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Abstract
Accurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a

magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium

have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between

two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive

neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week

periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the

system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better

performance, being the higher difference during the greater perturbations. There is also a better response when sampling

rates of 30 min are used.

Keywords vTEC � Space weather � Neural network � Forecasting

1 Introduction

The term space weather (SW) has come into a great

international scientific and public awareness today. It can

be understood as the state of the Earth’s atmosphere and

the surrounding space as a result of their coupled response

to the electromagnetic and particle emissions of the Sun

and other cosmic sources on interplanetary space. SW’s

importance can be readily seen as the conditions of Earth’s

magnetosphere, thermosphere and ionosphere affect the

performance and reliability of a number of key space- and

ground-based technological systems, and beyond that, life

and health [1].

As a consequence, there is a growing worldwide con-

sensus on the need of practical tools for SW forecasting [1].

In fact, in 2015, the Committee on Space Research

(COSPAR) of the International Council for Science (ICSU)

and the International Living With a Star (ILWS) Steering

Committee established a road map which identifies

understanding the space environment as a high-priority

challenge; pointing out the relevance of studying the geo-

space response to variable solar-wind stresses that lead to

intense geomagnetically induced currents and ionospheric

and radiation storm [2].

Thus, it is widely accepted that a key factor in fore-

casting SW is to model the state of the Earth’s upper

atmosphere. In particular, there are some parameters rela-

ted to the ionosphere, i.e., the electron density (NmF2) or

the critical frequency (foF2), the F layer peak height

(hmF2) (or the propagation factor of the ratio of the

maximum usable frequency at a distance of 3000 km to the

F2 layer critical frequency (M(3000)F2) and the total

electron content (TEC) [3]. The spatial and temporal cov-

erage of f0F2 measurements is a relevant constraint. Dif-

ferent is the situation of TEC measurements that have a 24
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� 365 worldwide coverage thanks to the continuous

International GNSS service (IGS) Global Navigation

Satellite Systems (GNSS) tracking infrastructure imple-

mented by the International Association of Geodesy (IAG).

Therefore, TEC became a significant parameter for

scientific studies of structure and dynamics of the iono-

spheric plasma; consequently it has great importance for

many applications. For instance, the TEC modeling can

enhance the positioning accuracy of a GNSS [4, 5] and the

monitoring of space weather events. Hence, TEC is an

important parameter to detect ionospheric disturbances

which could affect aircraft and spacecraft crew and

equipment, wired and wireless communication, electric

power distribution grids, surveying and navigation, all with

a social and economical severe impact [6, 7].

Since the establishment of the IGS tracking infrastruc-

ture, GNSS became a well established tool for ionospheric

sounding as these systems offer an unprecedented combi-

nation of accuracy, temporal and spatial resolution and

availability. This led to important progress in fields such as

ionospheric tomography [8] and the production of reliable

global vertical total electron content (vTEC) maps in a

continuous operational way in the context of the IGS

[9–11]. With the regionally enormous increase in highly

precise GNSS data, the demands on (near) real-time

ionosphere products, necessary in many applications such

as navigation, are growing very fast. Consequently, many

analysis centers accepted the responsibility of generating

such products. Some advances in this direction are the

proposals by [12–15]. One step beyond are the products for

ionospheric state forecasting. Attempts to generate reliable

forecasting are described by [16].

Artificial neural networks (ANNs) have been found

suitable for modeling phenomena exhibiting a high degree

of nonlinearity in many scientific fields. Many authors have

used different ANNs to predict ionospheric parameters,

such as the critical frequency of the F2 layer of the iono-

sphere (f0F2), F2 layer peak electron density (NmF2) and

vTEC. [17] showed the first application of ANNs to the

prediction of foF2 using an input data indices of season

(related with the day number), solar activity and magnetic

activity; Wintoft and Cander [18] predicted the values of

foF2 at Slough station for 24 h ahead under quiet and

disturbed conditions, separately; using an input data solar

and geomagnetic indices. Tulunay [19] developed the

Middle East Technical University Neural Network

(METU-NN) model to predict TEC; this model forecasts

TEC values over Europe for 1 h and 10 min in advance

using as input data the present values of vTEC, first, second

and relative differences, the day of the year and the daily

variation with a sine and cosine function. Tebabal [20]

develop a local TEC model and forecasting using NN for

two stations at low- and mid-latitude, taking into account

solar and geomagnetic activity, time of the day and day of

the year. Mallika [21] presents a forecasting algorithm

based on the fusion of principal component analysis and

artificial neural networks (PCA–NN) methods to forecast

the ionospheric TEC values. The algorithm proposed as

NN input’s the PCA components of the TEC, solar flux and

geomagnetic index, in addition to other necessary inputs

for forecasting. This forecast was performed over a grid

point in Japan using a 20-year period.

This work proposes the implementation of two neural

networks for the prediction of vTEC under different geo-

magnetic conditions: an adaptive neuro-fuzzy inference

system (ANFIS) and a model derived by a dynamic neural

network based on the concept of a nonlinear autoregressive

model (NAR-NN). The predicted vTEC value is based on a

continuous learning process, allowing to have a predicted

value at different time intervals, i.e., 1 h or 30 min. To

achieve this objective, the training data are redefined for

each instant to be predicted by entering new observed data

Table 1 Geomagnetic coordinates of the stations

Stations Geomag. lat. Geomag. long.

TUCU 17.19 S 7.12 E

LPGS 25.44 S 13.54 E

RIO2 44.06 S 4.20 E

OHI2 53.83 S 11.37 E

Table 2 Periods and characteristics of the geomagnetic storms used in the analysis

Period Forecasting period Storm start time Minimum DST time Minimum DST

DOY UT LT LT

P1 09–15 Feb 2017 40–46 – – 2017-02-10 04:00 - 15

P2 23–29 Mar 2017 82–88 2017-03-27 09:00 2017-03-27 06:00 2017-03-27 11:00 - 74

P3 24–30 May 2017 144–150 2017-05-27 21:00 2017-05-27 18:00 2017-05-28 04:00 - 125

P4 05–11 Sept 2017 248–254 2017-09-07 21:00 2017-09-07 18:00 2017-09-07 22:00 - 142

2017-09-08 12:00 2017-09-08 09:00 2017-09-08 14:00 - 124
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that are calculated by the different centers mentioned

above.

This paper is organized as follow: in Sect. 2, we

describe the data and the NNs applied in this work. Sec-

tion 3 presents the results over four 1-week periods under

different geomagnetic scenarios, and finally, in Sect. 4, the

conclusions and the future work are presented.

2 Data and methodology

2.1 Data

Four different locations were selected to analyze the scope

of the models: TUCU (Tucumán) near the equatorial

anomaly, LPGS (La Plata) and RIO2 (Rı́o Grande) for mid-

latitudes and OHI2 (O’Higgins) for high latitude. See

Table 1 and the map in Fig. 1.

The vTEC Global Ionopheric Maps (GIMs) are derived

from GNSS dual-frequency measurements collected from

the global IGS GNSS tracking network by the Center for

Orbit Determination in Europe (CODE), the European

Space Agency (ESA), the Jet Propulsion Laboratory (JPL)

and the Universitat Politecnica de Catalunya (UPC) using

different modeling techniques. In particular, UPC interpo-

lates its two-layer tomographically calibrated vTEC esti-

mation into 2-h resolution spline-based (UPRG), and 15

min kriging-based GIMs (UQRG) [22]. In this work,

UQRG products were used to analyze the forecast model

quality. Henceforth, the vTEC product of UQRG will be

called vTECGNSS. All datasets here mentioned are available

in NASAs Archive of Space Geodesy Data at ftp://cddis.

gsfc.nasa.gov/pub/gps/products/ionex/yyyy/ddd/.

The disturbance storm time (DST) index of hourly reso-

lution, Fig. 2, was chosen as indicator of geomagnetic

activity [37]. Based on this index, four 1-week periods, P1,

P2, P3 and P4 (Table 2), were selected to test the forecasting

capability of our models. Table 2 summarizes the Storm

Start Time (in Universal Time, UT and Local Time, LT), the

Minimum DST Time (in LT) and its corresponding Mini-

mum DST as is published in the Space Weather Database Of

Notifications, Knowledge, Information (DONKI) at https://

kauai.ccmc.gsfc.nasa.gov/DONKI/.

Period P1 corresponds to a quiet week with minimum

DST of - 15. P2 week includes a moderate geomagnetic

activity characterized by a minimum DST of - 74. Periods

P3 and P4 are highly perturbed, P3 with minimum DST of

- 125, and P4 has two main disturbances, one with a

minimum DST of - 142 and the other with a minimum

DST of - 124. Figure 2 also included highlighting quiet

and disturbed period behavior. In the following, we will

compare the performance of our models in these different

ionospheric conditions. The DST data were obtained from

the GSFC/SPDF OMNIWeb interface at https://omniweb.

gsfc.nasa.gov.

2.2 Input data

Given the time series vTECGNSS ¼ ðvTECGNSSðtÞ;
t ¼ 1; . . .; nÞ, where vTECGNSSðtÞ (UQRG products) is a

value at a discrete time t and n is the number of data points

in the time series, and we will forecast the

vTECGNSSðt þ 1Þ at time t þ 1. The actual input data to the

model are the volatility index [23],

rðtÞ ¼ log
vTECGNSSðt þ 1Þ

vTECGNSSðtÞ
ð1Þ

The volatility index is used to determine the abrupt local

changes in the vTECGNSS series. The benefit of using the

volatility index instead of vTEC data is that reduces

adverse effects of possible linear trends on the predictions

[24].

2.3 Artificial neural networks

Artificial neural networks (ANNs) have been used in a

wide range of fields, such as pattern recognition, predic-

tion, grouping, optimization, among others. Generally,

ANNs are structured as three layers: input layer, hidden

layer(s) and output layer. The hidden layer connects the

input and output layers via several nodes, weights, biases

and activation functions. All the parameters defining the

ANNs need to be estimated on a training phase in which

the output of the ANNs to the training data is known. In

Fig. 1 Geographical distribution of the implemented stations
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this work, the corresponding training data sets for P1, P2,

P3 and P4 weeks involved time series spanning several

weeks in advance.

In this study, we analyze the performance of two dif-

ferent ANNs: ANFIS and NAR. A brief description of both

models is presented. More details about both ANNs could

be found in [25, 26].

2.3.1 The adaptive neuro-fuzzy inference system (ANFIS)

ANFIS has been shown to be powerful in modeling

numerous processes such as hydrological time series

modeling [27], permeability prediction [28], time series

prediction [29] among others, showing powerful qualities

for the modeling and prediction of time series with non-

linear tendencies.

The ANFIS is an adaptive network-based fuzzy infer-

ence system that is based on Takagi–Sugeno fuzzy infer-

ence system. The ANFIS combines the learning capability

of neural networks with the capability of fuzzy logic. The

fuzzy inference system is a rule-based system consisting of

three conceptual components. These are (1) a rule base,

containing fuzzy if-then rules (2) a database, defining the

membership function and (3) an inference system, com-

bining the fuzzy rules and producing the system results

[30].

More details on adaptive networks have been presented

by [31, 32].
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Fig. 2 DST values for periods P1 (a), P2 (b), P3 (c) and P4 (d). Vertical lines in b–d show the Storm Start Time described in Table 2
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In order to create a model comparable to the NAR-NN

structure (which is explained in the next section), the

ANFIS model is set up using the volatility series, and the

training pattern has been composed as follows:

frðt� 3Þ rðt� 2Þ rðt� 1Þ ! rðtÞg ð2Þ

This training pattern has three input and one output vari-

ables, that is, the three previous elements in the time series

are used to forecast the next element.

ANFIS network consists of three input variables and one

output variable, i.e., the previous three elements in the

volatility time series are used to predict the next element

(see Eq. 2). Each input variable is represented by a fuzzy

membership function. The generalized Bell was used in

this study with two fuzzy rules. In the ANFIS training

process for the r(t), forecasting is completed when one of

the following conditions is reached: that the difference

between the output obtained in the network and the desired

output be equal to the error established a priori, or by

completing the number of epochs, also pre-established.

When one of the above conditions has been reached,

ANFIS completes the training and generates an output file,

corresponding to the inference of r(t).

2.3.2 Nonlinear autoregressive neural network (NAR-NN)

A nonlinear autoregressive neural network, applied to time

series forecasting, describes a discrete, nonlinear, autore-

gressive model that can be written as follows [33]:

rðtÞ ¼ hðrðt � 1Þ; rðt � 2Þ; :::; rðt � pÞÞ ð3Þ

This equation shows how the NAR-NN is used to predict

the values of a time series r using the p past values of the

series. The function hð�Þ is unknown in advance, and the

training of the neural networks aims to approximate the

function by means of the optimization of the network

weights and neuron bias. The p features

rðt � 1Þ; rðt � 2Þ; . . .; rðt � pÞ, are called feedback delays.

The number of hidden layers and neurons per layer are

completely flexible and are optimized through a trial-and-

error procedure to obtain the network structure that can

provide the best performance. The Levenberg–Marquardt

backpropagation (LMBP) was used as the learning rule and

the hyperbolic tangent sigmoid transfer function for the

neurons of intermediate layers.

Both ANNs described imply the use of some common

procedures. The optimum training time series length and

sampling rate must be defined through testing.

Finally, the predicted volatility must be transformed

back to TEC units as follows:

vTECf ðt þ 1Þ ¼ expðrðtÞÞ:vTECGNSSðtÞ ð4Þ

where vTECf corresponds to the forecasted vTEC.

3 Results

The main goal of this work is to set up a neural network-

based strategy for real-time vTEC prediction. In order to

test two possible approaches, we have selected four dif-

ferent geomagnetic locations on 4 1-week periods having a

variety of geomagnetic disturbance levels. This ensures a

representative set of forecast conditions are covered. In all

tests, the neural network training interval (T) was a con-

tinuous series preceding each epoch selected for vTEC

prediction. The effect of using training period lengths of

90, 60 and 30 days was investigated. In addition, the pre-

diction system response was evaluated for 60 and 30 min

sampling rate vTEC time series. Both NN implementations

were trained with 70% of the data in T. The remaining data

were used to validate (15%) and test (15%).

Table 3 Results of using training period lengths of 90, 60 and 30 days for period P3

TUCU LPGS RIO2 OHI2

30 prev 60 prev 90 prev 30 prev 60 prev 90 prev 30 prev 60 prev 90 prev 30 prev 60 prev 90 prev

ANFIS

MAE 0.26 0.01 0.007 0.09 0.08 0.09 0.003 0.03 0.003 0.03 0.01 0.03

MAPE 15.85% 15.26% 15.25% 11.72% 11.61% 11.91% 11.68% 10.84% 10.99% 9.21% 7.83% 7.85%

RMSE 2.01 1.69 1.67 1.21 1.14 1.14 0.62 0.59 0.60 0.62 0.43 0.46

NRMSE 0.38 0.30 0.31 0.37 0.34 0.25 0.49 0.48 0.49 0.64 0.46 0.48

NAR

MAE 0.19 0.01 0.008 0.04 0.06 0.07 0.009 0.03 0.01 0.01 0.01 0.01

MAPE 15.35% 14.81% 14.90% 11.02% 11.14% 11.31% 11.13% 10.98% 10.93% 7.66% 7.74% 7.54%

RMSE 1.79 1.58 1.57 1.08 1.05 1.05 0.61 0.59 0.60 0.41 0.42 0.41

NRMSE 0.32 0.37 0.31 0.33 0.29 0.32 0.48 0.45 0.43 0.43 0.41 0.40
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In the NAR-NN case for each parameter test, every

epoch was predicted 100 times. From the 100 outcomes,

the mean and median values were computed. This analysis

showed that the value of the median over the 100 outcomes

is the closest to the vTECGNSS value. Therefore, NAR-NN

predicted values for every epoch are based on the median

value. For ANFIS case, this methodology is not applied

because of how the network is defined.

To evaluate forecasting accuracy, five of the more

popular direct error measures are mean squared error

(MSE), or its variants such as root mean squared error

(RMSE) and normalized root mean square error (NRMSE),

mean absolute error (MAE) and mean absolute percentage

error (MAPE)

MSE ¼
Pn

i¼1ðvTECGNSS � vTECf Þ2

n
ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð6Þ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1ðvTECGNSS � vTECGNSSÞ2

n� 1

s

ð7Þ

NRMSE ¼ 1

r
RMSE ð8Þ

AE ¼ jvTECf � vTECGNSSj ð9Þ

MAE ¼
Pn

i¼1 AEi

n
ð10Þ

APE ¼ AE

vTECGNSS

ð11Þ

MAPE ¼
Pn

i¼1 APEi

n
� 100 ð12Þ

where AE (Eq. 9) represents the absolute error and APE

(Eq. 11) represents the absolute relative error for one

epoch, being vTECf the forecasted value obtained from

each model and n is the number of epochs predicted.

According to Lewis [34], MAPE values of less than 10%

indicate that the method gives a highly accurate forecast,

values in the range between 10 and 20% indicate a good

forecast, between 20 and 50% a reasonable forecast, while

values over 50% indicate an inaccurate forecast.

Table 3 shows how the NN behaves when different

T training intervals are used. The results did not show a

significant improvement when T is longer although it takes

more computation time. Thus, a training period length of

30 days was used.

To analyze the results, it is important to briefly describe

how vTEC behaves under different conditions. This

parameter shows variations in space (e.g., with geomag-

netic location: polar, aurora zones, mid-latitudes and

equatorial regions) and time (sunspot cycle, seasonal and

diurnal). In particular, ionospheric storms represent an

Table 4 Statistics for the vTECf

forecast using the ANFIS and

the NAR-NN model during the

periods P1 to P4 with 60 min

sampling

ANFIS model NAR-NN model

MAE MAPE RMSE NRMSE MAE MAPE RMSE NRMSE

P1

TUCU 0.15 9.64 1.97 0.23 0.16 9.24 1.80 0.21

LPGS 0.17 9.32 1.52 0.23 0.11 8.72 1.43 0.22

RIO2 0.04 5.66 0.97 0.50 0.01 5.70 0.97 0.50

OHI2 0.04 5.01 0.78 0.40 0.03 4.92 0.77 0.39

P2

TUCU 0.41 20.90 3.27 0.28 0.50 18.81 3.03 0.26

LPGS 0.34 12.73 1.94 0.23 0.38 11.73 1.78 0.21

RIO2 0.13 10.80 1.58 0.56 0.11 10.37 1.48 0.53

OHI2 0.07 8.82 0.88 0.49 0.07 8.63 0.88 0.48

P3

TUCU 0.26 15.85 2.01 0.38 0.19 15.35 1.79 0.32

LPGS 0.09 11.72 1.21 0.37 0.04 11.02 1.08 0.33

RIO2 0.003 11.68 0.62 0.49 0.009 11.13 0.61 0.48

OHI2 0.03 9.21 0.62 0.64 0.01 7.66 0.41 0.43

P4

TUCU 0.16 18.49 3.56 0.38 0.30 18.23 3.42 0.36

LPGS 0.36 18.32 2.73 0.42 0.23 15.59 2.24 0.34

RIO2 0.07 10.47 1.05 0.38 0.08 9.98 1.01 0.36

OHI2 0.04 11.01 0.99 1.01 0.03 9.34 0.78 0.35
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extreme form of space weather with important effects on

ground- and space-based technological systems. Conse-

quently, the values of vTEC show both an anomalous

increase as well an anomalous decrease over the course of

magnetic storm. According to [35], negative storm effect is

due to changes in the neutral composition and initiated

always in the post-midnight sector and rotated with the

Earth into forenoon sector; therefore, they affect the

ionosphere of station located in the post-midnight and

morning sectors. The positive storm effect can be divided

into the daytime and the nighttime manifestation. The

former case is expected attributed to traveling atmospheric

disturbance [36], most often seen in the afternoon and

evening sector. The positive storm at nighttime [37] is

initiated before dusk and [38] suggested that if this kind of

storm was driven by winds before dusk, it would rotate into

the night side.

At this point, it is important to stress that this work does

not intend to analyze geomagnetic storms in detailed, we

selected perturbed periods only to test the efficiency of our

models to predict vTEC values under different conditions.

First, a comparison between both NNs, ANFIS and

NAR-NN, in order to select the model which better rep-

resent vTEC time series, is presented. Then, the sampling

rate was reduced from 60 to 30 min to test the NN

response.

3.1 Comparison between ANFIS and NAR-NN
models

Several authors have proposed different statistical methods

such as multiple regression approaches, like autocorrela-

tion and neural networks to forecast ionospheric parame-

ters. Most forecasting methods were developed to predict

classical ionospheric parameters such as f0F2 and

MUF(3000)F2. Kutiev et al. [39] presented an autocorre-

lation method (ACM) to predict f0F2 for some ionospheric

stations. They evaluated their results using the prediction

efficiency parameter which is based on the standard devi-

ations of the prediction and input data. They found a clear

dependence of the prediction quality on the latitude of the

station, being better for mid-geomagnetic latitude than for

high latitudes. Later, Muhtarov et al. [40] improved ACM

through the addition of the cross-correlation between f0F2

and a geomagnetic index. This was termed geomagneti-

cally correlated autoregression model (GCAM).

bFig. 3 a, b Show vTECGNSS (solid black line) and the forecasted

vTECf (dashed red line) applying the ANFIS and the NAR-NN

models, respectively, with 60 min sampling for P4; c, d show the

scatter plots of the vTECGNSS values versus vTECf values; e, f are the

residuals between vTECf and the vTECGNSS. Vertical lines in a–

d show the Storm Start Time described in Table 2 (color

figure online)

Table 5 Statistics for the vTECf

forecast comparing two

different sampling frequency:

60 min and 30 min, using the

NAR-NN model during the

periods P1 to P4

60 min 30 min

MAE MAPE RMSE NRMSE MAE MAPE RMSE NRMSE

P1

TUCU 0.16 9.24 1.80 0.21 0.03 5.78 1.07 0.12

LPGS 0.11 8.72 1.43 0.22 0.02 4.89 0.90 0.14

RIO2 0.01 5.70 0.97 0.50 0.01 3.65 0.61 0.31

OHI2 0.03 4.92 0.77 0.39 0.001 3.59 0.56 0.29

P2

TUCU 0.50 18.81 3.03 0.26 0.24 10.21 1.93 0.17

LPGS 0.38 11.73 1.78 0.21 0.12 6.46 1.09 0.13

RIO2 0.11 10.37 1.48 0.53 0.01 6.80 0.87 0.31

OHI2 0.07 8.63 0.88 0.48 0.01 5.13 0.51 0.28

P3

TUCU 0.19 15.35 1.79 0.32 0.03 10.03 1.06 0.19

LPGS 0.04 11.02 1.08 0.33 0.02 6.35 0.60 0.18

RIO2 0.009 11.13 0.61 0.48 0.01 7.19 0.41 0.33

OHI2 0.01 7.66 0.41 0.43 0.002 4.49 0.24 0.26

P4

TUCU 0.30 18.23 3.42 0.36 0.14 10.80 2.05 0.22

LPGS 0.23 15.59 2.24 0.34 0.07 10.92 1.22 0.18

RIO2 0.08 9.98 1.01 0.36 0.05 6.67 0.66 0.24

OHI2 0.03 9.34 0.78 1.01 0.02 5.90 0.49 0.22
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Cander [41] compared GCAM technique with a neural

network-based autoregressive model with additional inputs

(NNARX). The f0F2 forecast periods chosen in this study

correspond to quiet and disturbed geomagnetic conditions

from mid-latitude ionosonde measurements. Both tech-

niques indicated a very good result over the geomagneti-

cally quiet period, but NNARX showed a better

performance over the severe storm period.

In this section, we will describe some results from dif-

ferent authors who worked in TEC forecast applying NNs

and how they compare to ours.

Table 4 shows the performance for each period and both

NNs. For P1 period, the mean absolute error is almost zero

for all stations and both NNs. MAPE value presents a

different behavior for the two NNs and the four stations

under analysis. MAPE values decrease when the geomag-

netic latitude increases and the NAR model shows a

slightly better performance than ANFIS. This behavior

shows that both NNs during a quiet period are more effi-

cient to represent the values of vTEC over stations at high

than at low geomagnetic latitude, where the ionosphere is

more complicated to predict. r also confirm this result and

show a better performance using NAR-NN model.

For P1, a quiet period (Fig. 2a and Table 2), MAPE took

values near 10%, being smaller for high latitudes. P2, P3

and P4 are disturbed periods containing geomagnetic

storms with different characteristics. Particularly, the storm

that occurs in P3 (Fig. 2c) is classified as intense according
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Fig. 4 a, b Shows the residuals between the vTECf and the vTECGNSS using 60 and 30 min sampling for P1; c, d idem to a, b for P4. Vertical

lines in c, d shows the Storm Start Time described in Table 2
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to its DST value [42] with all the classical development

phases described in the literature [35, 43]. In this case, a

MAPE up to 15% was obtained for low latitudes and near

10% for mid- and high latitudes. P2 contains a geomag-

netic storm classified as moderate (Fig. 2b and Table 2).

MAPE is 11% and 8% for mid- and high latitudes,

respectively, which are similar to results obtained for P3. In

the case of low latitude, MAPE reaches 21% which is

significantly higher than the corresponding value for P3.

Thus, P2 is more difficult to represent than P3 for low

latitudes. To explain this, it is important to mention not

only the magnitude of the geomagnetic storm but also the

local time when the perturbation is developed: 11 a.m. for

P2 and 4 a.m. for P3 as shown on Table 2. As mentioned in

Sect. 3, others authors characterized the complexity of the

vTEC behavior depending on the local time of storm

development. P4 is the period with the greatest disturbance.

It contains the succession of two storms (Fig. 2d and

Table 2). Table 2 shows that MAPE does not exceed 18.5%

for low- and mid-latitudes, nor 10% for high latitudes.

As an example of the results obtained, Fig. 3 shows the

behavior of the vTECGNSS (solid black line) and the vTECf

(dashed red line) for P4 for both NNs. Table 2 and Fig. 2

contain the evolution of the two intense geomagnetic

storms that take place in that period. The first one occurs at

local sunset hours and during the recovery period a new

storm begins around 9 LT, reaching its maximum at local

noon. Scatter plots (Fig. 3c, d) show a good agreement that

corresponds with a correlation coefficient of 0.95. Fig-

ure 3e, f shows the residuals for both NNs which do not

show significant systematics. At the end of DOY 251

(2017-09-07) and the beginning of DOY 252 (2017-09-08),

the residuals reach extreme values of ? 12 to - 16 TECU.

This period corresponds to the development of both storms.

For the days before and after the perturbations, residuals

take values between ± 5 TECU.

Tulunay et al. [19] developed METU-NN using GPS

measurements to predict TEC. The analysis was performed

over mid-high geomagnetic latitudes between November

16 and 29 of 2003, including a geomagnetic storm. The

RMSE values at mid-high latitudes are between 2.15 and

2.05 TECU, and MAPE took values between 14 and 16%.

They also analyzed the performance of the network during

the day where the storm takes place obtaining values

between 20 and 27%. Our results showed MAPE values

between 10 and 12 % for RIO2 (the only station at mid-

high latitude) when the three perturbed periods are con-

sidered. If we isolate the perturbed day, MAPE values of

13%, 17% and 15 % are obtained for RIO2 for P2, P3 and

P4 periods, respectively, showing a better performance

than Tulunay’s forecast. We can also highlight the results

obtained by [44]. She presented a 1 hr ahead TEC forecast

using a hybrid time-delay multilayer perceptron (MLP)

[45]. The period tested corresponds to the ten quietest (10

Q-days) and five disturbed (5 D-days) days (http://wdc.

kugi.kyoto-u.ac.jp/qddays) during December 1990 for one

mid-latitude station. The performance of the neural net-

work proved to be quite accurate with a MAPE of 13.57%,

while our results show an improvement between 20 and

25% (see Table 4, RIO2).

We can conclude that both NN models show highly

accurate and good forecast according to [34] classification,

although the NAR-NN model shows slightly better results.

This improvement is up to 3% in terms of MAPE and can

be seen on Table 2 periods analyzed.

3.2 30 and 60 min sampling NAR-NN vTEC
forecast

The prediction quality sensitivity of the NAR-NN to dif-

ferent sampling rates of the input vtec time series was

analyzed. Table 5 shows the results for all four periods

analyzed for the cases of 60 and 30 min sampled input

vTEC. The values of MAPE are significantly lower if the

forecast is made to predict values every 30 min. The

improvement observed is between 27 and 47%. This

behavior is evident for all four periods analyzed and can

also be seen in the vTEC residuals as shown in Fig. 4 for

TUCU station on P1 and P4 datasets, representing quiet

and highly perturbed conditions, respectively. Indeed,

Fig. 4b, d, shows that for 30 min sampling rate, the

residuals are consistently smaller except in the close

vicinity of extremely anomalous events associated with the

storms where they peak in a much more isolated way that

in the case of the 60 min sampling experiment.

4 Conclusions

The applicability of the adaptive neuro-fuzzy inference

system and nonlinear autoregressive neural network in

forecasting the vertical total electron content variability is

presented in this paper. The ANFIS and the NAR-NN are

networks with different internal structures, and we have

applied the same input and output structure to make a

comparison between both models. We have selected four

different geomagnetic locations on 4 1-week periods hav-

ing a variety of geomagnetic disturbance levels. The effect

of using training period lengths of 90, 60 and 30 days was

investigated. In addition, the prediction system response

was evaluated for 60 and 30 min sampling rate vTEC time

series. The main conclusions are:

1. Both NN’s models learned the shape of the inherent

nonlinearities.
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2. MAPE differences of .5% where find using different

training period’s lengths, based on this result 30 days

training periods were used;

3. The higher MAPE values are during geomagnetic

storms; reaching values up to 20% for ANFIS and 18%

for NAR-NN;

4. Highly accurate and good forecast were obtained

according to [34] classification;

5. NAR-NN model shows a slightly better performance

than ANFIS, this difference is up to 3%;

6. When the NAR-NN model forecasts values for 30 min

in advance, the results improve considerably, and the

MAPE is reduced up to 47% compared to MAPE when

60 min sampling rate is used.

7. Our future work is to use this methodology to forecast

vTEC values on a grid over the Argentina region.
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