2

−
1 − c2

1

(d2 + t2)2 =
p2(t2)

t2
2(d2 + t2)2

= 0. (41)

Similarly, we have

f ′(s1 − t1) = 1 −
c2

1

t2
1

−

K∑
k=2

c2
k

(sk − s1 + t1)2 ≥ 1 −
c2

1

t2
1

−

∑K
k=2 c2

k

(d1 + t1)2

= 1 −
c2

1

t2
1

−
1 − c2

1

(d1 + t1)2 =
p1(t1)

t2
1(d1 + t1)2

= 0. (42)

From (41) and (42), it follows that f ′(t) has a root in [1 − t1, 1 − t2].
This root is unique and also the global minimiser of f (λ) in (5). This
completes the proof.

E Proof of Lemma 5

Proof First, similar to Lemma 2, the roots λ?l,L and λ?u,L are unique in
the interval [0, 1 − |c1|]. Taking into account that

∑K
k=1 c2

k = 1, and
sK ≥ sk for all k, we have

f ′(λ) = 1 −
L∑

l=1

c2
l

(sl − λ)2 −

K∑
k=L+1

c2
k

(sk − λ)2

≤ 1 −
L∑

l=1

c2
l

(sl − λ)2 −

∑K
k=L+1 c2

k

(sK − λ)2 = 1 −
L∑

l=1

c2
l

(sl − λ)2 −
c̃2

L+1

(sK − λ)2

= f (L)
u (λ) .

Similarly, we can derive f ′(λ) ≥ f (L)
l (λ). It appears that the function

values of f ′(λ) at λ?l,L and λ?u,L are nonnegative and non-positive, re-
spectively,

f ′(λ?l,L) ≥ f (L)
l (λ?l,L) = 0 ,

f ′(λ?u,L) ≤ f (L)
u (λ?u,L) = 0,

thus implying that

λ?l,L ≤ λ
? ≤ λ?u,L.

The sequence of inequalities in (6) can be proved in a similar way.

F Proof of Lemma 6

Proof By contradiction, assume that the variable x̃?n is non-zero. Since
there is only one cn = 0, from (3), the multiplier λ? must be equal to
sn, that is

λ? = sn,

and the minimiser x̃? is given by

x̃?k =
ck

sn − sk
, k , n

and x̃?n is derived from the unit-length condition of x̃?

x̃2
n = 1 −

∑
k,n

x̃2
k

with an additional assumption that

∑
k,n

c2
k

(sn − sk)2 < 1 .

The objective function in (2) at x̃?, as well as the Lagrangian func-
tion at (x̃?, λ? = sn) are given by

L(x̃?, λ?) =
1
2

sn − sn

∑
k,n

c2
k

(sn − sk)2 +
∑
k,n

c2
k sk

(sn − sk)2

 +
∑
k,n

c2
k

sn − sk

=
1
2

sn +
∑
k,n

c2
k

sn − sk

 . (43)

Now, we consider a vector x̄ whose n-th entry is zero, x̄n = 0, and the
rest (K − 1) coefficients x̄n = [x̄1, . . . , x̄n−1, x̄n+1, . . . , x̄K] are minimiser
to a reduced problem

min
1
2

∑
k,n

sk x̃2
k +

∑
k,n

ck x̃k

subject to
∑
k,n

x̃2
k = 1 .

According to the results in Section 2.2, when ck, k , n, are non-zeros,
the Lagrangian function for this reduced problem at the minimiser x̄n
is given by

Ln(x̄n, λ
?
n ) =

1
2

λ?n +
∑
k,n

c2
k

λ?n − sk

 , (44)

where the optimal multiplier λ?n < s1 = 1. From (43) and (44), it is
apparent that

L(x̃?, λ?) > Ln(x̄n, λ
?
n ) = L(x̄, λ?n ) ,

which contradicts with the claim that x̃? is the minimiser to the prob-
lem (2). This implies that the n-th variable of the minimiser must be
zero, i.e., x̃?n = 0.
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G Proof of Lemma 7

Proof When c1 = 0, from the first optimality condition in (3), we have

(s1 − λ) x̃1 = 0 .

Assume that x̃? is a minimiser to the problem in (2) with a non-zero
x̃?1 , then λ = s1 = 1 and

x̃?k =
ck

λ − sk
=

ck

1 − sk

for k > 1. From the unit-length constraint, it follows that x̃1 can be
deduced as

(x̃?1 )2
= 1 −

∑
k>1

(x̃?k )2 = 1 − d

which requires the condition d ≤ 1. Implying that, if d > 1, x̃?1 must
be zero, and the rest (K −1) variables [x̃?2 , . . . , x̃

?
K] are minimiser to the

reduced problem of (2).
When d ≤ 1, there exists x̃?1 , and the objective function at x̃? is

given by

L(x̃?, s1) =
1
2

1 −∑
k>2

c2
k

sk − 1

 .
Now, we consider a vector x̃ whose x̃1 = 0, and x̄ = [x̃2, . . . , x̃K]

is a minimiser to the reduced problem (7). Similar to the analysis in
Section 2.2, the objective function of the reduced problem (7) achieves
a global minimum at the minimum root λ̄ of the first derivative of the
Lagrangian function

L1(x̄, λ̄) =
1
2

λ̄ −∑
k>2

c2
k

sk − λ̄

 ,
where λ̄ is smaller than s2.

Since the second derivative of L1(x̄, λ) w.r.t. λ is negative for all
λ < s2, the function L1(x̄, λ) is concave in (−∞, s2). It then follows
that

L(x̃?, s1) < L1(x̄, λ̄) ,

and x̃? is the global minimiser. Note that x̃?1 can be
√

1 − d or−
√

1 − d.

H Proof of Lemma 9

Proof Let x? be a minimiser to the problem (16)

x? = arg min
x

‖x‖2 s.t. ‖y − Ax‖ ≤ δ.

It is obvious that if there are zero entries in x?, we can omit columns
of A corresponding to these entries, and the regression problem for-
mulated for the remaining sub matrix of A has a non-zero minimiser.
Hence, we can assume that entries of x? are nonzeros.

Let z = y −
∑K

k=2 ak x?k , then x?1 is a minimiser to the optimisation
w.r.t. x1, that is

x?1 = arg min
x1

x2
1 s.t. ‖z − a1 x1‖ ≤ δ. (45)

The constraint function can be written as

c(x1) = ‖z − a1 x1‖
2 − δ2 = ‖a1‖

2 x2
1 − 2(aT

1 z) x1 + ‖z‖2 − δ2.

Since c(x?1 ) ≤ 0, c(x1) must have two roots t− and t+. Moreover, it is
clear from (45) that ‖z‖2 > δ2 otherwise x?1 = 0. Hence, the two roots
t− and t+ have the same signs because

t−t+ =
‖z‖2 − δ2

‖a1‖
2 > 0 .

As a result, the minimiser to (45) must be one of the two roots, x?1 =

min(|t−|, |t+|), and the inequality condition becomes the equality one.
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