
manuscript No.(will be inserted by the editor)

A Versatile Hardware/Software Platform for Personalized Driver
Assistance based on Online-Sequential Extreme Learning Machines

Inés del Campo · Victoria Martı́nez · Javier Echanobe · Estibalitz Asua ·
Raúl Finker · Koldo Basterretxea

Received: date / Accepted: date

Abstract In the present scenario of technological
breakthroughs in the automotive industry, machine learning
is greatly contributing to the development of safer and
more comfortable vehicles. In particular, personalization
of the driving experience using machine learning is an
innovative trend that comprises the development of both
customized driver assistance systems (DAS) and in-cabin
comfort features. In this work, a versatile hardware/software
platform for personalized driver assistance, using online
sequential extreme learning machines (OS-ELM), is
presented. The system, based on a programmable system-
on-chip (SoC), is able to recognize the driver and
personalize the behavior of the car. The platform provides
high speed, small size, efficient power consumption, and
true capability for real-time adaptation (i.e. on-chip self-
learning). In addition, due to the plasticity and scalability
of the OS-ELM algorithm and the programmable nature of
the SoC, this solution is flexible enough to cope with the
incremental changes that the new generation of vehicles
are demanding. The implementation details of a system,
suitable for current levels of driving automation, are
provided.

I. del Campo
E-mail: ines.delcampo@ehu.eus

I. del Campo, V. Martı́nez, J. Echanobe, E. Asua, and R.Finker
Department of Electricity and Electronics, Faculty of Sciences and
Technology, University of the Basque Country (UPV/EHU), 48940
Leioa, Spain

Present address: of R. Finker
CELESTIA S.L.U., c/ Albert Einstein 14, 39011 Santander, Spain

K. Basterretxea
Department of Electronics Technology, EUITI, University of the
Basque Country (UPV/EHU), 48013 Bilbao, Spain

Keywords Driver Assistance Systems (DAS) · Extreme
Learning Machine · Online learning · Multiobjective
Optimization · Field Programmable Gate Arrays (FPGA) ·
System-on-chip (SoC)

1 Introduction

New cars are equipped with a wide variety of sensors,
actuators, and electronic control units (ECU), all of them
interacting in the background with the aim of improving
the experience of driving and travelling by car. The major
challenge that automotive industry has to face over the next
few years is concerned with the continuous improvement of
driver assistance systems (DAS), until reliable self-driving
systems for all traffic situations and driving modes become
available [1]. In addition, as the driver input in performing
the driving task decreases, vehicles are turning into safe
spaces where people will spend part of their time. Therefore,
enhancing the comfort and well-being of people traveling in
them is also an ongoing challenge [2].

In the above scenario, personalization of vehicles is
recognized as an important research focus [1,2]. Adapting
vehicles to the users preferences and requirements will
contribute to improve safety, security and comfort of drivers
and passengers. A key task in vehicle personalization is the
identification of the driver. Different driver identification
techniques have been successfully tested in cars, ranging
from simple personal keys or smartphones, to biometric
features such as face scan [3], voice processing [4], or
less intrusive features such as the sitting posture [5] or a
set of driving behavior signals [6,7,8,9,10,11]. Recently,
a driver identification methodology using historical trip-
based data collected through an user-identified device (e.g.
smartphone), to serve as complement to existing in-vehicle
data recorder technologies, is proposed [12]. However, only

del Campo, I., Martínez, V., Echanobe, J. et al. A versatile hardware/software platform for personalized driver assistance based on online sequential extreme
learning machines. Neural Comput & Applic 31, 8871–8886 (2019)This version of the article has been accepted for publication, after peer review (when
applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or
any corrections. The Version of Record is available online at https://doi.org/10.1007/s00521-019-04386-4

2 Inés del Campo et al.

simple methods, easily hacked, are currently available in
commercial vehicles.

Concerning the driving task, the aim of a personalized
DAS is to mimic the natural behaviour of a driver in
manually driving a vehicle. As a result, the response of DAS
is more transparent and intuitive for the user, improving
both perceived and actual driving safety and comfort [13].
Recently, several experiments performed with personalized
adaptive cruise control (ACC) and automatic lane change
systems concluded that personalized solutions enhance
driver acceptance and trust in automated functionalities
[14,15]. Besides, concerning personalization of in-cabin
comfort, a variety of electronically configurable features are
being developed to suit users preferences and needs: air
conditioning, lightening, seats position, mirrors and steering
wheel position, or infotainment settings, among others.
Currently the driver can adjust these features using control
buttons, a touch-screen or voice commands, depending on
vehicle equipment, while a number of commercial cars
incorporate memory functions for memorizing individual
settings of a driver, or a reduced group of drivers. The
desired car configuration can be retrieved at any time on
driver request, or automatically if the car is equipped with
a driver identification system [16,17].

Machine learning techniques have proven useful in
modelling many of the above-mentioned features. A
number of techniques, mainly artificial neural networks
(ANN), based on both shallow and deep architectures,
are increasingly present in the automotive sector [18,19].
However, most applications based on these techniques can
only be dealt with using offline learning, meanwhile in-
vehicle self-learning technology (i.e. autonomous online
learning) is still in its infancy. In this sense, a high-
speed machine learning method, known as extreme learning
machine (ELM), has emerged as a suitable solution for
online learning in cutting edge applications [20,21,22]. The
most remarkable features of the ELM learning algorithm
are: i) it is based on a simple tuning-free algorithm, ii)
learning with ELM does not present local minima or over-
fitting problems, iii) and its learning speed is very high.
In addition, the online sequential implementation of ELM
(OS-ELM) is able to deal with the training data as they
are read (i.e. in real-time) [23]. As a consequence, ELM is
less dependent on designer intervention than conventional
machine learning techniques, such as back-propagation
(BP) ANN, or support vector machines (SVM). All these
characteristics make ELM suitable for the development of
autonomous single-chip DAS and in-car integration.

Currently there is a rapid expansion of commercial
system-on-chip (SoC) offered for implementing DAS [24].
Several companies offer hardware platforms consisting
of a mixture of general purpose processors, digital
signal processors (DSP), application-specific hardware

accelerators, memory blocks, and a set of peripherals [25,
26,27,28]. These kinds of approaches achieve very high
performance and integration, but at the expense of an
underutilization of resources and processing power in the
deployment of particular DAS applications. To deal with this
problem, field programmable gate array (FPGA) technology
provides the means to achieve a trade-off solution to the
implementation of DAS [29]. These platforms are able to
conciliate the need for application-specific energy-efficient
processors and the need for more on-chip system integration
to achieve higher levels of efficiency and reliability at a
lower cost. Moreover, the suitability of FPGAs for the
development of fault-tolerant ANNs is demonstrated in [30,
31]. Fault tolerance of embedded electronic systems is
becoming increasingly important in the automotive sector
where safety-critical applications are involved.

In this work, a versatile hardware/software (HW/SW)
platform for personalized driver assistance using a
programmable SoC is presented. The proposed architecture
integrates general purpose microprocessors (SW partition)
plus a configurable and scalable set of specialized cores
based on an ELM paradigm to efficiently run data
processing at high speed (HW partition). The SW partition
performs system monitoring and control, input/output (I/O)
processing, and machine self-learning, while the set of OS-
ELM cores implemented in the HW partition is in charge of
the personal assistance of the driver in real-time.

In sum, the personalization of the whole driving
experience using a versatile platform with self-learning
capability can be highlighted as an innovative contribution
of the proposal. In addition, due to the plasticity of the
ELM paradigm, able to deal with both classification and
regression problems, a diversity of in-vehicle applications
can be developed and implemented in the platform.
Regarding the efficiency of the platform, implementing
exclusively the required cores, tailored for each DAS
application, and integrating only the required peripherals
avoids resource underutilization and unnecessary power
consumption. Finally, the platform is flexible enough to cope
with the incremental changes that the new generation of
vehicles is demanding. It is able to evolve and to adapt
to the requirements of each level of automation, without
introducing significant architectural changes, reducing thus
costs and time-to-market, while enhancing vehicle safety
and reliability.

The rest of the paper is organized as follows. First, in
Section 2, the basics of OS-ELM are reviewed. In addition,
to deal with the trade-off complexity/performance of ELM,
a multi-objective optimization method is introduced and
the whole proposed methodology is summarized. Section 3
describes the programmable SoC-based architecture
and provides resource usage and achievable operation
frequencies. In Section 4 three kinds of personalized

Personalized Driver Assistance based on Online-Sequential Extreme Learning Machines 3

applications are implemented using the platform: a security
feature for anti-theft impostor detection, a safety application
for ACC driving assistance, and an air recirculation feature
as an in-cabin comfort application.

2 Optimized Extreme Learning Machine

ELM consists of a single-hidden layer feed-forward network
(SLFN) endowed with a very efficient learning algorithm
that reduces human interaction. In particular, the online
sequential ELM (OS-ELM) is able to handle data one-by-
one or on a chunk-(block of data)-by-chunk scheme, making
it suitable for training dynamic systems that are receiving
data in real-time. The advantages of ELM-like algorithms
arise from the fact that the parameters of the hidden nodes
are randomly generated and do not need to be iteratively
tuned. As a consequence, the learning procedure of ELM is
simpler and less time-consuming than conventional learning
algorithms such as BP-ANN. This distinctive characteristic
of ELM is especially important when on-chip adaptation is
required. However, on the other hand, several experiments
performed with real-world applications showed that an
adequate selection of the number of hidden nodes is critical
to achieve good generalization ability [32]. To avoid this
drawback, a multi-objective optimization technique will be
proposed with the aim of optimizing the neural network
topology of medium/large-size applications.

2.1 Extreme Learning Machine

First, the basics of ELM are briefly reviewed with the aim
of highlighting the advantages of this machine learning
technique and providing the required background [21].
Figure 1 depicts the topology of a SLFN with n inputs, m
outputs, and L nodes in the hidden layer. The network output
for generalized batch ELM with additive nodes is

y(x) =
L

∑
i=1

βihi(x) = h(x)β, (1)

without loss of generalization, a single output node (m=

1) is taken in (1). The vector of weights β = [β1, · · · ,βL]

links the hidden nodes (i.e. random nodes) with the output
node, and h(x) = [h1(x), · · · ,hL(x)] is the output vector of
the hidden layer for a given input x ∈ Rn. The output of the
ith hidden node is

hi(x) = S(ai,bi,x) = s(aix+bi),ai,x ∈ Rn,bi ∈ R, (2)

with s(aix+bi) being the sigmoid activation function, ai
the random weight vector connecting the inputs with the ith
hidden node, and bi the random bias of the ith hidden node.

1 1a x b+

a xi ib+

a xL Lb+

1

j

n

x

x

x

⋮

⋮

1

m

y

y

⋮⋮

⋮

Hidden Layer
Output
Layer

Input
Layer

Fig. 1 Topology of a single-layer feed-forward network (SLFN) used
by ELM. The weights and biases of the hidden layer are random
numbers, while the parameters of the output layer are analytically
determined.

2.1.1 Batch Learning with ELM

The set of parameters of the hidden nodes (ai,bi), 1≤ i≤ L,
are randomly generated and they are not tuned. This is
important in an embedded solution because a set of random
numbers can be generated out of the chip and further stored
in a read-only memory (ROM).

Learning in batch ELM aims at computing the vector
of output weights, β in Eq. (1), for each output node.
Given a set of K training samples, (x j, t j), with 1 ≤ j ≤ K,
where x j ∈ Rn is the jth input vector, and t ∈ Rm is the
corresponding output vector (i.e. the target output), learning
is performed by solving Eq. (1) for the set of training
samples

T = H(x)B, (3)

with H being the hidden layer output matrix

H =

h(x1)
...

h(xK)

=

h1(x1) · · · hL(x1)
...

...
...

h1(xK) · · · hL(xK)


K×L

(4)

B =
[
β1 . . . βm

]
L×m , and T =

t1
...

tK


K×m

(5)

Then, Eq. (3) is a linear system and the output weights
B can be estimated as

4 Inés del Campo et al.

B̂ = H†T, (6)

where H† is the Moore Penrose generalized inverse of
matrix H. Different methods can be used to solve Eq. (6),
with the singular value decomposition (SVD) method being
the most used with ELM [33].

2.1.2 Learning with OS-ELM

The above batch ELM algorithm assumes that the whole
set of training samples is available to train the system. This
method is useful when historical data are provided and the
system dynamics does not change over time. However, in
most real-time applications, the training samples are read
one-by-one or chunk-by-chunk, and changes in the system
over time are expected, mainly when human behavior is
involved (e.g. driver behavior). The batch ELM algorithm
can be modified to allow online sequential training [23].
When the rank of matrix H equals the number of hidden
nodes, rank(H) = L, then H† in Eq. (6) can be computed by
means of the left pseudoinverse of H

H† = (HT H)−1HT , (7)

Substituting Eq. (7) into Eq. (6), an alternative solution
of Eq. (3), known as least-squares solution, is obtained

B̂ = (HT H)−1HT T, (8)

The online sequential implementation of Eq. (8) is the
basis of OS-ELM. It is worth noting that OS-ELM and ELM
are able to achieve the same learning performance whenever
the initialization training set (i.e. the initial number of
observations) verifies that rank(H0) = L. This means that
the number of samples in the first chunk K0 should be equal
or greater than the number of hidden nodes L.

Learning with OS-ELM involves two main steps: the
initialization phase, and the sequential learning phase. In the
initialization phase the number of hidden nodes L is defined
and the first chunk of data C0 =

{
(x j, t j)

}K0
j=1 is used to

train the network, where K0 ≥ L. Then, the matrix of output
weights that minimizes

∥∥H0B−T0
∥∥ can be computed by

means of Eq. (8)

B(0) = (HT
0 H0)

−1HT
0 T0, (9)

After that, the process enters into the sequential
learning phase. Each time a new chunk Ck+1 ={
(x j, t j)

}K0+K1+...+Kk+Kk+1
j=K0+K1+...+Kk+1 of Kk+1 data is read, the

new set of output weights B(k+1) is computed as a function

of the previous weights B(k), and the pair of partial matrices
Hk+1 and Tk+1. It is worth mentioning that only the samples
belonging to the new chunk of data are used to obtain Hk+1
and Tk+1, while the initial chunk of data can be forgotten
[23],

B(k+1) = B(k)+(HT
k Hk +HT

k+1Hk+1)
−1

HT
k+1(Tk+1−Hk+1Bk).

(10)

2.2 Multi-objective optimization of ELM topology

There is a trade-off between the complexity of the system
(i.e. the size of the SLFN depicted in Fig. 1) and the system
performance when a hardware implementation is developed.
To deal with this problem, a multi-objective optimization
strategy, based on a genetic algorithm, is proposed.

Let f(z) be a p-dimensional vector of functions to
be minimized, f(z) = (f1(z), f2(z), . . . , fp(z)) , the goal
in a multi-objective optimization problem (MOP) is to
find values of z that simultaneously minimizes the p
functions fi(z), i = 1, . . . , p. However, if any of the functions
compete with each other (e.g. ELM performance and size
of the SLFN), there is no unique solution to the problem.
Instead, the optimization process provides a set of trade-
off solutions, called Pareto-optimal, in which at each point
an improvement in one objective requires a degradation of
another [34]. The final decision rests on the designer who
has to select the most suitable solution on the basis of his or
her experience and the system requirements.

Consider the optimization problem of an ELM system.
The MOP can be stated as a 3-dimensional vector of
functions to be minimized f(z) = (f1(z), f2(z), f3(z)), with
the first and the second function being concerned with
the system complexity and the third with the system
performance:

f(z) =


f1(z) = ∑

f
j=1 z j: input features (n)

f2(z) = z f+1: hidden neurons (L)
f3(z) = testing error of the SLFN,

(11)

with z ∈ Z being a decision variable composed of f
binary values and a single natural value: Z = {0,1} f ⋃N.
The binary values are related with the available variables or
features in such a way that the jth feature is selected (i.e.
it becomes an input to the neural network) if z j = 1, and is
rejected if z j = 0. The optimization algorithm searches in the
(f +1)-dimensional space the values of z ∈ Z that minimize
f(z).

While the search is being performed, the algorithm
must evaluate the candidate solutions, where each evaluation
involves training ELM with the selected features and
hidden nodes, and testing the corresponding performance.

Personalized Driver Assistance based on Online-Sequential Extreme Learning Machines 5

Therefore, a systematic combinatorial search would be
in practice unfeasible, even for a fast algorithm such as
ELM, due to the large amount of possible solutions. To
tackle this problem, a multi-objective optimization genetic
algorithm (MOGA) is applied. In particular, the well-
known NSGA-II (non-dominate sorting genetic algorithm
II) will be used [35]. The individuals of the population
(i.e. chromosomes) to be evolved by the genetic algorithm
are different SLFN topologies in the space of solutions Z.
This kind of algorithm provides a set of Pareto-optimal
solutions in a reasonable time. The MOGA is intended for
off-line selection of suitable SLFN topologies, therefore,
its implementation is not critical neither in time nor in
resources (i.e. a personal computer can be used to run the
algorithm).

2.3 Methodology Summary and Design Parameters

The most relevant aspect of the proposed methodology is
the suitability of ELM and OS-ELM for the development of
personalized DAS. This assertion relies on two distinctive
characteristics of ELM-based solutions: autonomy (i.e.
low human intervention is required) and real-time training
capability. These features are difficult to achieve with
conventional machine learning techniques, such as BP-
ANNs or SVM solutions, mainly because of the strong
dependency of these paradigms on their design parameters.
Figure 2 summarizes the main steps involved in the design
and on-line operation of an OS-ELM application: the SLFN
topology design, the on-line sequential learning steps, and
the system processing in real-time.

First, during the off-line design step, the estimation of
the design parameters is performed according to Eq. (11).
The pareto-optimal solutions used are aimed at selecting
a suitable number of features (n) and hidden neurons (L),
while the number of outputs (m) is determined by the
application itself. These parameters describe the topology of
the neural network, namely n-L-m SLFN. In addition, during
the off-line step, a set of random numbers are pre-computed
and stored in a ROM memory with the aim of using them
as random weights and bias. The off-line design step can
also cover a batch ELM learning procedure, not shown in
Fig. 2, whenever the training samples are available. Batch
ELM models can be used as initial models for further real-
time evolution of the output weights using new chunks of
data.

The online-step is intended for OS-ELM training using
chunks of data as they are read. The size of the chunks (K)
depends on the availability of observations and the timing
requirements of each application. During the initialization
phase, the output weights are computed using the first chunk
of data. Then, the sequential learning phase is activated: a
new chunk of data is read and the new set of output weights

Off-line selection of the SLFN
topology: n-L-m using Eq. (11)

Start On-line
operation

Estimate the initial output
weights (0)Β

Random
weights
and bias

Read a new chunk of
training data

No

New chunk of
training data?

Real-time I/O processing
and application monitoring

Yes

To/from
OS-ELM

cores
In the HW
partition

Calculate the initial hidden-
layer output matrix 0H

Read the first chunk of
training data

Calculate the output
weights (1)Β +k in Eq. (10)

Calculate the partial hidden-
layer output matrix 1H +k

{ } 0

0

1
(,)x t

=

=
K

j j j

C

{ } 0 1

0

1
...

... 1
(,)x t +

+

+ +

= + + +

=
k

k

k
K K

j j j K K

C

SW
partition

Fig. 2 Flow chart with the steps involved in the topology design (off-
line step) and the real-time system training and operation (on-line step).

is computed. The OS-ELM training procedure finishes when
all the chunks of data have been processed. The training
procedure can be activated again, with the aim of updating
the learning machine performance at any time. The set
of output weights are then transferred to the OS-ELM
core in the hardware partition where they are stored in
a RAM memory. Finally, the real-time processing of I/O
samples can be activated. The details of the OS-ELM core
implementation, as well as the whole system architecture,
are given in the following section.

3 SOC Architecture for the Personalized Platform

Figure 3 depicts a block diagram of the HW/SW platform
for personalized driver assistance developed in this work.
The architecture of the system is intended for a current

6 Inés del Campo et al.

Fig. 3 Block diagram of the HW/SW platform for individualized driver assistance intended for a programmable SoC implementation. Two types
of configurable OS-ELM cores are availble: regression and classification cores. The regression cores implement a SLFN; the classification core is
an SLFN followed by a maximum module (∨) that activates the identified class. The driver identification module is a particular application of the
second type.

programmable SoC of the Zynq device family [36,37]. The
internal architecture of this programmable SoC comprises
two main parts: a Processing System (PS) that holds the
SW partition, and Programmable Logic (PL) where the
HW partition is implemented. The PS is built around a
dual-core ARM Cortex-A9 hard-processor which is the
kernel of the application processor unit (APU). The APU
also contains a pair of floating point units (FPU), memory
management units (MMU), cache memories, and on-chip
memory. The PL part is a piece of FPGA comprising typical
reconfigurable resources (i.e. logic blocks, interconnections,
and I/O blocks), as well as special resources such as high
performance configurable DSP cores and Random Access
Memory (RAM) blocks. Similar programmable SoCs are
offered by other programmable logic manufacturers [38].

The suitability of HW/SW technologies to implement
the OS-ELM driver assistance system is concerned with
the distinctive characteristics of the main algorithms that
it comprises: the SLFN and the learning algorithm. The
former involves very regular and repetitive computations
(see Fig. 1), while the latter is an inherently irregular
algorithm. It is well known that to obtain efficient HW/SW
architectures, the regular and recurrent computations should

be implemented in the HW partition, while the irregular
or less frequent computations are better suited to the SW
partition [39]. In consequence, a well-chosen HW/SW
partition consists in implementing the SLFN as hardware
on the PL, while the learning algorithm is developed
as software on the PS. In addition, the PS supports the
whole system monitoring and control, as well as the
native applications such as peripheral management. The
proposed HW/SW partition provides high-speed for real-
time operation and exploits the resources of both the
FPGA and the ARM processors. More precisely, the FPGA
resources allow the development of high-performance
parallel OS-ELM cores for personalized driver assistance,
and the high numerical precision of the ARM processors
ensures the proper behavior of the corresponding learning
algorithms.

The PS/PL communication is performed by means
of standard Advanced eXtensible Interfaces (AXI)
connections. The system receives information from the
measurement units installed in the car, from the user
interface, and eventually from the environment (i.e.
infrastructures). This information would be continuously
monitored, while different kinds of signals, mainly

Personalized Driver Assistance based on Online-Sequential Extreme Learning Machines 7

personalized settings and control signals, are generated
by the OS-ELM cores attached to the PS. A detailed
implementation example is presented in Section 4.

3.1 The Processing System: Software Partition

The SW partition, built on the dual-core ARM processor,
is in charge of real-time system monitoring and control
including: management of I/O interfaces, management of
OS-ELM co-processors, and computation of high-level
input features (i.e. arithmetic operations performed on
the raw input signals such as: simple scaling functions,
statistical functions or spectral components, among others).
However, the most computationally demanding task
developed in the SW partition is the OS-ELM learning
algorithm. Both training modes are available: batch training
using previously acquired data according to Eqs. (1)-(6),
and online training using chunks of real-time data by means
of Eqs. (9)-(10). Whenever a new driver is accepted into
the authorized-driver group, the PS trains (or retrains)
the driver identification module as well as the whole set
of personal applications for that driver. Then, the ARM
processor (master) initiates the transference of parameters,
weights and biases, to the PL (HW partition) where they
are stored in the RAM memory of the corresponding OS-
ELM core. The PS is able to meet the performance and
precision requirements of the ELM algorithm thanks to the
floating point units and the cache memories attached to the
ARM processor (see Fig. 3). The portability of the code,
developed using C programming language, has been taken
into account with the aim of facilitating the migration of the
developments to other platforms or operating systems.

3.2 Communication Interfaces

The communication between the PS and the PL is performed
by means of AXI interfaces. In particular, the AXI4-Lite
bus is used to communicate the PS with the OS-ELM co-
processors. This simple memory-mapped protocol is able
to transfer an address and a single-data word using the
PS/PL bridge (see Fig. 2). The communication between
the PS and the external interfaces is achieved by means of
the I/O multiplexer (MUX). The mapping between external
peripherals and the device pins can be defined as required
in order to implement standard communication interfaces
and general purpose I/O (GPIO). The platform architecture
depicted in Fig. 3 shows a subset of available standard
peripherals such as the UART (Universal Asynchronous
Receiver Transmitter) for low-rate serial communication,
the I2C (Inter-IC) bus accepted by most IC manufacturers,
and a typical automotive I/O interface: the CAN (Controller
Area Network) bus.

3.3 Programmable Logic: the Hardware Partition

The configurable HW partition comprises a configurable
number of parallel ELM co-processors connected with
the PS by means of AXI-Lite interfaces. Each co-
processor is able to perform the computation of the
OS-ELM neural network much faster than a software
embedded solution. To fulfil this objective, two main
aspects have been exploited. First, the parallel and regular
nature of neural networks allows the implementation
of highly parallel architectures. Second, the availability
of resources for efficient signal processing in current
programmable SoC device families, such as the DSP cores,
greatly eases the development of high-performance power-
efficient applications. An improved version of a preliminary
architecture, previously reported in [40], is optimized to
fit the computational requirements of actual applications in
the automotive sector. The co-processor cores have been
conceived as Intellectual Property (IP) modules. They are
VHDL modules that can be sized in several dimensions by
means of GENERIC parameters (i.e. word-length, number
of inputs, number of outputs, and number of neurons in
the hidden layer). Recently several authors have proposed
special purpose IP-cores for ELM with the aim of extending
the range of application of this paradigm [41,42,43].

3.3.1 Hidden neurons and output neurons

The architecture of the SLFN is composed of two kinds of
neurons: hidden neurons (i.e. random neurons) and output
neurons. Both of them have been efficiently implemented
using DSP cores [44]. These hard cores are able to perform
sums of products faster than their logic-based counterparts.
Fig. 4(a) depicts the block scheme of a hidden neuron (see
Eq. (2)), where the random weights are generated out of
the chip and further stored in a ROM. The accumulator is
initialized with a random bias, and then, a burst of n products
(i.e. input data and random weights) are sequentially added.
The pipelined sum of products is performed in (n + 1)
clock cycles. Then, the content of the accumulator is passed
through the activation function (a sigmoid function) which is
implemented using a ROM block. The output of the hidden
neuron is used to address the ROM, where the value of
the activation function is read in a single clock cycle. The
sigmoid function is costly to implement in digital hardware
because it requires the calculation of an exponentiation and a
division. To avoid this problem, a number of approximation
techniques have been proposed over the years [45]. The most
commonly used in FPGA-based hardware implementations
is the LUT method. It consists in using LUTs to implement a
ROM memory where the values of the sigmoid function are
stored. The memory size and word-length should be selected
in order to guarantee the required accuracy, but without

8 Inés del Campo et al.

Fig. 4 DSP-based neuron implementation: (a) Neuron of the hidden
layer (random neuron), and (b) neuron of the output layer. Both hidden
and output neurons are implemented by means of DSP hard cores.

exceeding the availability of LUTs. In this way, fixed-point
simulations of the target application can be conducted with
the aim of selecting a suitable word-length.

Fig. 4(b) shows the schematic of an output neuron (see
Eq. (1)). As can be seen, it is similar to the hidden neuron,
but it uses a RAM (instead of a ROM) with the aim of
enabling OS-ELM adaptation; distributed RAM memories
are used to provide faster access to the data. Moreover, the
output neurons are slightly simpler than the hidden neurons
because they do not need a bias register and the sum of
products is directly driven to the output, without passing
through an activation function.

3.3.2 Layered structure of the SLFN

The hardware implementation of the OS-ELM co-processor
core is a direct synthesis of the layered architecture depicted
in Fig. 1. The suitability of the SLFN for parallel neuron
computation in each layer has been highly exploited with
the aim of reducing the core latency. The input layer
transfers the n inputs to the neurons in the hidden layer, one
input per clock cycle. Meanwhile the L hidden neurons are
concurrently computed in n+ 2 cycles, where the sigmoid
activation cycle is included. Afterwards the output neurons
are computed in parallel lasting L+1 cycles, independently
of the number of network outputs. In sum, the computation

of an SLFN with an n − L − m topology requires only
n + L + 3 clock cycles. A sequential software solution,
using a one cycle per instruction processor, like the ARM
hard-core, would require at least 2nL + 2mL + L clock
cycles to compute only the linear part of the SLFN (i.e.
sums and products). In practice, the number of cycles is
considerably greater, mainly because of the calculus of the
Sigmoid function and the resource management involved
in nested computations. It is clear that the acceleration of
the SLFN computation using the above hardware approach
is outstanding. Even more, since all instances of the OS-
ELM core are able to process data concurrently, the achieved
acceleration increases proportionately to the number of
cores, to the extent that input features are available.

3.4 Implementation of the configurable SoC architecture

The proposed architecture has been implemented using
the ZC702 development board which features a XC7Z020
CLG484-1 SoC of the Xilinx Zynq family. The device
embeds a dual-core ARM Cortex-A9 operating up to 866
MHz. It provides 53,200 look-up tables (LUTs); 106,400
flip-flops; 220 DSP slices (i.e. 18x25 multiply-accumulate
MAC- unit); and 140 RAM memory blocks of 36 Kbits each.
It is worth noting that this is a low-end device, the third of
seven available sizes, while the largest device of the family
is 10 times larger than this one and the performance of its
ARM dual-core goes up to 1GHz.

Several parallel ELM co-processors, with or without
online sequential learning capability, can be implemented
in the hardware partition of the programmable SoC
(PL) for the deployment of a wide variety of in-vehicle
applications, including classification problems, complex
function modelling, and low-level nonlinear control. The
driver identification module is a particular instantiation of
a classification-type OS-ELM core.

Table 1 summarizes the resources required to synthesize
different SLFN ELM topologies and the corresponding
maximum clock frequencies. These results were obtained
using a 10-bit twos complement fixed-point fractional
data format. With the aim of providing straightforward
comparative information, results corresponding to single-
output topologies are shown. The SLFN co-processors with
16 inputs and 64 hidden neurons use approximately 30% of
the resources available in the XC7Z020 programmable SoC,
while a larger co-processor based on the next power-of-two
topology (i.e. 32-128-1 SLFN ELM) would require slightly
more than 100% of available LUTs, 10% of flip-flops, and
60% DSPs. The latter topology, or even more complex ones,
could be implemented using larger SoCs of the same family.
Concerning timing considerations, all of the networks in
Table I can be computed in less than 0.5 microseconds.

Personalized Driver Assistance based on Online-Sequential Extreme Learning Machines 9

Table 1 Resource Usage and Maximum Operation Frequency of the
OS-ELM Co-Processor For Regression Using the XC7Z020 CLG484-
1 SOC

ELM
topologya

LUTs Flip-flops DSPs Maximum
frequency
(MHz)

2-8-1 2,403
(4%)

577
(<1%)

9 (4%) 186

4-16-1 5,128
(9%)

1,126
(1%)

17 (7%) 185

8-32-1 9,801
(18%)

2,320
(2%)

33 (15%) 183

16-64-1 18,539
(34%)

4,527
(4%)

65 (29%) 179

aWith the aim of providing straightforward comparative
information, results corresponding to single-output topologies
are shown.

The resource usage summary provided in Table 1
highlights the relevance of DSP slices for the development
of the proposed approach. The availability of DSP resources
is what really limits the number and complexity of the
parallel OS-ELM cores that can be implemented in the PL.
Given that both the hidden and the output neurons use a
single DSP slice (see Fig. 4), the implementation of each
OS-ELM core lasts L + m DSP slices, with L being the
number of hidden nodes and m being the number of outputs.
Let us now consider the largest device of the Zynq family,
the XCZ100, that features as many as 2020 DPSs. The whole
set of DSPs can either be assigned to the implementation of
a single OS-ELM core or they can be distributed with the
aim of implementing several heterogeneous instances of the
core. Although the scalability of the core is limited by the
availability of DSP resources, larger SLFN are not usually
required to implement driver identification and driver
assistance personalization. However, if a more complex
architecture were necessary, an MPSoC (multiprocessing
SoC) such as the Zynq UltraScale+ could be used [46].
These sophisticated devices increase the PL resources and
extend the processing capabilities of the PS to deal with
cutting-edge applications.

As can be seen in Fig. 4, the OS-ELM core embeds
different kinds of memories: sigmoid ROM, random
weights ROM and output weights RAM. All of these are
implemented using LUTs with the aim of favoring the
circuit speed (i.e. using distributed memory, instead of block
RAM, reduces propagation delays). Table 2 summarizes the
LUT resources used to implement each memory type. Both
ROM and RAM memories could also be implemented using
Block RAM. However, addressing this kind of memories
introduces additional propagation delays, thus reducing the
maximum operation frequency.

Both the HW partition and the SW partition are fully
scalable, that is to say, only minor changes have to be

Table 2 LUT Usage: Implementation of ROM and RAM Modules
Using the XC7Z020 CLG484-1 SOC

ELM
topology

Total
LUTs

Sigmoid
function
ROM

Random
weights
ROM

Output
weights
RAMa

LUTs
used as
logic

2-8-1 2,403 1,416 8 11 968
4-16-1 5,128 2,832 32 11 2,253
8-32-1 9,801 5,664 160 11 3,966
16-64-1 18,539 11,328 384 11 6,816
aThe Zynq device family features 6-input LUTs. In
consequence, up to 64 memory words can be stored using a
single LUT per bit (i.e. the RAM word-length is 11 bits).

made to adapt the design to a variety of applications for
regression and/or classification problems. The configurable
co-processor core has been developed with the aid of the
Xilinx ISE Design Suite. The software partition and the
whole system integration have been made by means of the
Xilinx SDK and Vivado Design Suite [47].

4 Application

In this section, a particular set of driver assistance
features, suitable for current levels of driving automation,
is presented. The multipurpose personalized applications
were developed using the architecture and resources
depicted in Fig. 3. A driver identification strategy based
on driving behavior signals has been selected because
of the non-intrusive nature of these signals and the low
cost of additional equipment. As will be seen, the driver
identification module is able to model individual differences
in the driving style of a group of drivers and identify
the driver in real-time. The versatility of the developed
platform and the plasticity of the OS-ELM cores to model
different kinds of in-vehicle applications are evidenced by
this case application. Three kinds of personalized driver
assistance features are implemented: a security feature for
anti-theft impostor detection, a safety application for ACC
driving assistance, and an air recirculation application as a
comfort application. First, the Uyanik data collection, used
to develop the proposed application, is introduced.

4.1 Data collection

The data set was collected in Istanbul using the Uyanik
instrumented car. It is a sedan car equipped with different
sensors and measurement units [7,48]. The car route is
around 25 km (about 40 minutes), and includes different
kinds of roads and traffic sections: city, very busy city,
highway, highway with less traffic, and a university campus.
A subset of the recording sessions consisting of 11 drivers
was chosen; recordings with missing values or incomplete

10 Inés del Campo et al.

information were discarded. The complete data set includes
audio and video recordings, CAN-bus signals, pedal-
sensor recordings, a frontal laser scanner, and an inertial
measurement unit (IMU). However, in this application
neither video nor audio signals were considered because
of their intrusive nature: some drivers consider that these
types of signals invade their privacy. All signals are handled
jointly, which requires a resampling of the datastreams to the
highest frequency of 32 Hz to homogenize the time series of
available signals (see Table 3).

4.2 Driver identification module

The driver identification module (see Fig. 3), or more
precisely its implementation using OS-ELM, is the key
element that endows the HW/SW platform with the ability
to provide personalized assistance to the driver. The most
relevant design steps of this module are presented, and
obtained experimental results are shown.

4.2.1 Design and multi-objective optimization of the system

A set of high level features, which have been successfully
used for modeling driving behavior, has been considered
as potential input features [7]. Table 3 summarizes the
set of low level variables (i.e. time series), and 42 high
level features: mean value (time domain), energy (frequency
domain), and Cepstral coefficients (Quefrency domain). The
features are computed over 128-second windows (i.e. 4096
samples) with 1-second shift (i.e. 32 sample shift). That
is to say, with an overlapping of 127 seconds between
consecutive windows. Reducing the number of features (i.e.
the dimensionality of the problem) is important in machine
learning, mainly when the machine core is to be embedded
in a single chip. Both computation time and storage
resources can be drastically reduced with an adequate
selection of the subset of useful signals and variables.
The multi-objective optimization algorithm introduced in
Section 2 was used with the aim of achieving an optimal
feature selection (see Fig. 2, first step: topology design).

Figure 5 shows a Pareto front obtained using the 3-
dimensional vector of functions in Eq. (11). It can be seen
that the points of the front are always close to the minimum
value of at least one of the 3 objectives (i.e. number of
inputs, number of hidden neurons, and testing error) in
an attempt to minimize the objective functions. The front
maintains a high diversity of solutions, containing points in
a wide range of values. For example, point A=(3, 2, 79.6%),
in one end of the front, provides a very low number of inputs
and a low number of hidden neurons. However, the error
rate is as high as 79.6%. At the other end of the front, point
B=(11, 63, 7.8%) has a low error rate, 7.8%, but the ELM

neural network needs as much as 11 input features and 63
hidden neurons.

Finally, point C=(8, 31, 11.7%) is a suitable trade-
off solution: a simple topology with 8 inputs and 31
hidden neurons is able to provide 88.3% of recognition
performance. Bearing in mind that a digital hardware
approach is to be developed, a convenient decision would
be to select power-of-two topologies that favor resource
efficient implementations. Therefore, an SLFN with 8 inputs
(boldface numbers in Table 3) and 32 hidden neurons,
instead of 31, has been selected to implement the driver
identification OS-ELM. As can be seen, gas pedal pressure
(features 7, 21 and 35) and brake pedal pressure (features
20 and 34) are the most informative driving behavior signals
for developing the identification module.

4.2.2 Experimental results: real-time driver identification

The optimized driver identification system has been
extensively tested using the selected features and the Uyanik
data set. The whole set of 11 drivers, as well as within
subgroups of m=2, 3, 4, and 5 drivers, has been evaluated
with the aim of recreating real-life situations. In this
evaluation, two thirds of the data were intended to train the
system, and the remaining one third was saved for testing.
The average driver identification rates take into account all
possible subgroups of drivers, in each category, using the
subset of 8 selected features (see Table 3).

The mean identification rate for the 11-driver set is
84.4%; within groups of 5 drivers the system achieves
identification rates of 91.3%; within groups of 4 drivers
the rate is 93.0%; the prediction for groups of 3 drivers
is 94.9%; and with two drivers the rate rises to 96.9%

Fig. 5 Pareto front. Points A and B have minimun values in the 2nd and
3rd objective, respectively, while point C provides a trade-off solution.

Personalized Driver Assistance based on Online-Sequential Extreme Learning Machines 11

Table 3 Driver Identification: Feature Selection. High Level Features are Derived from Analysis Windows (128 Sec)

Features Signals (time series) Time Frequency Quefrency

CAN-bus

SWA: Steering wheel angle 1 15 29

SWS: Steering wheel speed 2 16 30

VS: Vehicle speed 3 17 31

PGP: Percent gas pedal 4 18 32

ERPM: Engine RPM 5 19 33

Pressure sensors
BP: Brake pedal pressure 6 20 34

GP: Gas pedal pressure 7 21 35

IMU unit

RR: Roll rate 8 22 36

PR: Pitch rate 9 23 37

YR: Yaw rate 10 24 38

XACC: X axis accelerometer 11 25 39

YACC: Y axis accelerometer 12 26 40

ZACC: Z axis accelerometer 13 27 41

Laser d 90: Distance to obstacle 14 28 42

The boldface numbers correspond to the 8 features selected using a multi-objective optimization algorithm,
to develop both the driver identification module and the anti-theft application.

(see red bars in Fig. 6). These results outperform previous
experiments performed with the same data set using a
reduced number of features [7,8,9]. It is worth mentioning
that recently superior identification rates have been achieved
using AdaBoost [10] and gaussian mixture models [11].
However, the former involves a pre-training step on a
server, while the latter significantly increases the number of
selected features (i.e. 40 features instead of 8 features).

Figure 7 depicts a series of experiments performed
with the aim of assessing real-time driver identification.
Prediction is assessed every minute throughout the last 10-
minute section of each driver recording, which is in the
testing part of the route for all drivers (i.e. unseen data).
Each subplot represents the accumulated identification
estimations over time (in minutes). As can be seen, the
system succeeds in identifying the drivers right from the
first decision window (3 minutes), except for driver d03.
Even for this driver, the system is able to achieve the correct
prediction after a few windows along the first minutes of
the route. Moreover, for drivers d01, d09, d10, and d11,
prediction is about 100% at almost any point of the evaluated
sections.

4.2.3 Module implementation and timing performance

The driver identification system has been implemented
using the XC7Z020 Zynq device. Table 4 summarizes the
hardware resources required to implement the (8-32-11)

optimized topology using a 10-bit twos complement fixed-
point fractional data format. As can be seen, it uses less than
20% of the resources available in the PL part of this small
programmable SoC. Concerning the timing performance,
the maximum operation frequency of this core is 183 MHz.

Fig. 6 Red bars in the background represent the average driver
identification rates using closed-set models. Blue bars and white bars
with blue border lines represent the average impostor detection rate and
the driver identification rates using open-set models, respectively.

12 Inés del Campo et al.

Fig. 7 Identification percentage and estimation over time, in minutes,
of OS-ELM system for the last 10 min section of every driver (d01,
d02,, d11). A different color is assigned to each driver.

Let us consider both the real-time OS-ELM training
stage (i.e. on-chip self-learning) and the real-time driver
identification stage (see Fig. 2). The following timing
performance figures were obtained with the ARM in the
PS operating at 860 MHz, and the OS-ELM co-processor
in the PL operating at 100 MHz. The ARM requires 3.2
ms to compute the eight selected features, where feature
normalization is included. During the training stage, the
system reads input signals and computes the corresponding
high level features until all the samples of a chunk are
acquired. A new window is read every second (time shift
required to get 32 samples with a 32 Hz sampling rate), so a
new chunk of K samples is available every K seconds. The
system has been successfully tested using different sizes of
chunks ranging from K = 1 to K = 400. In the most time-
consuming situation, K = 400, the PS is able to perform
a learning step (see Eq. (10)) in less than 15.7 ms. After
all the chunks have been processed, the trained parameters
are sent to the HW partition where they are stored in the
internal RAM of the driver identification core (see Fig. 3).
The network parameters can be updated whenever a new
driver enters the group or upon request of an allowed driver.

After training, the real-time driver identification system
can be activated. In this stage, the SW partition performs
I/O processing of signals and feature computation, while the
HW partition processes the trained SLFN. The core is able

Table 4 Resource Usage of the OS-ELM Co-Processor For Each of
the DAS Applications Using the XC7Z020 CLG484-1 SOC

DAS
application

ELM
topology

LUTs LUTs
memory

Flip-
flops

DSPs

Driver Id. 8-32-11 10,623
(19%)

5,945
(11%)

2,894
(2%)

43
(19%)

Security 8-32-12 ≈ ≈ ≈ 44
(20%)

Safety 2-8-1 2,403
(4%)

1,435
(2%)

577
(<1%)

9 (4%)

Comfort 5-16-1 5,384
(10%)

2,923
(5%)

1,182
(1%)

17
(7%)

to perform the computation of the SLFN in only 2.2 µs using
a 100 MHz clock. The data transfer from the PS to the OS-
ELM core and vice versa, using the AXI-lite interface, as
well as the computation of the maximum identification rate,
is also included in the above timing performance.

4.3 Security application: Anti-theft impostor Detection

Currently a number of cars are equipped with anti-
theft utilities such as RFID (radio-frequency identification)
devices or personalized cards. However, most of them can
be easily hacked. To overcome this problem, the above
module can be slightly modified, using very few additional
resources, with the aim of increasing vehicle security against
thefts.

To accomplish this objective, the module was enhanced
with the ability to detect a driver outside a group of
authorized drivers: a thief or driver impostor. In addition,
high identification performance within the group of known
drivers is maintained. Concerning the topology of the driver
identification SLFN, a single neuron is to be added to the
output layer to account for the rejection class (i.e. impostor).
Therefore, the new network has an 8-32-(m+1) topology,
where the (m+1)th output represents any driver other than
those of the authorized driver set. It is worth mentioning that
the previous closed-set driver identification model has been
turned into an open-set classification system.

The enhanced model has been comprehensively tested
using the previously selected driving behavior signals for
subgroups of m=1, 2, 3, 4, and 5 drivers. Each experiment
considers a group of m genuine drivers. Another driver for
each test case is marked as the impostor and excluded from
training. The network is trained with data of the m genuine
drivers of the group, and data from the rest of the drivers
in the collection, which are labeled as others. For testing,
the system computes the prediction using unseen data of
the genuine drivers and of the driver labeled as impostor,
who is unknown for the classifier. The identification rates
(see Fig. 6) remain above 90% for groups of two and
three drivers, and around 85% for groups of four and five

Personalized Driver Assistance based on Online-Sequential Extreme Learning Machines 13

drivers. On the other hand, the impostor detection rate
is above 80% when the car has a single allowed driver,
but this rate decreases inversely to the number of allowed
drivers in the group. Although the impostor detection rate
is above 50% in all the studied cases, the reliability of the
system could be improved using a fusion of driving behavior
signals and non-hackable information (e.g. voice signals).
Timing performance and resource usage are similar to those
obtained in the previous closed-set driver identification
implementation (see Table 4).

4.4 Safety Application: Longitudinal Driving Assistance

Several longitudinal driving assistance (LDA) systems are
currently available in commercial vehicles for assisting the
driver in car-following scenarios, namely adaptive cruise
control (ACC), and forward collision warning/avoidance
(FCW/FCA) [1]. The aim of these DAS is to maintain
a safe and comfortable distance between vehicles in car-
following scenarios reducing, thus, driver workload and
traffic accidents. Although the performance of these systems
has been steadily improved in recent years, personalization
of LDA would enhance the driving experience even more.

Some studies reveal that temporal distance variables
such as time headway (THW), time-to-collision (TTC), and
the inverse of TTC (i.e. TTCi) are useful variables for
modeling car-following behavior, [49]:

T HW =
d
v
, (12)

T TC =
d
vr
, T TCi = T TC−1, (13)

with d being the distance between the host vehicle and
the leading vehicle, and with v and vr being the speed of
the host vehicle and its relative speed to the leading vehicle,
respectively.

An LDA system, which can be adapted to driver
behavior, is proposed in [14]. The authors developed a
personalized driver model, based on the desired temporal
distance variables THW and TTCi, providing driving
performance closer to the driver characteristics than
typical ACC control. However, the above model assumes
constant parameters. A more natural driver behavior model
is presented in [50] where the relationship between
THW/TTCi and the desired car accelerations is modeled
using a two-layer BP-ANN. However, self-learning using
BP learning techniques is unsuitable for in-car integration.
On the contrary, ELM-based learning is fast and easy to
implement, even for a time-critical application, as is a
personalized ACC DAS.

(a) (b)

Fig. 8 Acceleration as a function of TTCi and THW for two different
drivers: real data: + and OS-ELM model: o. The data sequences of car-
following scenarios have been extracted from the Uyanik data set. See
(a) driver labeled d07, and (b) driver d10 in Fig. 7

The OS-ELM core has been used to develop
a personalized acceleration model, suitable for the
implementation of a self-learning ACC control. Temporal
distances Eqs. (12) and (13) are obtained from the vehicle
speed (VS) and the distance to obstacle (d 90), while the
desired acceleration is provided by the accelerometer of the
IMU unit (see Table 3). The data sequences of car-following
scenarios have been extracted from the time series of the
Uyanik data set. In particular, the ACC function is defined
as the host car following a fixed leading vehicle for more
than 15 seconds without changing lanes [49].

A sweep in the number of hidden nodes, L, has been
performed with the aim of showing the relationship between
this parameter and the testing error. A trade-off solution
complexity/performance is achieved with a straightforward
(2-8-1) topology. The OS-ELM acceleration model has been
trained using two thirds of the car-following data while the
remaining data have been used to test the network. In view
of the reduced amount of available data corresponding to
car-following situations, batch ELM (Eqs. (1)-(6)) has been
applied to train the system. Figure 8 provides experimental
results corresponding to two different drivers in the Uyanik
data set. In particular, the acceleration model of the drivers
labeled d07 and d10 (see Fig. 7) is provided. The root mean
squared error (RMSE) is 0.07 for driver d07 and 0.12 for
driver d10. As can be seen, both drivers present mean TTCi
close to zero in car-following scenarios, while mean THW
is larger for d07 (1.59 s) than d10 (1.33 s) indicating that
d10 has a more aggressive driving style. Moreover, the OS-
ELM model has the effect of filtering the data, providing
a smoothed relationship between acceleration and THW,
while retaining the personal style of the drivers.

The implementation of the core requires a reduced
number of resources (see Table 4) and provides up to
186 MHz operation frequencies. Assuming the conservative
clock frequency for the hardware partition of 100MHz, the

14 Inés del Campo et al.

core is able to provide the desired car acceleration in less
than 0.8 µs. This performance is compatible even with the
most cutting edge Lidar technology that is able to provide a
measurement of the distance to the leading vehicle every 10
µs.

4.5 Comfort Application

Finally, concerning in-cabin features, the embedded system
should be able to recognize the driver and anticipate his/her
preferences and needs in a personalized and adaptable way.
Although comfort features are neither safety critical nor
time critical applications, the major challenge of these kinds
of applications deals with the complexity of human behavior
modeling. A personalized model for each configurable
feature in the car can be obtained by monitoring the actions
of each authorized driver and learning through observation.
In particular, with the aim of illustrating the modeling
capability of OS-ELM, an air recirculation feature has been
chosen.

Many recent car models incorporate automatic systems
with sensors that monitor in-cabin moisture and oxygen
levels, switching between the recirculating and fresh air
modes depending on contaminant particles or energy
savings and efficiency [51,52]. However, the driver would
feel more comfortable with a personalized air re-circulation
model that keeps in mind his/her priorities. Five input
variables have been considered: humidity (H), air quality
inside the car (Q), difference between external and internal
temperature (∆T), air flow direction (D), and car velocity
(V S). Depending on these variables, each driver will act in a
different way with the air recirculation feature.

Since no actual comfort data are available in the Uyanik
data collection, a set of linguistic fuzzy rules has been
developed for each driver. Fig. 9 shows the generated
surfaces of the air recirculation aperture decision for two
different drivers, depending on H and ∆T variables, with
Q, D, and V S being exactly in the middle of their respective
ranges. As can be seen, driver 1 prioritizes fresh air over the
rest of the variables, whereas for driver 2, the recirculation
mode is preferred when the difference of temperature is high
but, it is not desired if the humidity is high. A set of data that
simulates real situations has been extracted with the aim of
training an OS-ELM core. The modeling capability of OS-
ELM cores to approximate the surfaces depicted in Fig. 9
has been analyzed and a topology with 16 hidden neurons
has been chosen. It provides around 10% and 6% accuracy
for driver 1 and 2, respectively. As can be seen in Table
4, where an implementation resource summary is shown,
this solution provides a well-balanced trade-off between
resources and accuracy.

(a) (b)

Fig. 9 Graphical representation of the desired air re-circulation
aperture for two different drivers. Re-circulation equal to 0 (totally
closed) means only fresh air and 1 (totally open) means only cabin
air is re-circulated.

5 Conclusion

In this work, a holistic approach to the challenge of car
personalization is presented. The kernel of the proposal is a
versatile hardware/software platform for personalized driver
assistance using a programmable system-on-chip (SoC).
The system, based on online sequential extreme learning
machines (OS-ELM), is able to recognize the driver and
personalize the behavior of the car. The most remarkable
feature of the OS-ELM platform is its ability to train
personalized assistance functionalities in real-time, while
driving normally.

The proposed approach exploits the synergy between car
cybernetics and machine learning with the aim of deploying
a wide variety of in-vehicle personalized features including
safety, security and comfort applications. Although this
perspective is conceived with the aim of improving the
quality of individual mobility, it can easily be extended
to account for the requirements of particular groups of
drivers, for example, those with high accident rates or the
particularly vulnerable (e.g. young or elderly drivers). In
addition, different aspects of driving such as, for example,
improving fuel-efficient driving, can also be dealt with.

In sum, due to the plasticity and scalability of the OS-
ELM algorithm and the programmable nature of SoCs,
the proposed platform is flexible enough to cope with the
incremental changes that the new generation of vehicles is
demanding. The platform architecture is able to evolve and
to adapt to the requirements of present and forthcoming
levels of driving automation, thus reducing costs and time
to market, while enhancing vehicle safety and reliability.

In future work, the capabilities of the platform will
be enhanced with configurable Deep-ELM cores with
the aim of providing support to complex cutting-edge
applications demanding more flexibility and accuracy to
describe complicated human actions, including real-time
audio or video processing.

Personalized Driver Assistance based on Online-Sequential Extreme Learning Machines 15

Acknowledgements This work was supported in part by the Spanish
Ministry of Economy and Competitiveness (MINECO) under Grant
TEC2013-42286-R, and by the Basque Country University UPV/EHU
under Grant PPG17/20.

Conflict of Interest: The authors declare that they have
no conflict of interest.

References

1. Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C.,
Winner, H.: Three decades of driver assistance systems: Review
and future perspectives. IEEE Intelligent Transportation Systems
Magazine 6(4), 6–22 (2014). DOI 10.1109/MITS.2014.2336271

2. Elbanhawi, M., Simic, M., Jazar, R.: In the passenger seat:
Investigating ride comfort measures in autonomous cars. IEEE
Intelligent Transportation Systems Magazine 7(3), 4–17 (2015).
DOI 10.1109/MITS.2015.2405571

3. Ford Motor Company: Ford and Intel Research
Demonstrates the Future of In-Car Personalization and
Mobile Interior Imaging Technology (2014). URL
https://media.ford.com/content/fordmedia/fna/

us/en/news/2014/06/25/ford-and-intel-research-

demonstrates-the-future-of-in-car-person.html
4. Wu, J.D., Ye, S.H.: Driver identification based on voice signal

using continuous wavelet transform and artificial neural network
techniques. Expert Systems with Applications 36(2), 1061–
1069 (2009). DOI http://dx.doi.org/10.1016/j.eswa.2007.11.
003. URL http://www.sciencedirect.com/science/

article/pii/S0957417407005271
5. Riener, A., Fersha, A.: Supporting implicit human-to-vehicle

interaction: Driver identification from sitting postures. In: Proc.
of the ISVCS, pp. 22–24. Dublin, Ireland (2008)

6. Qian, H., Ou, Y., Wu, X., Meng, X., Xu, Y.: Support vector
machine for behavior-based driver identification system. Journal
of Robotics 2010, 11 pages (2010). DOI doi:10.1155/2010/
397865. URL https://www.hindawi.com/journals/jr/

2010/397865/
7. Öztürk, E., Erzin, E.: Driver status identification from driving

behavior signals. In: J. Hansen, P. Boyraz, K. Takeda, H. Abut
(eds.) Digital Signal Processing for In-vehicle Systems and
Safety, pp. 31–55. Springer Business-Science (2012)

8. Martı́nez, M.V., del Campo, I., Echanobe, J., Basterretxea, K.:
Driving behavior signals and machine learning: A personalized
driver assistance system. In: 2015 IEEE 18th International
Conference on Intelligent Transportation Systems, pp. 2933–
2940 (2015). DOI 10.1109/ITSC.2015.470

9. Martı́nez, M.V., Echanobe, J., del Campo, I.: Driver identification
and impostor detection based on driving behavior signals.
In: 2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), pp. 372–378 (2016). DOI
10.1109/ITSC.2016.7795582

10. Jafarnejad, S., Castignani, G., Engel, T.: Towards a real-time
driver identification mechanism based on driving sensing data.
In: 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC) (2017). DOI 10.1109/ITSC.
2017.8317716

11. Jafarnejad, S., Castignani, G., Engel, T.: Revisiting gaussian
mixture models for driver identification. In: 2018 IEEE
International Conference on Vehicular Electronics and Safety
(ICVES) (2018). DOI 10.1109/ICVES.2018.8519588

12. Moreira-Matias, L., Farah, H.: On developing a driver
identification methodology using in-vehicle data recorders. IEEE
Transactions on Intelligent Transportation Systems 18(9), 2387–
2396 (2017). DOI 10.1109/TITS.2016.2639361

13. Butakov, V., Ioannou, P.: Driving autopilot with personalization
feature for improved safety and comfort. In: 2015 IEEE 18th
International Conference on Intelligent Transportation Systems,
pp. 387–393 (2015). DOI 10.1109/ITSC.2015.72

14. Wang, J., Zhang, L., Zhang, D., Li, K.: An adaptive longitudinal
driving assistance system based on driver characteristics. IEEE
Transactions on Intelligent Transportation Systems 14(1), 1–12
(2013). DOI 10.1109/TITS.2012.2205143

15. Butakov, V.A., Ioannou, P.: Personalized driver/vehicle lane
change models for adas. IEEE Transactions on Vehicular
Technology 64(10), 4422–4431 (2015). DOI 10.1109/TVT.2014.
2369522

16. Lexus: Programming Memory Seats and Pairing Smart Key
in Lexus (2016). URL http://www.whylexus.com/

programming-memory-seats-and-pairing-smart-key-

in-lexus

17. Buick: Vehicle Personalization (2017). URL http://www.

buiclub.com/info-1733.html

18. Chen, Y., Li, L. (eds.): Advances in Intelligent Vehicles:
Intelligent Systems Series. Academic Press (2014)

19. Ohn-Bar, E., Trivedi, M.M.: Looking at humans in the age of
self-driving and highly automated vehicles. IEEE Transactions
on Intelligent Vehicles 1(1), 90–104 (2016). DOI 10.1109/TIV.
2016.2571067

20. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning
machine for regression and multiclass classification. IEEE
Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 42(2), 513–529 (2012). DOI 10.1109/TSMCB.
2011.2168604

21. Ding, S., Xu, X., Nie, R.: Extreme learning machine and its
applications. Neural Computing and Applications 25(3), 549–
556 (2014). DOI 10.1007/s00521-013-1522-8. URL https:

//doi.org/10.1007/s00521-013-1522-8

22. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for
multilayer perceptron. IEEE Transactions on Neural Networks
and Learning Systems 27(4), 809–821 (2016). DOI 10.1109/
TNNLS.2015.2424995

23. y. Liang, N., b. Huang, G., Saratchandran, P., Sundararajan, N.:
A fast and accurate online sequential learning algorithm for
feedforward networks. IEEE Transactions on Neural Networks
17(6), 1411–1423 (2006). DOI 10.1109/TNN.2006.880583

24. Renesas Electronics Coorporation: Advanced Driver Assistance
System (ADAS) (2017). URL https://www.renesas.com/

en-us/solutions/automotive/adas.html

25. NVIDIA Coorporation: NVIDIA DRIVE PX Scalable
Supercomputer for Autonomous Driving (2017). URL
http://www.nvidia.com/object/drive-px.html

26. NXP Semiconductors: BlueBox: Autonomous Driving
Platform (S32VLS2-RDB) (2017). URL http:

//www.nxp.com/products/microcontrollers-and-

processors/arm-processors/s32-arm-processors-

microcontrollers/bluebox-autonomous-driving-

platform-s32vls2-rdb:S32VLS2-RDB

27. Mobileye: The Evolution of EyeQ (2017). URL http://www.

mobileye.com/our-technology/evolution-eyeq-chip/

28. Texas Instruments: TDAx ADAS SoCs (2017). URL
https://www.ti.com/processors/automotive-

processors/tdax-adas-socs/overview.html

29. Gage, T., Morris, J.: The coming revolution in vehicle
technology and its big implications. Xcell Journal 92, 38–
45 (2015). URL https://www.xilinx.com/publications/

archives/xcell/Xcell92.pdf

30. Johnson, A.P., Liu, J.X., Millard, A.G., Karim, S., Tyrrell,
A.M., Harkin, J., Timmis, J., McDaid, L.J., Halliday, D.M.:
Homeostatic Fault Tolerance in Spiking Neural Networks: A
Dynamic Hardware Perspective. IEEE Transactions on Circuits

16 Inés del Campo et al.

and Systems-I: Regular Papers 65(2), 687–699 (2018). DOI
10.1109/TCSI.2017.2726763

31. Liu, J.X., Harkin, J., Maguire, L.P., McDaid, L.J., Wade, J.J.:
SPANNER: A Self-Repairing Spiking Neural Network Hardware
Architecture. IEEE Transactions on Neural Networks and
Learning Systems 29(4), 1287–1300 (2018). DOI 10.1109/
TNNLS.2017.2673021

32. Feng, G., Huang, G.B., Lin, Q., Gay, R.: Error minimized
extreme learning machine with growth of hidden nodes and
incremental learning. IEEE Transactions on Neural Networks
20(8), 1352–1357 (2009). DOI 10.1109/TNN.2009.2024147

33. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.:
Numerical Recipes. The Art of Scientific Computing, third edn.
Cambridge University Press (2007)

34. Pryke, A., Mostaghim, S., Nazemi, A.: Heatmap Visualization
of Population Based Multi Objective Algorithms, pp. 361–375.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007). URL
https://link.springer.com/chapter/10.1007/978-3-

540-70928-2_29
35. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist

multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on
Evolutionary Computation 6(2), 182–197 (2002). DOI 10.1109/
4235.996017

36. Xilinx Inc.: All Programmable SoC with Hardware and Software
Programmability (2017). URL https://www.xilinx.com/

products/silicon-devices/soc/zynq-7000.html
37. Crockett, L.H., Elliot, R.A., Enderwitz, M.A., Stewart, R.W.: The

Zynq Book. University of Strathclyde (2015). URL http://

www.zynqbook.com/
38. Intel Corporation: Intel User-Customizable SoC-FPGAs

(2017). URL https://www.altera.com/en_US/pdfs/

literature/br/br-soc-fpga.pdf
39. Xilinx Inc.: SDSoC Programmers Guide (2018). URL

https://www.xilinx.com/support/documentation/sw_

manuals/xilinx2018_2/ug1278-sdsoc-programmers-

guide.pdf
40. Finker, R., del Campo, I., Echanobe, J., Martnez, V.: An

intelligent embedded system for real-time adaptive extreme
learning machine. In: 2014 IEEE Symposium on Intelligent
Embedded Systems (IES), pp. 61–69 (2014). DOI 10.1109/
INTELES.2014.7008987

41. Frances-Villora, J., Rosado-Muoz, A., Martnez-Villena, J.M.,
Bataller-Mompean, M., Guerrero, J.F., Wegrzyn, M.: Hardware
implementation of real-time extreme learning machine in fpga:
Analysis of precision, resource occupation and performance.
Computers & Electrical Engineering 51, 139–156 (2016). DOI
http://dx.doi.org/10.1016/j.compeleceng.2016.02.007. URL
http://www.sciencedirect.com/science/article/

pii/S0045790616300222
42. Bataller-Mompen, M., Martnez-Villena, J.M., Rosado-Muoz,

A., Frances-Villora, J.V., Guerrero-Martnez, J.F., Wegrzyn, M.,
Adamski, M.: Support tool for the combined software/hardware
design of on-chip elm training for slff neural networks. IEEE
Transactions on Industrial Informatics 12(3), 1114–1123 (2016).
DOI 10.1109/TII.2016.2554521

43. Yeam, T.C., Ismail, N., Mashiko, K., Matsuzaki, T.: Fpga
implementation of extreme learning machine system for
classification. In: TENCON 2017 - 2017 IEEE Region 10
Conference, pp. 1868–1873 (2017). DOI 10.1109/TENCON.
2017.8228163

44. Xilinx Inc.: 7 Series DSP48E1 Slice. User Guide, ug479 (v1.9)
edn. (2016). URL https://www.xilinx.com/support/

documentation/user_guides/ug479_7Series_DSP48E1.

pdf
45. Bosque, G., del Campo, I., Echanobe, J.: Fuzzy systems,

neural networks and neuro-fuzzy systems: A vision on their
hardware implementation and platforms over two decades.

Engineering Applications of Artificial Intelligence 32, 283
– 331 (2014). DOI https://doi.org/10.1016/j.engappai.2014.
02.008. URL http://www.sciencedirect.com/science/

article/pii/S0952197614000384

46. Xilinx Inc.: Zynq UltraScale+ MPSoC. Product Tables and
Product Selection Guide (2018). URL https://www.xilinx.

com/support/documentation/selection-guides/zynq-

ultrascale-plus-product-selection-guide.pdf

47. Xilinx Inc.: Hardware Zone (2017). URL https:

//www.xilinx.com/products/design-tools/hardware-

zone.html

48. Abut, H., Erdogan, H., Ercil, A., Çürüklü, B., Koman, H.C.,
Tas, F., Argunsah, A.Ö., Cosar, S., Akan, B., Karabalkan,
H., Cökelek, E., Ficici, R., Sezer, V., Danis, S., Karaca,
M., Abbak, M., Uzunba, M.G., Eritmen, K., Imamolu,
M., Kalaycoglu, C.: Real-World Data Collection with
UYANIK, chap. 3, pp. 23–44. Springer US (2009).
URL http://www.es.mdh.se/publications/2852-

Real_World_Data_Collection_with_UYANIK

49. Qi, G., Du, Y., Wu, J., Hounsell, N., Jia, Y.: What is the
appropriate temporal distance range for driving style analysis?
IEEE Transactions on Intelligent Transportation Systems 17(5),
1393–1403 (2016). DOI 10.1109/TITS.2015.2502985

50. Wang, J., Li, K., Lu, X.Y.: Comparative Analysis and Modeling
of Driver Behavior Characteristics, chap. 6, pp. 159–198.
Academic Press (2014)

51. Ostermeier, R., Rühl, G.: Method for controlling a
ventilation/air-conditioning system of a vehicle, and vehicle
having such a ventilation/air-conditioning system (2015). URL
https://www.google.com/patents/WO2015007481A1.
WO Patent App. PCT/EP2014/063,320

52. Dykstra, R., Wayne, R.: Vehicle climate control method (2016).
U.S. Patent, US9242531 B2

