
 

 

Accurate ride comfort estimation combining 

accelerometer measurements, 

anthropometric data and neural networks 

 
Cieslak, M. P., Kanarachos, S., Diels, C., Blundell, M., Baxendale, A. 
& Burnett, M. 
  
Author post-print (accepted) deposited by Coventry University’s Repository 

  
Original citation & hyperlink:  

Cieslak, MP, Kanarachos, S, Diels, C, Blundell, M, Baxendale, A & Burnett, M 2020, 'Accurate 
ride comfort estimation combining accelerometer measurements, anthropometric data and 
neural networks', Neural Computing and Applications, vol. 32, no. 12, pp. 8747–8762. 
  
DOI   10.1007/s00521-019-04351-1 
ISSN 0941-0643 
ESSN   1433-3058  
Publisher: Springer 

  
The final publication is available at Springer via http://dx.doi.org/10.1007/s00521-019-04351-1 
  
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A 
copy can be downloaded for personal non-commercial research or study, without prior permission 
or charge. This item cannot be reproduced or quoted extensively from without first obtaining 
permission in writing from the copyright holder(s). The content must not be changed in any way or 
sold commercially in any format or medium without the formal permission of the copyright 
holders.  
  
This document is the author’s post-print version, incorporating any revisions agreed during the 
peer-review process. Some differences between the published version and this version may 
remain and you are advised to consult the published version if you wish to cite from it.  
 



1 

 

Accurate ride comfort estimation combining accelerometer 

measurements, anthropometric data and neural networks 
 

M. Cieslak12, S. Kanarachos2, M. Blundell2, C. Diels2, M. Burnett3, A. Baxendale3 

Abstract 

Ride comfort can heavily influence user experience and therefore comprises one of the most important vehicle 

design targets. Although ride comfort has been heavily researched there is still no definite solution to its accurate 

estimation. This can be attributed, to a large extent, to the subjective nature of the problem. Aim of this study was 

to explore the use of neural networks for the accurate estimation of ride comfort by combining anthropometric 

data and acceleration measurements. Different acceleration inputs, neural network architectures, training 

algorithms and objective functions were systematically investigated, and optimal parameters were derived. New 

insight in the influence of anthropometric data on ride comfort has been gained. The results indicate that the 

proposed method improves the accuracy of subjective ride comfort estimation compared to current standards. 

Neural networks were trained using data derived from a range of field trials involving ten participants, on public 

roads and controlled environment. A clustering and sensitivity analysis complement the study and identifies the 

most important factors influencing subjective ride comfort evaluation. 
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1. Introduction 
 

Ride comfort determines to a large extent a passenger's experience and therefore has been a heavily researched 

topic since the invention of the automobile[1]. In the last decade, the increasing number of embedded sensors and 

controllers on the vehicles has enabled car manufacturers to develop smart technologies that can adapt and 

personalise driving experience [2]. For example active suspensions can identify the road condition and 

automatically tune the suspension accordingly [3]. This opens an opportunity for personalising the suspension 

settings and adapting them to passenger preferences. Nowadays technologies such as adaptive suspension are used 

and prototypes of autonomous cars are being introduced and researched [4–6]. This requires redefining the 

analytical framework which is used for evaluation and tuning of ride comfort [7–9]. There have been various 

attempts to quantify the perception of ride comfort [10–18]. Majority of presented studies in the field of ride 

comfort have been conducted in laboratory environments [19–22] as in such conditions the inputs to the 

mechanical system can be easily controlled. Such an approach is highly desirable if the study requires investigation 

of specific parameters of the biodynamic characteristics of the human – seat system [23]. Another approach is to 

create a representation of the real-world conditions by simulating the environment, which allows achieving highly 

reproducible results and the possibility of investigating multiple driving scenarios with minimal expenditure[24–

26]. Interpreting human reactions to vibration required creation of appropriate terminology and the introduction 

of different criteria for quantifying comfort or discomfort [27, 28]. The most common methods rely on objective 

measurements of vibration at the vehicle seat [29]. These measurements are usually done using accelerometers 

[30]. Whole body vibration research has led to the formulation of vibration tolerance criteria [14]. These criteria 

are the basis of the international standard that describes ride comfort - ISO2631[31]. The first iteration of the 

standard was published a couple of decades ago, and has been revised multiple times [14, 15]. The automotive 

industry has not agreed upon one uniform methodology for ride comfort testing [32–34]. Car manufacturers use 

different methods for their appraisal and development processes[35, 36]. A complete appraisal methodology 

consists of objective and subjective evaluation of a vehicle both on the proving ground and on public roads. A 
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variety of attributes are assessed [37], amongst which ride comfort can be described as the one with the highest 

complexity [38]. Ride comfort and its perception requires correlation of different types of data and ultimately it 

is subjectively assessed using a panel of vehicle engineers including noise vibration and harshness (NVH) 

specialists [39]. Due to the high level of variance of ride comfort perception among different people, it is hard to 

map subjective evaluations to ride comfort according to ISO 2631:1997 [40–42]. ISO 2631 only provides 

guidelines for determining the ride comfort. It has been agreed that the vibration frequencies most affecting ride 

comfort are those within the thresholds of 0.8 to 20Hz [43]. Researchers refer to the frequency thresholds from 

0.8Hz to 5Hz as primary ride, and to those from 5Hz to 20Hz as secondary ride [44]. The frequency thresholds 

are freely interpreted by different manufacturers, so the definition is not consistent [45]. Vertical oscillations of a 

seated person at frequencies between 2Hz and 5Hz cause amplification of vibration within the body and therefore 

are perceived as more severe than vibrations at lower frequencies [46]. Studies have directly correlated the severity 

of mechanical inputs with the established perception thresholds [47]. Correlation of subjective and objective 

measures is usually conducted by statistical methods and thresholds described in ISO2631:1997 [48]. The 

correlation achieved is not of sufficient accuracy. On the other hand, Artificial Neural Networks (ANNs) are 

powerful mapping tools that can overcome such shortcomings. They have been used successfully in comfort 

prediction and for mapping subjective evaluations with objective measures [49, 50]. In this study we 

systematically explored the use of ANNs for the accurate estimation of ride comfort by combining anthropometric 

data and acceleration measurements. Different acceleration inputs, neural network architectures, training 

algorithms and objective functions were systematically investigated, and optimal parameters were derived. New 

insight in the influence of anthropometric data on ride comfort has been gained. The results indicate that the 

proposed method improves ride comfort evaluation compared to current standards. ANNs were trained using data 

derived from a range of field trials involving ten participants, on public roads and controlled environment. A 

clustering and sensitivity analyses complement the study and show how to detect outliers and identify the most 

important factors influencing ride comfort. The rest of the paper is structured as follows. Section 2 describes the 

guidelines contained within current standards for ride comfort estimation. Description of objective and subjective 

methods has been conferred. Section 3 presents experimental part of the study. In Section 4 the subjective and 

objective evaluation of ride comfort is analysed. Section 5 focuses on the neural network setup and methodology 

of testing. Conclusions have been presented in section 6. 

 

2. Methods 
 

Ride comfort is evaluated using subjective and objective measures [43, 51]. Complete methodology of ride 

comfort evaluation is described below. 

 

2.1. Objective ride comfort measures 
 

Objective ride comfort evaluation is currently performed using acceleration data and procedures described in 

the ISO 2631:1997, this is the standard for measuring whole body vibration in the ride comfort studies. The data 

set for each of the subjects and each of the measured road sections consists of an average weighted acceleration 

value, maximum transient vibration value (MTVV) and vibration dose value (VDV). According to the ISO 

standard and other research [52] these values can be used as predictors for ride comfort estimation. Since the 

perception of vibration is a nonlinear phenomenon and is much more sensitive to some frequencies a weighting 

filter must be applied. Such filters either reduce or enhance the spectral content of the measured vibration signal 

to replicate the typical human response to vibration exposure based on an empirical correlation [53]. Other comfort 

predictors are derived from the weighted acceleration values. Weighting curves from the ISO 2631 are presented 

in fig. 1. In the figure three curves are visible. 𝑊𝑘 is used for weighting z-axis at the seat surface for health, 

comfort and vibration perception. 𝑊𝑑 weighting curve is used for x and y-axis seat surface health, comfort and 

vibration perception weighting. Finally, the 𝑊𝑓 is used primarily for motion sickness studies, which was not a 

scope of this experiment.  

Before further processing the obtained signal is filtered using a 6th order Butterworth band-pass filter with 

cut-off frequencies at the lower limit set to 0.8Hz and at the upper limit to 200Hz. A running root mean square 
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(R.M.S.) method is used to calculate aw, the weighted acceleration values (1). This method considers the 

occasional shock and transient vibration through the use of a short integration time constant. 

 

𝑎𝑤(𝑡0) =  {
1

𝜏
 ∫ [𝑎𝑤(𝑡)]2𝑑𝑡

𝑡0
𝑡0−𝜏

}
2

     (1) 

 

Where aw represents weighted acceleration, τ represents the duration of the measurement.  

 

Fig. 1 Frequency weighting curves according to ISO 2631:1997 

The maximum transient vibration value (MTVV) is calculated using (2). This value corresponds to the highest 

recorded magnitude of weighted vibration (aw) during the measurement period. 

 

𝑀𝑇𝑉𝑉 = max [𝑎𝑤(𝑡0)]     (2) 

Where aw(t0) represents frequency weighted acceleration at time t0. 

  

The fourth power vibration dose method is more sensitive to peaks than a basic running R.M.S. averaging 

method (3). This evaluation method instead of using second power of the acceleration time history uses a fourth 

power for the basis of averaging. The vibration dose value (VDV) is expressed in metres per second to the power 

of 1.75 (m/s1.75). 

 

𝑉𝐷𝑉 = {∫ [𝑎𝑤(𝑡)]4𝑑𝑡
𝑇

0
}

1

4
     (3) 

Where T represents measurement period and aw is the frequency weighted acceleration at the time t. 
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2.2. Subjective ride comfort measures 
 

Subjective measures of ride comfort were collected using questionnaires. The international standard for whole 

body vibration, ISO 2631, does not give any guidelines regarding the scale that should be used for subjective 

appraisal of ride comfort. Over the years a couple of different subjective scales were developed. Standard practice 

is to follow SAE J1060 [54] (fig. 2), which is also the case in this study. 

 

 

Fig. 2 SAE J1060 subjective rating scale 

In subjective ride comfort testing semantics plays a significant role. Due to the differences in perception 

between different people it is crucial to describe the movement of the vehicle in a way which is commonly 

recognised by all test subjects. There are terms which are frequently used amongst vehicle dynamics specialists. 

Low frequency motion of the vehicle with high amplitude of undulation is called primary ride and frequency 

threshold for this movement is recognised between 1-6Hz. Higher frequency, 6-15Hz, is described as secondary 

ride. Sudden movements due to existing potholes in the road surface cause sudden movement of the vehicle 

suspension and is by technical specialists referred to as jerk.  These could not be used for this study, since some 

of the participants had very little experience in vehicle appraisal process. Therefore, a set of questions was 

constructed to simplify technical terminology. The test subjects participating in the study were asked to rate using 

the J1060 scale: 1) overall level of comfort, 2) the amount of high amplitude vertical vehicle motion, 3) the amount 

of small amplitude vibrations and 4) the amount of sudden vertical vehicle motions similar to the motion generated 

when hitting a pothole or a bump in the road surface. Prior to the subjective evaluation each subject was given 

detailed instructions on what to look for in each of the questions, as well as the overall description of each of the 

test sections used in the study.  

 

3. Experiments and data collection 
 

Field trials were conducted in a controlled environment at HORIBA MIRA proving ground in Nuneaton, UK, 

as well as on public highways using a chosen vehicle platform, described in the next subchapter. A detailed 

description of the experiments performed, and parameters recorded during the field trials are described in detail 

below. 

 

3.1. Vehicle platform 
 

The vehicle platform chosen for the experimentation consisted of a segment B vehicle – Ford Fiesta, model 

year 2013. This vehicle was chosen as a representative vehicle for the UK market. Although many studies 

conducted in the past have taken the parameters of the suspension of the vehicle platform into consideration – this 

was not the primary objective of this experiment, which was to collect subjective and objective ride comfort test 

for a variety of subjects, without changing the suspension characteristics. For purposes of the study, the vehicle 

was treated as a constant. To ensure the cohesiveness of the measurement, the number of variables was reduced 
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to a minimum. Influence of the tire sidewall deflection was also considered but was not identified as an influencing 

factor. To ensure high fidelity the tire pressure was set to manufacturer recommended value of 2.2 bar.  

 

3.2. Field trials 
 

Many ride comfort studies reported by researchers are conducted in a controlled environment, using vertical 

shakers, simulators and when possible digital representation of the dynamics systems is constructed, and the 

parametric studies are constructed to simulate the environment and the vehicle behaviour. Such studies offer great 

repeatability and reproducibility of the results as well as great level of controllability of the input parameters. 

Although field studies in ride comfort do not provide such level of confidence in the results, they are key to fully 

investigate the human-vehicle interaction due to inability to fully simulate real-world conditions in a laboratory 

or simulated environments. In this paper authors present experimental methodology used for ride comfort 

evaluation. For such experimentation five different routes were chosen (table 1). Three road sections were located 

within the proving ground and two were sections of a public road.  

Table 1 Road sections used for data collection 

Name Type of road Type of inputs 

Battlefield road Public Primary and secondary ride inputs. Range 1-10Hz. 

Fenn lanes Public Primary ride inputs. Range 1-5Hz.  

Circuit no. 1 Proving ground Secondary ride inputs. Range 8-12Hz. 

Circuit no. 2 Proving ground Secondary ride inputs. Range 5-12Hz. 

Ride & handling circuit Proving ground Primary and secondary ride inputs. Range 1-10Hz. 

 

The frequency content of each road section is illustrated in figure 3. The different road sections are 

characterised by a different frequency signature. Information about the vibration on each of the sections was 

collected using triaxial accelerometers installed on the vehicle wheel hubs and connected to a LMS SCADAS data 

acquisition system. To create PSD (Power Spectral Density) of the vibration signal and to compare them, the 

signals were filtered using a Butterworth bandpass filter with a filtering threshold between 0.8-150Hz. 

Additionally, the PSD was converted to a one third octave band format. This can be observed on the PSD graph, 

shown in fig. 3.  

 

Fig. 3 Power spectral density of signals acquired over different road sections 

 

Based on the information within the figure the smoothest road section chosen for the experiment was the 

Circuit no. 1, followed by Circuit no. 2. The measured vibration magnitude on the Ride and Handling circuit, the 
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Battlefield Road and the Fenn Lanes sections were much more severe. It can be observed that low frequency high 

amplitude vibration was generated on both Ride and Handling circuits, which were used for primary ride 

component estimation, and Battlefield Road section has high magnitude vibration level between 10-18Hz, 

therefore can be used for secondary ride component evaluation. According to the ISO standard, which is based on 

acceleration data, different ride comfort perception should be experienced for each road category. However, 

according to the ISO standard, there shouldn't be any differences among the subjects' perception.  

The variables measured during the field trials were acceleration measurements at 7 different locations on the 

vehicle. The equipment used for data logging and the location of each accelerometer is presented in table 2.  

Table 2 Location of accelerometers on the test vehicle 

No. Equipment Location 

1 Triaxial DeltaTron 4525 Left front wheel hub 

2 Triaxial DeltaTron 4525 Right front wheel hub 

3 Triaxial DeltaTron 4525 Left rear wheel hub 

4 Triaxial DeltaTron 4525 Right rear wheel hub 

5 Triaxial DeltaTron 4525 Passenger seat rail 

6 Triaxial DeltaTron 4515-B Passenger seat pad 

7 Triaxial DeltaTron 4515-B Passenger seat back 

 

The LMS SCADAS Data Acquisition system was used for data logging. The data logger was connected to a 

laptop using an Ethernet connection. The vibration in the vehicle was measured using three accelerometers 

mounted in the vehicle: on the seat pad, at the seat back and on the seat rail. Accelerations were measured in the 

X, Y, Z direction at a 1024Hz sampling rate. One accelerometer was mounted on the inner side of each of the 

wheel hubs - total of 4. 

The participants were asked to adjust the seat to a position in a way that in their opinion provided them with 

the highest level of support and the highest possible level of comfort at that moment. Each of the subjects was 

introduced to the testing procedure. The procedure involved one familiarisation run on each of the road sections. 

After familiarisation two data collection runs were performed. During the subjective evaluation runs objective 

measures – accelerations, were recorded for all the subjects. 

 

3.3. Anthropometric data collection 
 

For the purposes of this study 10 participants were chosen from HORIBA MIRA staff. Before conducting the 

field trials, appropriate ethics approval (project ref. P71148) from Coventry University ethics board was received. 

Number of participants varies between different studies ranging from 5-10 participants [55], through 20-30 [56, 

57]participants to extreme numbers of 3000 test participants in experiments conducted by NASA[58]. The number 

of participants was chosen based on the fact that the planned tests were to be conducted not in laboratory 

environment but on the proving ground, and due to budget limitations the final number of participants has been 

limited to 10 (N=10). The participants were asked to fill in a questionnaire, requiring anthropometric data such as 

their height, weight and age. The participants were also asked to mention if they had motion sickness record, since 

there was a possibility of subjects feeling ill during the course of the study. These parameters are listed in table 3, 

under the HMS column and were evaluated on the scale from 0 to 10. Another field of interest was any previous 

experience in vehicle dynamics subjective appraisal methodology. This data is shown (table 3) as the EXPinVD 

parameter. The body mass index (BMI) parameter was calculated using equation 4. 

 

𝐵𝑀𝐼 = {
𝑚𝑎𝑠𝑠𝑘𝑔

ℎ𝑒𝑖𝑔ℎ𝑡𝑐𝑚
2 }     (4) 

Based on the collected data, a final pool of human subjects was chosen. The data for those ten participants 

is presented in table 3. 
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Table 3 Anthropometric and experience data of selected test participants 

Subject Gender Age Height (cm) Weight (kg) BMI EXPinVD HMS 

1 Male 25 178 60 18.9 3 5 

2 Male 23 180 72 22.2 7 1 

3 Male 61 193 107 28.7 8 2 

4 Male 40 176 90 29.1 3 3 

5 Female 32 158 55 22 1 1 

6 Male 30 191 86 23.6 7 1 

7 Male 68 183 83 24.8 10 1 

8 Male 43 172 70 23.7 4 4 

9 Male 31 176 74 23.9 7 7 

10 Male 25 182 79 23.8 4 1 

 

During the study additional anthropometric parameters were collected to characterise the overall sizes of each 

subject within the test group the population for statistical analysis. Therefore, the following parameters were 

collected (table 4). 

Table 4 Anthropometric measures collected 

Parameter Abbreviation S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Standing height SH 176 178 193 176 158 191 183 172 176 181 

Sitting height SiH 100 108 113 109 98 112 110 102 103 105 

Sitting shoulder 

height 

SiSH 76 79 83 76 56 82 79 82 73 77 

Buttock popliteal 

length 

BPL 38 52 59 53 48 57 54 49 57 56 

Knee height KH 55 58 58 56 40 57 50 47 50 47 

Shoulder breadth SB 40 47 52 48 38 44 49 42 45 48 

Hip breadth HB 31 36 48 47 32 34 39 40 36 42 

 

As per table 3, N=10 subjects participated in the study. The parameters considered were: Age (Min=23, 

Max=68, Mean 37.8, SD=15.53), Height (Min=158, Max=193, Mean=178.9, SD=9.86), Weight (Min=55, 

Max=107, Mean 77.6, SD=15.06), BMI (Min=18.94, Max=29.05, Mean 23.76, SD=3), EXPinVD (Min=1, 

Max=10, Mean 5.5, SD=2.80) and HMS (Min=1, Max=7, Mean 1.5, SD=2.12). Although gender parameter was 

recorded and reported in this study, it has not been taken into consideration in further data processing. For 

subjective score reporting male participants tend to score fewer extreme values, which results in lower variability 

of reported values. Gender may play a role when considering physical differences, as with females generally there 

is more fat tissue in the upper torso, which in vibration studies results in different transfer functions[59, 60]. This 

has been tested and is reported in section 4 of this paper, figure 10. No significant difference between female 

subject and the male subjects was found. Additionally, anthropometric parameters of body size were recorded for 

all test participants. The parameters included: standing height (mean=178.4, SD=9.35), sitting height (mean=106, 

SD=4.90), sitting shoulder height (mean=76.3, SD=7.40), buttock popliteal length (mean=52.3, SD=5.83), knee 

height (mean=51.8, SD=5.69), shoulder breadth (mean=45.3, SD=4.12), and hip breadth (mean=38.5, SD=5.55). 

 

 

 

4. Ride comfort analysis 
 

Subjective and objective comfort measures were analysed with respect to ISO 2631-1:1997 standard. The 

objective measures of weighted acceleration magnitude for each subject on each road section is illustrated in fig. 
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4. Calculated weighted acceleration for each of the road sections is shown in the figure 4. The perception 

thresholds which are included in the ISO2631:1997 are shown in table 5. 

Table 5 Likely reaction to vibration magnitude according to ISO 2631:1997 

Weighted acceleration magnitude aw [m/s2] Likely reaction when exposed to vibration 

<0.315 not uncomfortable 

0.315 – 0.630 a little uncomfortable 

0.50 – 1.00 fairly uncomfortable 

0.80 – 1.60 uncomfortable 

1.25 – 2.50 very uncomfortable 

>2.00 extremely uncomfortable  

 

In the gathered data set none of the sections exceeded a weighted magnitude acceleration of 1.1 m/s2. Based 

on the objective results it can be assumed that when compared the most comfortable section of road was located 

on the Circuit no. 1 of the HORIBA MIRA proving ground. When collated with the likely reactions to vibrations 

of certain magnitude used road sections can be put in order from the most comfortable one to the least comfortable 

one, which is shown on table 6. 

Table 6 

Comfort rating number Road Section 

1 – highest perceived comfort Circuit no. 1 

2 Circuit no. 2 

3 Ride & Handling Circuit 

4 Fenn Lanes 

5 – lowest perceived comfort Battlefield Road 

 

There is very little difference in the measured weighted acceleration magnitudes on the public sections of 

road. Both of these roads are characterised by high magnitudes of vibration at 0.8 m/s2, which is described in the 

standard as either fairly uncomfortable or uncomfortable. For further investigation of the vibration dose value 

(VDV) results was undertaken for both the seat pad and the seat rail locations. The results are presented in the 

figure 5. 

 

 

 

Fig. 4 Weighted acceleration magnitude for each participant on each road section a) measured at the seat pad b) measured 

Aw at the seat rail 
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By comparing the calculated results of the VDV for each of the participants on different road sections it is visible 

that the highest VDV was achieved when driving on the Fenn Lanes section of the public road. When compared 

with the results obtained by calculating the weighted acceleration magnitude it can be seen that the highest level 

of discomfort should be perceived on the Fenn Lanes section of the public road, followed by the Battlefield Road 

and the Ride and Handling Circuit. 

 

Fig. 5 Measured VDV for different test participants at seat pad and seat rail on different road sections. a) VDV at seat pad, b) 

VDV at seat rail 

When compared with the Power Spectral Density (fig. 3) calculated for each of the road sections it is visible 

that Fenn Lanes section of the public road has the higher power of the frequency component of the vibration 

signal between 2-4Hz, so in general it will produce more low frequency, high amplitude vibration. The 

Battlefield Road has higher power spectrum of vibration between 6-15Hz, which is referred to in technical 

terms, as secondary ride. Therefore, the final classification of road sections with respect to the perceived 

comfort, according to ISO2631:1997 guidelines, is shown in the table 7. 

Table 7 Section of road used for testing in order of measured comfort value corrected by using VDV calculations 

Comfort rating number Road Section 

1 – highest perceived comfort Circuit no. 1 

2 Circuit no. 2 

3 Ride & Handling Circuit 

4 Battlefield Road 

5 – lowest perceived comfort Fenn Lanes 

 

These findings were compared to the subjective results obtained through the questionnaire. The results of the 

subjective ride comfort evaluation can be seen in fig 6 to fig. 9. The results are divided into 4 different graphs 

(fig. 6 to 9) representing each question asked within the subjective questionnaire. 
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Fig. 6 Subjective comfort responses. Overall perceived comfort on the test road sections. 

 In fig. 6 the response to questions about the general comfort condition for each of the measured sections of 

the road is shown. The highest comfort, subjectively, was recorded on Circuit no. 1 (mean 7.7), and followed by 

Circuit no. 2 (mean 6.6), Battlefield Road (mean 5.7), Ride and Handling circuit (mean 5.4). The lowest scoring 

road section among trial participants was the Fenn Lanes section of the public road. The general comfort results, 

although showing some correlation with the objective data, do not provide any insight into the specific ride 

comfort components perceived on these road sections. Two parameters which are important in vehicle ride 

characterisation are primary ride and secondary ride.  

 

Fig. 7 Results of the subjective perceived amount of primary ride vibration 1-6Hz. 

These two attributes were described as the amount of vertical vehicle motion (primary ride), sudden vertical 

vehicle motion and the severity of small amplitude vehicle vibration for secondary ride and jerk/chop motion. 

These three parameters have been characterised by the trial participants and the results are shown on the fig 7, 8 

and 9. Circuit no. 1 section of the proving ground, according to the subjective evaluation, has the lowest score for 

primary ride motion (mean result 3.4). This motion can be described as low frequency, high amplitude motion. 

Such result was expected due to the surface of this proving ground section which is comparable to a motorway 

grade surface. The highest score was for the subjective evaluation of primary ride was recorded on the Fenn Lanes 

section (mean score of 6.3). 
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Fig. 8 Results of the subjective perceived amount of secondary ride vibration 6-15HzHz. 

The secondary ride results show very high variance in the responses of the subjects. The highest secondary 

ride mean results were recorded on Battlefield Road and Fenn Lanes sections of the public road and on the Ride 

and Handling circuit of the HORIBA MIRA proving ground. Additionally, to standard ride comfort questions, 

test participants were asked about the amount of whole-body motion in the vehicle and the amount of head motion 

due to the amount of vibration being transmitted to their head.  

 

Fig. 9 Secondary ride, perceived jerk and impact vibration.  

Mean values of these suggest that the vehicle has a stiff suspension setup tuned for good handling and good 

road holding. On all the graphs the minimum and the maximum values along with the two middle (25-75%) 

percentiles are shown. Variability of responses for the same road section among different test participants is 

visible. Using the mean values of the obtained data sets is not an ideal methodology due to high variance of the 

data and the differences between the subjects both in terms of their experience and bio mechanics of their bodies. 

To further investigate the inter-subject variability due to changing apparent mass when undergoing vibration 

excitations, the floor to thigh transmissibility (fig. 10) for each of the subjects on the Fenn Lanes road sections 

was calculated using the equation (5) [29, 46, 61], 

𝐻(𝑓) =  
𝐺𝑖𝑜(𝑓)

𝐺𝑖𝑖(𝑓)
(5) 
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Where the transmissibility is defined as the ration of the vibration on the seat surface to the vibration at the seat 

base (usually the floor of the vehicle – in the field trials the seat rail was used instead).  In the equation 5 the 

𝐺𝑖𝑜(𝑓) is the acceleration at the seat in the frequency domain and the 𝐺𝑖𝑖(𝑓) is the acceleration at the vehicle floor.  

 

Fig. 10 Apparent mass transmissibility for subjects involved in the study on Fenn Lanes road section. 

This road section was chosen due to highest inputs in low frequency region as per PSD graph shown in fig. 

3. In graph 6 it is visible that first resonance mode for the vibration acting on passengers inside of the vehicle 

platform is occurring between 4-5Hz and is the highest influencing factor of perceived comfort. It is also visible 

that for subjects of varying mass the transmissibility is different. In bold results for Subject 1 and 3 are shown.  

The discrepancy motivated more personalised approach to solving this correlation problem. Therefore, a 

machine learning approach was taken. The use of a neural network that can handle multiple inputs and multiple 

outputs can be used to greatly speed up the process of finding and analysing patterns in the data set. 

 

5. Ride comfort estimation model 
 

Collected and analysed ride comfort data was used to create ride comfort estimation model based on 

artificial neural networks. This model is described below. 

 

 

 

5.1. Artificial Neural Networks and ride comfort  
 

Some studies in the past have investigated the feasibility of Artificial Neural Networks for vehicle ride 

comfort estimation and prediction. One of the first studies, which investigated usability of Artificial Neural 

Networks for subjective response prediction was conducted by Kolich at University of Windsor in Canada. He 

looked at the possibility of using them as a correlation method for objective and subjective seating metrics [50], 

the developed model was then assessed and compared with a statistical study [62], which led to proposal of a 

formalised framework for standardised seat comfort tests [9]. In his work the main objective was to assess the 

seating comfort derived mainly from subjective responses and pressure mapping of the subjects interacting with 

the seat. Another example of use of Artificial Neural Networks for vehicle dynamics work includes control of 

active and adaptive suspension systems for improvement of vehicle ride comfort. Cases of such work have been 

presented by Eslaminasab [63] in her work on suspension fuzzy control approach using neural networks for heavy 



13 

 

vehicles. Other examples of using the artificial neural networks approach for ride comfort evaluation and 

prediction have been presented by Lerspalungsanti S. [64, 65]. He explored methodologies for subjective 

evaluation in electric vehicles using artificial neural networks as well as prediction model of ride comfort for 

drivetrain vibrations. Gao et al [66] in his study utilised ANNs to predict vehicle ride comfort based on the octave 

band vibration values recorded from a vehicle. In his methodology instead of recording the subjective responses 

he compared them directly with the chart from the ISO2631 standard, as presented in this paper in table 5, which 

does not provide any insight in what the actual subject responses of the people in the vehicle might be. Another 

example of using supervised learning for ride comfort estimation in a laboratory environment is a study conducted 

at Concave research centre in Canada by Taghavifar et al.[67], where the neural networks were used as a tool for 

apparent mass estimation and prediction tool. As ANNs can be used for discovering nonlinear correlations 

between parameters, Nybacka et al, used them to correlate objective metrics for steering with the obtained driver 

ratings [68]. The reviewed papers utilise neural networks for correlation of highly nonlinear parameters. 

Therefore, it has been decided that similar approach will be taken, and the developed model will utilise the 

advantages of using the neural networks. The development of a model used in this study is presented in the 

following subchapters.  

 

5.2. Neural network model for ride comfort 
 

Artificial Neural Networks have been developed as generalisations of mathematical models of biological 

nervous systems [69]. The basic elements of a neural network are artificial neurons which are also referred to as 

nodes. The connections between the neurons are represented by weights that modulate the input signals. The non-

linear characteristic of a set of neurons is usually represented by a transfer function [70]. The neuron impulse is 

calculated as a weighted sum of the inputs to the neuron, transformed by its transfer function. The learning 

capabilities of the neural network are achieved by adjusting the weights in accordance to chosen learning 

algorithm. The working principle of a neural network can be expressed mathematically as (6):  

 

𝑎(1) = 𝜎

(

 
 

[

𝑊0,0 ⋯ 𝑊0,𝑛

𝑊1,0 ⋯ 𝑊1,𝑛

⋮ ⋱ ⋮
𝑊𝑘,0 ⋯ 𝑊𝑘,𝑛

]

[
 
 
 
 𝑎0

(0)

𝑎1
(0)

⋮

𝑎𝑛
(0)

]
 
 
 
 

+

[
 
 
 
 𝑏0

(0)

𝑏0
(0)

⋮

𝑏𝑛
(0)

]
 
 
 
 

)

 
 

     (6) 

This can be shortened and expressed as (7): 

 

𝑎(1) = 𝜎(𝑊𝑎(0) + 𝑏)      (7) 

Where 𝜎 – is the logistic activation function, W represents the weights of the neural network and b the biases.  

The firing of the neuron is dependent on the state of the activation function. There can be different activation 

functions used in a neural network. The simplest activation function is the logistic activation function 𝜎(𝑥) (8) 

which has been used in this case study. 

𝜎(𝑥) =
𝐿

1+𝑒−𝑘(𝑥−𝑥0)     (8) 

Where L represents the curves maximum value, k steepness of the curve, x0 function’s midpoint and e is the 

Euler’s number.  
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Fig. 11 Schematic of a single neuron in a neural network 

Different training functions and algorithms were explored for this study. Back Propagation Artificial Neural 

Network was used utilising a Levenberg-Marquardt (LM) algorithm (9), (10) and a Scaled Conjugate Gradient 

(SCG) algorithm. The LM algorithm is a popular alternative to the Gauss-Newton method of finding the 

minimum of training function 𝐹(𝑥). 

𝐹(𝑥) =
1

2
∑ [𝑓𝑖(𝑥)]2𝑚

𝑖=1      (9) 

where F(x) is the mean squared error (MSE). Let the Jacobian of 𝑓𝑖(𝑥) be denoted as 𝐽𝑖(𝑥),  then the LM 

method searches in the direction given by the solution 𝑝 to the equation (9): 

(𝐽𝑘
𝑇𝐽𝑘 + 𝜆𝑘𝐼)𝑝𝑘 = −𝐽𝑘

𝑇𝑓𝑘     (10) 

Where 𝜆𝑘 are nonnegative scalars and I is the identity matrix [71]. 

The scaled conjugate gradient (SCG) algorithm is too complex to describe in detail in this paper. The full 

description and working principles of that algorithm has been presented by Møller [72]. The first of the 

mentioned above computational techniques, the LM method is one of the fastest available and it is highly 

recommended as a first-choice for training Artificial Neural Networks. The downside of using this method is the 

fact that it finds only a local minimum which does not necessarily happen to be a global minimum. The LM 

method is more robust than the SCG algorithm, and it tends to find the solution even when it starts far off from 

the error minimum. A SCG algorithm on the other hand performs an adjustment of weight along conjugate 

direction. This is motivated by the desire to accelerate the typically slow convergence associated with gradient 

descent. Two different methods for calculating the error were used in the study. The first one was a mean 

squared error (MSE) algorithm which can be expressed as (11): 

𝑀𝑆𝐸(Θ̂) = 𝐸 ((Θ̂ − Θ)
2
)     (11) 

Where Θ̂ is an estimator of the parameter Θ. The MSE can be written as sum of variance and the squared 

bias of the estimated (12): 

𝑀𝑆𝐸(Θ̂) = 𝐷2(Θ̂) + (𝑏(Θ̂))
2

     (12) 

Where 𝐷2 the variance of the estimator is Θ̂, 𝑏(Θ̂) is the bias of the estimator. 

The second method used for error calculation was the mean absolute error (MAE), which can be expressed 

as (13): 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|

𝑛
𝑖=1

𝑛
=

∑ |𝑒𝑖|
𝑛
𝑖=1

𝑛
     (13) 

Where 𝑦𝑖 and 𝑥𝑖 are the coordinates of the data on XY scatter plot, 𝑒𝑖 stands for absolute error. 

The most common architecture of a neural network consists of an input, a hidden layer (or multiple hidden 

layers) and outputs. Besides the architecture of the neural network, the process followed to update the neural 

network weighting factors is equally important. Learning in neural networks can be classified into three different 
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types: supervised learning, unsupervised learning and reinforced learning Abram et al. [73]. In the work described 

here the neural networks were trained using the first method. Supervised learning is an iterative process in which 

known inputs and outputs are provided by the external teacher. In the first iteration random weights are assigned 

to the neural network and an error between the neural network and the real output is formed. To find out which 

way the error created by the network is progressing it is necessary to calculate the partial derivative of the weights 

of the network. A positive or negative sign of the derivative of the weight tells us whether the error of the node is 

approaching its local minimum or is approaching the maximum. In the backpropagation algorithm calculation and 

an addition of the calculated derivatives to the weights progresses from the output layer, through the hidden layer 

to the input layer – in the backward movement. It has been proven that a backpropagation neural network with 

enough hidden layers is capable of approximation of any non-linear function. 

 

5.3. Ride comfort training data 
 

For the purposes of this study an evaluation of different road sections with different people was made. The 

data was prepared to be used in the neural network training process. The inputs in equation (14), (15) and outputs 

in equation (16) have been prepared to be used in the neural network training process. A greater number of inputs, 

than the described minimum in the ISO2631:1997, was used in the input matrix. This data also included the 

anthropometric measurements of the test participants. 

𝐼𝑖 = [𝑆𝐻 𝑆𝑖𝐻 𝑆𝑖𝑆𝐻 𝐵𝑃𝐿 𝐾𝐻 𝑆𝐵 𝐻𝐵 𝑊𝑒𝑖𝑔ℎ𝑡 𝐵𝑀𝐼 𝐴𝑤𝑥 𝐴𝑤𝑦 𝐴𝑤𝑧 (14) 

𝑀𝑇𝑉𝑉𝑥 𝑀𝑇𝑉𝑉𝑦 𝑀𝑇𝑉𝑉𝑧 𝑉𝐷𝑉𝑥 𝑉𝐷𝑉𝑦 𝑉𝐷𝑉𝑧]
𝑇
 

𝑖𝑛𝑝𝑢𝑡𝑠 =  [𝐼1𝐼2𝐼3𝐼4 ⋯𝐼50]     (15) 

𝑜𝑢𝑡𝑝𝑢𝑡𝑠 =  [𝑆𝐶𝑉1𝑆𝐶𝑉2𝑆𝐶𝑉3𝑆𝐶𝑉4 ⋯𝑆𝐶𝑉10]    (16) 

 

The output (15) consisted of the subjective evaluation results (SCV = Subjective Comfort Value) of test 

participants collected on each of the road sections. The dataset used in the neural network training consisted of 

data recorded from 10 subjects, where 3 repetitions of each data recording were taken. The data was logged on 5 

sections of road. The number of individual samples used for training equalled 150, where each sample contained 

19 parameters describing the ride comfort. Overall number of parameters in the dataset equalled 2850.  

 

5.4. Artificial Neural Network training for ride comfort 
 

The neural network was then trained using the data set. Neural network training was performed using 

MATLAB. As aforementioned, two different training algorithms were tested: LM (9) and SCG. Two 

methodologies for calculating the error function were tested the Mean Squared Error (MSE) (12) and Mean 

Absolute Error (MAE) (13). To optimize the hidden layer size, the size varied between 15 and 40 neurons with a 

step size of 1. This approach was implemented for each of the networks. Then systematically each network was 

trained 30 times. For each of the created networks R correlation value was recorded. It is well known that Artificial 

Neural Networks can converge into local minimum and not in the desired global minimum. To limit this behaviour 

two algorithms were implemented. Small perturbation in the weights was introduced and the network was then 

restarted and retrained. Such methodology is often referred to as noise injection. It is a known methodology to 

avoid overtraining of the artificial neural network, especially when the dataset is relatively small, as it is in this 

case. The noise injection has been implemented between the training cycles. Such approach allows the correlation 

function to escape from local minima. In the study two different types of perturbation were tested. The results are 

from each perturbation are labelled M1 and M2, results labelled M0 are from a neural network that did not have 

this feature implemented (fig. 12 to 14). 
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5.5. Results and sensitivity analysis 
 

The results shown from fig. 12 to fig. 14 show the best regression results from the different neural networks 

tested during the study. The best result was obtained using the LM algorithm and MSE method as the training 

function. The R value achieved for that network was 0.95, which means that there is a high correlation between 

results predicted by this particular network and the subjective ride comfort evaluations Fig. 12 shows the best 

regression outcomes without perturbation (M0) and for two different levels of perturbation (M1 and M2). The 

overall performance of those networks fluctuates around 0.9 regardless of the size of the hidden layer used. 

 

Fig. 12 Regression results for varying hidden layer size, SCG algorithm with MSE performance function 

Fig. 13 refers to network with the same backpropagation algorithm (SCG) but different performance function 

(MAE). The graph shows that overall performance of the resultant network is worse than the one presented in 

fig. 8a. The perturbation algorithm improved the results for a higher number of neurons (33-40). 

 

Fig. 13 Regression results for varying hidden layer size, SCG algorithm with MAE performance function 

 

Fig. 14 refers to network based on LM backpropagation algorithm. This type of network showed the best 

overall performance. Implementation of perturbation in the weights improved the networks performance with 

hidden layer size ranging from 24 to 30 and from 35 to 40. 
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Fig. 14 Regression results for varying hidden layer size, LM algorithm with MSE performance function 

 

In all cases, as observed, the perturbation algorithm achieved similar results with those achieved without 

perturbation but with a fewer number of neurons. 

For the best performing network, a sensitivity analysis was performed (fig. 15). The analysis shows that the 

resulting network is most sensitive to changes in the values of sitting height and the vertical axis weighted 

acceleration. The network is least sensitive to changes in values of weight, vibration, maximum transient vibration 

and vibration dose values in the X and Y direction. These conclusions fit in with current methodologies where 

emphasis is put on measurements in Z axis direction. Results measured in the Z axis direction are considered as 

highest influencing factor in ride comfort perception. 

 

Fig. 15 Results of sensitivity analysis 

Fig. 16 presents the error between the input and output data. The subjective evaluation was scored using the 

SAE J1060 standard [54], which is utilising 10 point comfort scale (fig. 2). This means that neural networks 

predicted value in some cases was off by 15-20%. Considering the fact that only 10-point scale is used, this is a 

considerable error. In the future it would be more recommended to use different subjective response measurement 

scale for example a variant of Borg100 which is a non-linear 100-point discomfort scale. Nevertheless, results 

obtained with SAEJ1060 are within acceptable limits for vibration evaluation in vehicles. 
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Fig. 16 Error between predicted output values and actual measured output values 

 

 

6. Conclusions and future work 
 

In this study, a ride comfort evaluation and estimation methodology are presented. Nowadays, the shift 

towards personalisation requires the re-evaluation of current work flows and methods used in the automotive 

industry. Field trials were conducted on five different road sections. Ride comfort was evaluated using 

acceleration measurements, ISO 2631, and subjective evaluations according to SAE J1060. Ten subjects (N=10) 

have participated in the study. Although the objective metrics were aligned, significant differences emerged in the 

subjective assessment. For the accurate prediction of subjective ride comfort evaluation, a neural network 

approach was employed. In this study feed-forwards networks were trained. To fully investigate the impact of 

different neural network parameters, performance functions and cost function a parametric study was desiged. 

Optimisation of the hidden layer size was performed. The hidden layer size ranged from 15 to 40 neurons. Two 

gradient descent-based algorithms (Levenberg-Marquardt and Scaled Conjugate Gradient) and two error 

calculation techniques (mean absolute error and mean squared error) were tested. Additionally, algorithms 

preventing overtraining, such as noise injection were introduced during training. Through used methodology an 

optimal neural network for objective and subjective parameter correlation was derived. The best performing 

artificial neural network comprised of 34 neurons in the hidden layer. In this network noise was injected to the 

weights of the network, to avoid overtraining due to small sample size. Training was accomplished using 

Levenberg-Marquardt backpropagation algorithm and the mean squared error performance function. This network 

achieved correlation of R=0.95. A reverse analysis was conducted using the optimised neural network. The 

analysis showed that the network is highly sensitive to changes in occupant height and weighted acceleration in 

Z axis direction - which coincides with previous work in ride comfort evaluation performed by other research 

teams.  

Authors of this study recognize that the model derived based on the available dataset is not ideal. Presented study 

does not explore the field fully and future work is necessary to improve the robustness and accuracy of ride 

comfort estimation and prediction models based on neural networks. Limitations of the presented model mainly 

come from limited number of parameters. This study was designed as a proof of concept. In the future additional 

data collection is required to obtained much larger dataset which could be using to robustly train artificial neural 

networks for ride comfort evaluation and estimation. In the future, once the appropriate size dataset is gathered, 

it will be desirable to explore different, more advanced types of neural networks to optimize the performance of 

such comfort estimator. With increasing level of connectivity in vehicles, as well as raising number of parameters 

controlled, in the near future it will be possible to obtain live vehicle and passenger data. With high volumes of 

vehicles, algorithms for fast and robust data processing will be required. Therefore, it is vital to rethink the 

processes used for ride comfort evaluation. Overall it is concluded, that it is feasible to implement the neural 
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network methodology into the existing work flow based on ISO 2631:1997 standard. It is noted that this field is 

relatively unexplored. The further exploration is needed, with a richer set of sensors, and wider participation of 

human subjects. 
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