
Automated design of error-resilient and hardware-efficient
deep neural networks

Christoph Schorn1,2 · Thomas Elsken3,4 · Sebastian Vogel1,2 ·
Armin Runge1 · Andre Guntoro1 · Gerd Ascheid2

Abstract Applying deep neural networks (DNNs) in

mobile and safety-critical systems, such as autonomous

vehicles, demands a reliable and efficient execution on

hardware. Optimized dedicated hardware accelerators

are being developed to achieve this. However, the de-

sign of efficient and reliable hardware has become in-

creasingly difficult, due to the increased complexity of

modern integrated circuit technology and its sensiti-

vity against hardware faults, such as random bit-flips.

It is thus desirable to exploit optimization potential for

error resilience and efficiency also at the algorithmic

side, e.g. by optimizing the architecture of the DNN.

Since there are numerous design choices for the ar-

chitecture of DNNs, with partially opposing effects on

the preferred characteristics (such as small error rates

at low latency), multi-objective optimization strategies

are necessary. In this paper, we develop an evolution-

ary optimization technique for the automated design of

hardware-optimized DNN architectures. For this pur-

pose, we derive a set of easily computable objective

functions, which enable the fast evaluation of DNN ar-

chitectures with respect to their hardware efficiency and

error resilience solely based on the network topology.

We observe a strong correlation between predicted error

resilience and actual measurements obtained from fault

injection simulations. Furthermore, we analyze two dif-

� Christoph Schorn
Christoph.Schorn@de.bosch.com

1 Department of Dependable Connected Systems, Bosch
Corporate Research, Renningen, Germany

2 Institute for Communication Technologies and
Embedded Systems, RWTH Aachen University,
Aachen, Germany

3 Bosch Center for Artificial Intelligence, Renningen,
Germany

4 Department of Computer Science, University of
Freiburg, Freiburg im Breisgau, Germany

ferent quantization schemes for efficient DNN compu-

tation and find significant differences regarding their

effect on error resilience.

Keywords Neural Network Hardware · Error Re-

silience · Hardware Faults · Neural Architecture

Search · Multi-Objective Optimization · AutoML

1 Introduction

The application of deep neural networks (DNNs)

in safety-critical perception systems, for example

autonomous vehicles (AVs), poses some challenges on

the design of the underlying hardware platforms. On

the one hand, efficient and fast accelerators are needed,

since DNNs for computer vision exhibit massive

computational requirements [55]. On the other hand,

resilience against random hardware faults has to be

ensured. In many driving scenarios, entering a fail-safe

state is not sufficient, but fail-operational behavior

and fault tolerance are required [48]. However, fault

tolerance techniques at the hardware level often entail

large redundancy overheads in silicon area, latency,

and power consumption. These overheads stand in

contrast to the low-power and low-latency requirements

of embedded real-time DNN accelerators. Reliability

concerns in nanoscale integrated circuits, for instance

soft errors in memory and logic, represent an addi-

tional challenge for the realization of fault tolerance

mechanisms at the hardware level [2, 33, 36, 68, 83].

Moreover, techniques such as near-threshold computing

[26] and approximate computing [65] are desirable to

meet power constraints, but can further increase error

rates.

To overcome these challenges, one option is to ex-

ploit error resilience at the algorithm level and allow for

a certain degree of inaccuracy at the hardware level.

ar
X

iv
:1

90
9.

13
84

4v
1

 [
cs

.L
G

]
 3

0
Se

p
20

19

2 Schorn et al.

This is referred to as cross-layer resilience [13]. Due

to the implicit information redundancy of neural net-

works, they offer some robustness against random in-

ternal perturbations, which can be exploited in a cross-

layer resilience approach. Nevertheless, error resilience

is strongly influenced by the architectural design of the

DNN [82] as well as its internal data representations

[53]. These design choices, in turn, also influence hard-

ware efficiency and classification performance of the

network. Taking these multiple, partially opposing ob-

jectives into account in a manual DNN design procedure

is non-trivial and cumbersome.

As a solution, we develop and evaluate an efficient,

automated, multi-objective neural architecture search

(NAS) technique in this paper, which holistically takes

classification performance as well as hardware-specific

objective functions into account. In detail, our contri-

butions are the following:

1. We derive a set of objective functions for the pre-

diction of error resilience, energy consumption, la-

tency and required bandwidth of DNNs on hard-

ware, solely based on the topology of their neural

architecture, allowing a fast evaluation of these ob-

jectives by avoiding the need for expensive simula-

tions or training of the neural network.

2. We integrate these functions in an efficient, evolu-

tionary, multi-objective NAS algorithm, that uses

(approximate) network morphisms for a fast Pareto

optimization of DNNs.

3. We evaluate our methods and obtained Pareto

trade-offs on two popular image classification

benchmarks, namely CIFAR-10 and German Traffic

Sign Recognition Benchmark (GTSRB). In partic-

ular, we test the predictive performance of our fast

error resilience prediction metric by taking silent

data corruption (SDC) measurements, employing a

memory bit-flip fault injection framework.

4. We compare two recently introduced quantization

techniques for hardware-efficient DNN inference

with respect to resulting classification performance

and error resilience characteristics of the neural

networks.

To the best of our knowledge, this is the first paper

combining error resilience and hardware efficiency op-

timization in the context of neural architecture search.

The remainder of this paper is structured as follows.

In Section 2, we give an overview of related work. In

Section 3, we introduce our methodology. This includes

the derivation of hardware-specific objective functions,

neural network quantization techniques and the multi-

objective optimization algorithm used in this paper. In

Section 4, we evaluate the outcome of our methods on

two image classification benchmarks. We analyze the

trade-offs between Pareto-optimal solutions, perform

fault injections to compare predicted and measured re-

silience, and evaluate the characteristics of two different

DNN quantization methods. We close our paper with a

summary and conclusions in Section 5.

2 Background and related work

We now give an overview of related error resilience anal-

ysis (Section 2.1), resilience optimization techniques for

neural networks (Section 2.2) as well as preliminaries on

multi-objective optimization (Section 2.3) and neural

architecture search (NAS) (Section 2.4).

2.1 Neural network resilience analysis

Understanding a neural network’s resilience against er-

roneous perturbations in its internal computations has

been a topic of interest for decades already. Here, we

give an overview of the most recent studies that target

error resilience analysis of modern DNNs. An in-depth

review of previous literature has been recently given by

Torres-Huitzil and Girau [91].

2.1.1 Experimental analysis

The majority of studies on error resilience in neural net-

works has been experimental. They range from physi-

cal fault induction experiments in real hardware de-

vices [78, 96], over fault injections in (virtual) hardware

models [3, 53, 76, 78], to error simulations at the algo-

rithmic behavior level [62, 72, 80]. Behavioral analysis

can be connected to realistic hardware faults in a sec-

ond step, by mapping the effect of these faults to error

models in the algorithm domain [70]. For the model-

based analysis, stuck-at-zero, stuck-at-one and random

bit-flips of memory cells are commonly used. Stuck-at

types are used to model permanent faults (e.g. resulting

from manufacturing defects) and bit-flips are typically

used to model radiation-induced transient faults that

lead to soft errors [91].

In summary, experimental studies found different

determinants of neural network resilience, the most im-

portant being the number and type of errors, the data

representation of the neural network, the DNN type and

the location where the error occurs. However, while ex-

perimental evaluation is useful for an accurate a poste-

riori resilience determination of a given DNN on hard-

ware, it is cumbersome and provides only limited in-

sight into a priori design choices for DNN developers to

improve resilience at the algorithm level.

Automated design of error-resilient and hardware-efficient deep neural networks 3

2.1.2 Theoretical analysis

A theory-guided resilience analysis offers the advantage

of being more directly interpretable and avoids lengthy

fault injection experiments. El Mhamdi and Guerraoui

[28] analytically derived easily computable bounds for

the forward error propagation of neurons that are stuck-

at-zero (crashed neurons) and for neurons that transmit

arbitrary values (Byzantine neurons). They found that

the choice of activation function and number of neurons

per layer are design choices that affect the forward er-

ror propagation. More precisely, an activation function

with a low Lipschitz constant as well as a high number

of neurons per layer can reduce forward error propaga-

tion.

A different analytical technique to derive neuron re-

silience prediction has been used in the context of ap-

proximate neural network computing. Backpropagation

of error gradients, comparable to the technique used to

determine weight updates during neural network train-

ing, has been used to estimate the average output sen-

sitivity to perturbations in individual neurons [93, 106].

Recently, Schorn et al. [80] showed that a technique

based on layer-wise relevance propagation (LRP) [4]

outperforms gradient-based resilience prediction. Con-

trarily to gradient methods, which determine the sensi-

tivity to small perturbations in neurons, LRP attributes

to each neuron its absolute contribution to the DNN

output [67], which can be interpreted as layerwise Tay-

lor decomposition [66]. A high neuron relevance, aver-

aged over a training set of input samples, corresponds

to a high sensitivity against errors [80].

2.2 Neural network resilience optimization

The optimization of neural network error resilience at

the algorithm level is an active field of research. A

number of publications simulate the effects of hardware

faults during neural network training to improve re-

silience [22, 102, 45, 100, 56]. Reference [22] considers

timing variations, [102, 45] static random-access mem-

ory (RAM) supply voltage scaling and [100, 56] hard

defects in memristors and resistive RAM respectively.

The drawback of these approaches is that they compli-

cate the training process, since fault injections have to

be performed by placing hardware in the training loop

or through realistic fault simulations. Common regu-

larizing techniques, such as dropout [44, 85] and weight

decay [50], also improve the general error resilience of

neurons [28].

A second approach is to adjust the mapping of the

algorithm to hardware for an optimized resilience. A

significance-driven mapping of network weight bits to

memory cells with different resilience has been sug-

gested in [84]. However, the authors did not follow an

analytical approach to determine weight resiliencies,

but relied on their experience. In contrast, the LRP-

based method in [80] gives a theoretically founded re-

silience mapping of neurons.

A third approach is to use modifications in hardware

that are tailored to exploit the algorithmic resilience

properties of neural networks. This can be zero-biased

[3] or selectively hardened [53] memory cells, optimized

data representations [96], masking techniques [71, 76],

anomaly detectors [53, 81] and relaxed versions of clas-

sical fault tolerance mechanisms, such as triple modular

redundancy (TMR) [61] and algorithm-based fault tol-

erance (ABFT) checksums [78].

Modifications of the neural architecture to increase

resilience have been proposed as well. Dias et al. [24]

suggest a resilience optimization procedure by replica-

tion of critical neurons and weights. However, they use

exhaustive simulation to determine criticality values,

which is infeasible for large-scale DNNs. Schorn et al.

[82] showed that critical layers can be identified using

LRP. Nevertheless, no automated neural architecture

design technique that jointly optimizes error resilience

as well as other desirable performance and efficiency

objectives of DNNs has been introduced so far.

2.3 Multi-objective optimization

In multi-objective optimization (see, e.g. [63]), one tries

to optimize multiple, complementary objective func-

tions f1, . . . , fk over a space N of feasible solutions (in

our case: a space of neural network architectures). Usu-

ally, there will be no N∗ ∈ N that minimizes all ob-

jectives f1, . . . , fk at the same time (as the objectives

are complementary). Instead, there are multiple Pareto-

optimal solutions meaning that one cannot reduce any

fi without increasing at least one fj . Formally, we say

that N1 dominates N2 iff fi(N1) ≤ fi(N2) for every

i ∈ {1, . . . , n} and fj(N1) < fj(N2) for at least one j.

N∗ is called Pareto-optimal iff N∗ is not dominated by

any other N ∈ N . The set of Pareto-optimal solutions

is the so-called Pareto front. Typically, multi-objective

optimization can only determine a subset P that ap-

proximates this Pareto front.

In order to rate the overall performance of a given

neural network N ∈ P across all objectives, the dis-

tance to the ideal point can be used as a metric [8]. The

(approximate) coordinates yi of the ideal point in each

objective dimension i ∈ {1, . . . , k} can be determined

by taking the componentwise minima of the objective

functions fi(N) over the (approximated) Pareto front

4 Schorn et al.

P [27]:

yi = min
N∈P

fi(N), i ∈ {1, . . . , k}. (1)

To enhance comparability, a normalized version of

the distance to the ideal point can be computed [8].

Therefore, the individual objective functions are first

normalized

f̄i(N) =
fi(N)−minN∈P fi(N)

maxN∈P fi(N)−minN∈P fi(N)
(2)

so that 0 ≤ f̄i(N) ≤ 1. Then, a norm on the vector

f̄(N) = (f̄1(N), . . . , f̄k(N))> ∈ Rk is computed to mea-

sure the distance of N from the ideal point.

Blasco et al. [8] suggest to take the infinity norm for

the purpose of trade-off analysis:∥∥̄f(N)
∥∥
∞ = max

{
f̄i(N)

}
, i ∈ {1, . . . , k}. (3)

That way, a score between 0 and 1 is obtained, which

supplies information about the worst objective value.

For example, a value of 1 means that N has the worst

observed performance in at least one of the objectives.

We refer to
∥∥̄f(N)

∥∥
∞ as normalized worst objective

value in the remainder of this paper.

2.4 Neural Architecture Search

One crucial aspect for the success of deep learning in

recent years was the design of novel neural network ar-

chitectures [35, 40, 77, 89]. However, manually design-

ing such architectures is a cumbersome trial-and-error

process. To overcome the need for architectural engi-

neering, neural architecture search (NAS) - the process
of automatically designing neural network architectures

- has arisen as a subfield of automated machine learn-

ing [41]. By now, architectures found by NAS have out-

performed human-designed architectures on a variety

of tasks such as image recognition [74], object detec-

tion [109] or dense prediction tasks [17, 75].

We briefly summarize related work here and refer to

the survey by Elsken et al. [31] for a more thorough lit-

erature overview. Reinforcement learning techniques [5,

108, 107, 109] or evolutionary methods [87, 64, 73, 74]

were employed to search for well performing architec-

tures. As early work required vast amount of computa-

tional resources, often in the range of hundreds or even

thousands of GPU days [108, 109, 74], making NAS

more efficient was the focus of many researchers, e.g.

by employing network morphisms [9, 10, 29], by sharing

weights [79, 7, 69] or by performance prediction [6, 47].

A recent series of work [58, 101, 11, 103] employed a

real-valued relaxation of the discrete architecture search

space, enabling gradient-based optimization.

While the previously discussed approaches solely

optimize for a single objective, namely minimizing some

error rate, there has also been some work on multi-

objective neural architecture search [46, 25, 90, 60, 99,

16, 39, 30], optimizing other objectives such as network

size, latency or energy consumption concurrently. [25]

extend [57] by considering multiple objectives during

the model selection step. [60] employ NSGA-II [21],

a well known multi-objective optimization algorithm,

in the context of NAS. Instead of actually solving the

multi-objective problem, many researchers use scalar-

ization methods, such as the weighted product or sum

method [20], to obtain a single objective. This is then

optimized via, e.g. reinforcement learning [90, 39] or dif-

ferentiable NAS [99]. [12] use multi-objective Bayesian

optimization to search for convolutional cells [109]. In

this work, we will build up on the multi-objective evolu-

tionary method LEMONADE [30] that exploits cheap-to-

evaluate objectives to make the search more efficient.

This perfectly fits our application as we will see later

as our objectives are solely based on the neural net-

work architecture (and not, e.g., on expensive simula-

tions or trained neural network weights) and thus cheap

to compute. We discuss LEMONADE more detailed in Sec-

tion 3.2.1.

3 Hardware-focused neural architecture design

In this section, we introduce our framework for the

automated design of error-resilient and hardware-

efficient DNN architectures. In a first step, we identify

optimization goals that typically appear in embedded

DNN hardware applications and derive corresponding

objective functions (Section 3.1). In the further course

of this paper, these functions serve as input to a

multi-objective neural architecture search algorithm

(Section 3.2). Fixed-point quantization is applied as

post-processing step after NAS to enable efficient

DNN execution on dedicated hardware accelerators

(Section 3.3).

3.1 Hardware-specific objectives

We consider four different objectives that are commonly

desirable in embedded DNN hardware applications,

namely high error resilience, low latency, high energy

efficiency and a low bandwidth requirement.

3.1.1 Error resilience

In the context of this paper, error resilience is regarded

as robustness of the neural network classifier against

Automated design of error-resilient and hardware-efficient deep neural networks 5

perturbations in its neuron activation values. Such per-

turbations can be the result of random hardware faults,

such as radiation-induced bit-flips. We measure the de-

gree of perturbation using bit error rate (BER), i.e.

the fraction of flipped bits across all activations of the

DNN. We define architecture sensitivity at a given BER

as probability for the predicted class output to differ,

with and without bit errors. In order to maximize error

resilience, we want to minimize architecture sensitivity.

Following the approach in [80] and [82], we derive

an architecture-dependent error sensitivity metric us-

ing LRP. A key prerequisite in the mathematical frame-

work of LRP is the relevance conservation principle [67].

It ensures that the total amount of neuron relevance,

which is propagated backwards through the network af-

ter the forward pass of inference on an input sample,

is conserved in each layer. Consequently, for a group of

neurons k and its inputs j,∑
j

rj =
∑
j

∑
k

rj←k =
∑
k

∑
j

rj←k =
∑
k

rk, (4)

where rj and rk are the relevance values attributed to

neurons j and k, respectively, and rj←k is the amount

of relevance propagated backwards from neuron k to

neuron j. The conservation principle is motivated by

the fact that an output activation of neuron k can be

completely decomposed into contributions of its input

neurons j.

The relevance distribution among the neurons in

each layer depends on their activations and the synap-

tic weights [67]. For the initial backpropagation step,

the final output neuron relevance of the DNN is prede-

termined by the one-hot encoded target vector belong-

ing to each input sample. This ensures that
∑
k rk = 1

in each layer. Consequently, for a uniformly randomly

drawn neuron in a layer l, the expected relevance is

E
[
r
(l)
k

]
=

1

n
(l)
outputs

, k ∼ unif{0, n(l)outputs − 1}, (5)

where n
(l)
outputs is the total number of neurons in that

layer. The observation that a higher average relevance

corresponds to a more likely change of the DNN clas-

sification output suggests that layers with few neurons

are more sensitive to errors [80, 82].

Effect of max-pooling. Max-pooling is commonly used

in some layers of a DNN, in order to reduce the output

dimensions of that layer [51]. A max-pooling stage di-

vides the outputs of a layer into subsets and selects the

maximum output value out of each subset. We do not

regard max-pooling as a separate layer, but consider it

as attachment to a layer. If a layer l has max-pooling,

the reduced number of output values after the pooling

stage is taken to calculate n
(l)
outputs.

Additionally, we observed an increased error sensi-

tivity of neurons in layer l if max-pooling is present in

the subsequent layer l + 1. We suppose that this is be-

cause information about the input sample is reduced by

the pooling stage, but critical errors, which are mostly

changes from a low to a high activation value [53], are

likely to propagate through. Thus, we obtain an effec-

tive error sensitivity of neurons in layer l by multiplica-

tion with the pooling factor of layer l+ 1. The pooling

factor is the fraction of input to output dimension of the

pooling stage and equals 4 for the max-pooling layers

that we use throughout our experiments.

Effect of merge layers. Skip connections, i.e. concurrent

paths through the network, can improve the training of

deep architectures and thus have become popular in

state-of-the-art DNNs [34]. At some point in the net-

work, the parallel paths have to be merged again, which

can be done by componentwise addition [35] or by fea-

ture concatenation [89]. While a concatenation does not

affect error propagation, an add layer increases error

sensitivity of the DNN. There are two reasons for this.

Firstly, an add layer involves additional (error prone)

load, accumulate and store operations, while concate-

nation only involves the change of the address range

from which data is loaded in the subsequent layers.

Secondly, the fraction of neurons affected by errors

is likely to increase through the add operation. If two

inputs with an equal and small fraction of erroneous

neurons are added, the resulting fraction of erroneous

neurons doubles as long as the error locations in the in-

puts do not coincide. This can be regarded as doubling

the effective error sensitivity of the neurons preceding

the add operation.

Architecture sensitivity index. The aforementioned in-

sights are now used to define a metric that estimates

the error sensitivity of a neural network N solely based

on the topology of its architecture. We call this metric

architecture sensitivity index (ASI). It is defined as sum

of the expected error sensitivities over all layers LN of

N ,

fASI(N) =
∑
l∈LN

λ(l)ζ(l)

n
(l)
outputs

, (6)

where λ(l) is the max-pooling factor of the succeeding

layer l + 1 (i.e. 1 for no pooling) and ζ(l) is 2, if l is

connected to an add layer, else 1.

Concatenations are not counted as extra layers in

this sum, while add layers are. Furthermore, supportive

6 Schorn et al.

functionalities, such as activation function, pooling and

batch normalization [42] are not considered as separate

layers, but included in the neuron layers.

We want to emphasize that fASI can be computed

very easily, since it only depends on the network topol-

ogy and does not require any training or other expensive

computations.

3.1.2 Latency

Aside from error resilience, real-time inference with low

latency is an additional necessity in many applications.

AVs, for instance, should be able to derive driving ac-

tions from sensory input in less than 100 ms, in order to

surpass human-level perception performance and pro-

vide a sufficient level of safety [55]. While low latency

can be achieved by employing a parallelized hardware

architecture and a high operating frequency, the perfor-

mance of a DNN accelerator is constrained by manu-

facturing, power consumption, reliability, and flexibility

requirements. Thus, a reduction of computational com-

plexity at the algorithm level is desirable.

The roofline model [98] is commonly used to

describe the attainable computational performance

of a DNN accelerator [104]. It defines two opera-

tional domains, which are entered depending on the

computational workload of the accelerator. In the

memory-bound domain, latency is determined by the

amount of data transfer to memory and the available

memory bandwidth. In the compute-bound domain,

latency can be regarded as being proportional to the

number of operations required by the algorithm.

Being compute-bound is preferable over memory-

bound operation, since it allows maximum utilization

of the available computational resources and highest

throughput. Thus, we assume an accelerator, whose

memory bandwidth is sufficiently large so that it will

predominantly operate in the compute-bound domain

for the workloads considered in this paper. We can

therefore take the number of operations of the DNN

as approximate determinant of latency. Furthermore,

we regard the number of operations as being solely de-

pendent on the neural network architecture, i.e. we do

not consider any data-dependent operation reductions.

Our objective function for latency reduction is given

by

flatency(N) =
∑
l∈LN

n(l)op , (7)

where n
(l)
op counts the number of operations of layer l.

3.1.3 Energy efficiency

A further frequent demand on embedded DNN accel-

erators is a low energy consumption per classification

inference. This can have mainly two reasons. Firstly,

mobile devices have a limited amount of energy stor-

age capacity and thus energy-efficient DNN accelerators

are required, for example to extend the battery life and

range of AVs. Secondly, embedded devices often have a

strict size limitation, which makes it difficult to realize

the necessary heat dissipation. As the thermal leakage

power of an accelerator directly depends on the number

of classifications per second and the energy per classi-

fication, energy efficiency is desirable to enable high

classification throughput.

Energy consumption of DNN accelerators is domi-

nated by data transfers to and from memory [88]. This

is due to the large amount of parameters and interme-

diate data outputs of typical large-scale DNNs.

According to Horowitz [38], energy consumption for

off-chip dynamic RAM access is about two orders of

magnitude higher than for internal cache accesses and

arithmetic operations. While some hardware designers

increase energy efficiency by integrating huge on-chip

static RAMs in their DNN accelerator (e.g. [97]), this

approach is not feasible in every case. In this paper, we

assume an accelerator with small on-chip buffer (such

as [15]), so that a layerwise data transfer to and from

off-chip memory is necessary, which dominates energy

consumption.

Consequently, to maximize energy efficiency, our ob-

jective is to minimize data transfer to and from memory

per inference. We neglect the number of operations in

this calculation because of its limited influence on en-

ergy consumption and since it is already part of the

latency minimization objective function. To determine

the data transfer of a layer, we assume that each in-

put and weight parameter of the layer is loaded once

from external memory and each output is written back

once. Furthermore, we assume that the same bit-width

is used to represent all activations and parameters of

the network.

Our objective function for minimizing energy con-

sumption is thus given by the sum of layerwise input,

output, and parameter data word transfers over the

whole network,

fenergy(N) =
∑
l∈LN

(n
(l)
inputs + n

(l)
outputs + n(l)params), (8)

where n
(l)
inputs and n

(l)
outputs count the number of input

neurons and output neurons, respectively, and n
(l)
params

counts the number of parameters of layer l.

Automated design of error-resilient and hardware-efficient deep neural networks 7

3.1.4 Bandwidth requirement

As described in Section 3.1.2, we assume the accelera-

tor for which we optimize DNN architectures to oper-

ate predominantly in the compute-bound domain of the

roofline model. In order to guarantee compute-bound

operation, the accelerator has to provide a certain max-

imum bandwidth to memory. It is desirable to keep this

bandwidth requirement within bounds to simplify the

accelerator architecture.

The required memory bandwidth can vary for the

different layers of a DNN. We employ the ratio between

data transfers and operations of a layer as estimator for

its bandwidth requirement. The intuition behind this is

that a low number of operations is related to a short

processing time of the layer and consequently a high

bandwidth is required to be able to perform the neces-

sary data movements in that given time.

We define an overall objective function to optimize

neural architectures for a low bandwidth requirement

by adding up the data-computation ratios of all layers.

Thus our objective function for minimizing the band-

width requirement is given by the accumulated data-

computation ratio (ADCR):

fADCR(N) =
∑
l∈LN

n
(l)
inputs + n

(l)
outputs + n

(l)
params

n
(l)
op

. (9)

3.2 Multi-objective NAS

In the following, we introduce LEMONADE, a Lamarckian

Evolutionary algorithm for Multi-Objective Neural

Architecture DEsign [30], that we will use in our later

experiments to automatically design well-performing,

error-resilient, and hardware-efficient architectures.

3.2.1 LEMONADE

LEMONADE maintains a population P of neural networks

N . This population is improved over the course of

the algorithm with respect to multi-objective opti-

mization problem minN∈N f(N), where N denotes a

suitable space of neural network architectures (see

Section 3.2.2) and the objective function

f(N) = (fexp(N), fcheap(N))> ∈ Rm ×Rn (10)

is split into expensive-to-evaluate objectives fexp(N) ∈
Rm (in our case: the validation error, only obtainable

by expensive training) and cheap-to-evaluate objectives

fcheap(N) ∈ Rn (in our case: the objectives defined in

Section 3.1). The population P is chosen to comprise

all non-dominated networks with respect to f, i.e. the

population approximates the Pareto front. LEMONADE

exploits that fcheap is cheap to evaluate in order to bias

the sampling of children towards areas of the Pareto

front of fcheap that are sparsely populated. While fcheap
is evaluated many times in LEMONADE, fexp is evaluated

only a few times for promising networks that are likely

to improve the approximation of the Pareto front.

In every iteration of LEMONADE, firstly parent net-

works are sampled with respect to some probability

distribution (discussed later) that is solely based on the

cheap objectives. By applying mutations to the parents

(such as adding or removing a layer, see Section 3.2.2

for a detailed description), children are generated. In a

second sampling stage, a subset of all generated children

is selected, again solely based on cheap objectives, and

solely this subset is evaluated on the expensive objec-

tives fexp. Lastly, LEMONADE computes the Pareto front

from the current generation and the subset of generated

children, yielding the next generation. The described

procedure is repeated for a pre-specified number of it-

erations.

The sampling distribution. The sampling distribution

is designed to only depend on the cheap objectives and

to guide the search towards sparsely crowded regions

in the current Pareto front. In order to achieve this,

LEMONADE computes a kernel density estimator pKDE

on the cheap objective values {fcheap(N)|N ∈ P} of

the current population. Then, for both sampling stages

(i.e. (i) the probability for choosing a network N as a

parent as well as (ii) the probability of a generated child

N being part of the subset), LEMONADE uses a sampling

distribution anti-proportional to pKDE:

p(N) =
c

pKDE(fcheap(N))
, (11)

with a proper normalizing constant c. Therefore,

networks in sparsely populated regions of the Pareto

front are more likely to be chosen as parents and

generated children lying in sparsely populated regions

of the Pareto front are more likely to be evaluated

on f. The motivation behind also choosing parents in

less crowded regions is that mutations do not change

the network drastically, hence children are expected to

have similar objective values as their parents. By this

sampling distribution and the two-staged sampling

strategy, LEMONADE generates and evaluates more

children that are more likely to improve the current

approximation of the Pareto front rather then just

evaluating the cheap objective fexp(N) for all children,

making it more efficient than off-the-shelf multi-

objective optimization algorithms. We highlight that

all objectives from Section 3.1 are cheap-to-evaluate as

8 Schorn et al.

they all solely depend on the neural network architec-

ture and not, e.g. on the weights of the network only

obtainable by expensive training. Hence, LEMONADE is

a perfect fit for our purpose. For more details, we refer

the reader to the original work [30].

3.2.2 Search space and mutations within LEMONADE

In this work, we focus on NAS for image classification

tasks. Convolutional neural networks (CNNs) are the

predominantly used type of DNN in this domain [51].

However, in the recent years, the number of variations

and design choices for CNN architectures has signifi-

cantly grown (see e.g. [34] for an overview). We limit

the search space of LEMONADE to a number of prede-

fined building blocks, hyperparameters and allowed mu-

tations for two reasons. Firstly, support for a limited set

of building blocks requires less flexibility of the under-

lying hardware. This enables the use of more efficient

dedicated DNN accelerators instead of general purpose

hardware. Secondly, the space of feasible architectures

N rapidly grows with each additional variation that is

allowed. This combinatorial explosion slows down the

convergence of NAS, which is why a reasonable limita-

tion of the search space has to be chosen.

We now describe the set of mutations that are used

by LEMONADE in our experiments to generate child net-

works.

1. Insert a convolutional layer with batch normaliza-

tion [42] and rectified linear unit (ReLU) activation

[32]. The layer is inserted at a random position and

its number of filters is chosen to match the number

of filters of the preceding layer. The kernel height h

and width w of the convolutional filter are randomly

sampled: (h,w) ∈ {(3, 3), (5, 5), (7, 7), (9, 9)}.
2. Increase the number of filters of a randomly chosen

convolution by a randomly chosen factor ∈ {2, 4}. A

maximum of 1100 filters is allowed.

3. Add a skip connection. We allow skip connection

either by concatenation [89] or by addition [35].

4. Remove a randomly chosen layer or a skip connec-

tion.

5. Prune a randomly chosen convolutional layer (i.e.

remove 1/2 or 1/4 of its filters). A minimum of 15

filters is allowed.

6. Replace a randomly chosen convolution by a depth-

wise separable convolution [18].

Note that by random we always mean uniformly at ran-

dom. We highlight that the first three operations in gen-

eral increase objectives such as network’s size or energy

consumption, but likely also decrease objectives such

as the error, while the last three operations in general

decrease the firstly mentioned objectives, but increase

the lastly objectives. Consequently, these mutations are

suitable for multiple, opposing objectives.

To further speed up NAS, the authors of LEMONADE

propose to apply these mutations as network morphisms

[14, 95]. Network morphisms are function-preserving

operators on neural networks, i.e. a network morphism

maps a neural network Nw with weights w to another

neural network Ñ w̃ with weights w̃ so that for every

input x to the network Nw(x) = Ñ w̃(x). Effectively

this means that, when utilizing network morphisms as

mutations to generate children, children do not need to

be trained from scratch but rather just fine-tuned as

children by design have the same error as their parent.

This can be interpreted as Lamarckian inheritance in

the context of evolutionary algorithms, where Lamar-

ckism refers to a mechanism which allows passing skills

acquired during an individual’s lifetime (e.g. by means

of learning), on to children by means of inheritance. The

equality Nw(x) = Ñ w̃(x) can be achieved by properly

choosing w̃. For example, if one wants to insert a linear

layer at an arbitrary position in a network, equality can

be achieved by simply initializing the linear layer as an

identity mapping. Mutations 1–3 from above can all be

formulated as a network morphism (see [30] for details).

Mutations 4–6, on the other hand, cannot be framed as

network morphisms, as they all generally decrease the

network’s capacity and equality cannot be guaranteed.

Instead, Elsken et al. [30] propose approximate network

morphisms to find proper initialization for these cases.

Approximate network morphisms essentially copy the

weights of layers not affected by structural changes and

train affected layers via knowledge distillation [37].

3.3 Fixed-point quantization

Neural network training algorithms usually rely on

data representations and computations with high

numerical precision, for example a 32-bit floating-point

format, typically used in graphics processing units

(GPUs). However, after training, a reduced-precision

number format can be used for inference on a dedicated

DNN accelerator to reduce energy consumption and

bandwidth [54]. In this context, an 8-bit fixed-point

format is a common choice in embedded and mobile

devices [43]. Hence, to deploy a DNN on an embedded

device after training on a GPU, weights, biases and

activations need to be transformed from a floating-

point to a fixed-point number format. This procedure

is denoted by network quantization. We apply network

quantization as post-processing step after neural

architecture search with LEMONADE.

Automated design of error-resilient and hardware-efficient deep neural networks 9

To quantize a real value χ to a signed fixed-point

value χq using B bit, we determine

χq = clip
(

round
(χ
∆

)
,−2B−1, 2B−1

)
∆, (12)

where ∆ denotes the step size, i. e. the smallest dis-

tance between two quantization sampling points of χ.

In other words, ∆ corresponds to the value of the least

significant bit (LSB).

In [92], a simple method to find a suitable step size

for a given data distribution in DNNs with sigmoid ac-

tivations is introduced. It determines the step size ∆

based on the maximum range of a distribution accord-

ing to

∆ =
max (|χ|)
2N−1 − 1

. (13)

In the following, we refer to this quantization method as

MaxRange. However, modern DNNs commonly use un-

bounded activation functions, such as ReLU, and thus

may entail data distributions with far outliers. Since the

quantization range is adapted to the maximum value,

the step size ∆ is maximal and consequently leads to

a coarse sampling of smaller values. Moreover, as data

distributions in DNNs typically follow a Gaussian dis-

tribution, (13) leads to a coarse sampling of a large

number of values.

A quantization method which specifically targets

this problem has been introduced in [94]. Here, param-

eters and activations are quantized by minimizing the

effect of the quantization error δ = χ − χq in the net-

work. In a neural network, the output value y of a neu-

ron with a rectifying unit Φ(·), bias b, weights w and

input values x is determined by

y = Φ
(
b+

∑
wx
)
. (14)

For the purpose of measuring the influence of the quan-

tization error of inputs (δx), weights (δw) and biases

(δb), we define ỹ as the resulting neuron output when

quantities of (14) are quantized. More precisely, ỹw is

defined as the neuron output determined with quan-

tized weights wq where activations and biases remain

in a 32 bit floating-point number format. ỹx and ỹb are

defined accordingly. The step sizes ∆(l) are then indi-

vidually determined for each layer by

∆(l)
w = arg min

∆
(l)
w

∣∣∣y(l) − ỹ(l)w ∣∣∣2 ,
∆(l)
x = arg min

∆
(l)
x

∣∣∣y(l) − ỹ(l)x ∣∣∣2 and

∆
(l)
b = arg min

∆
(l)
b

∣∣∣y(l) − ỹ(l)b ∣∣∣2 .
(15)

We additionally constrain the step sizes to a power-of-

two value, i. e. ∆ ∈ {2z | z ∈ Z}, to enable a direct fixed-

point operation in a hardware accelerator. In the rest

of the paper, this quantization method is referred to as

minimal propagated quantization error (MinPQE).

4 Experiments

4.1 Experimental setup

To evaluate our methods, we use two common image

classification benchmarks. Firstly, CIFAR-10 [49] is

used, which consists of 32 × 32 pixel RGB images

divided into ten distinct classes. The samples are

divided into 50 000 training and 10 000 test samples.

Out of the training set, 5000 samples are used for

validation during neural architecture search.

Secondly, GTSRB [86] is used, which contains RGB

images of 43 different types of traffic signs. The images

of this benchmark are scaled to a resolution of 48 ×
48 pixels before they are fed into the classifier. The

dataset has 39 210 training samples, out of which 4010

are separated for classification validation. An additional

set of 12 630 images is used for measuring final test error

rates.

Unless otherwise noted, we use the same hyperpa-

rameter setup for both benchmarks. We run LEMONADE

for 300 evolutionary iterations. The algorithm is ini-

tialized with a population of 15 manually chosen trivial

network architectures with different numbers of convo-

lutional layers and kernel shapes. For DNN training,

we use stochastic gradient descent (SGD) with cosine

annealing [59], momentum of 0.9 and a weight decay of

0.0005. The learning rate for each training phase during

architecture search is initialized with 0.01. The train-

ing batch size is set to 64 throughout our experiments.

Furthermore, we apply commonly used data augmenta-

tions during training [59]. However, we leave out hori-

zontal image flips for GTSRB, since they would change

the meaning of some traffic signs. In addition, we use

mixup [105] and cutout [23] for further training data

augmentation.

The final population sizes of the CIFAR-10 and GT-

SRB models are 439 and 238, respectively. From each

of these, the 50 architectures with best validation er-

ror rates are selected and each of these is trained from

scratch on the set of training and validation images for

200 epochs. The learning rate is initialized with 0.025

in this case and all other hyperparameters stay the

same. Classification error is evaluated on the separate

test set after the training. Subsequently, we quantize

the networks’ weights and activations to an 8-bit fixed-

point representation using the MaxRange and MinPQE

10 Schorn et al.

methods described in Section 3.3 for further evalua-

tions.

4.2 Error simulations

Random bit-flip error simulations are used to evalu-

ate the actual resilience of the obtained set of neural

networks. For this purpose, we use the fault simula-

tion framework that has been previously described in

[82]. The framework builds up on the Keras [19] DNN

library with TensorFlow back-end [1]. This allows for

performing fast bit-level fault injections in the neuron

activation outputs (feature maps) of a CNN. Most of

the computation workload required for the simulation

can be efficiently computed on a GPU. The framework

automatically adds some operations behind each neu-

ron output stage of a given CNN, which emulate a fixed-

point format and allow for a bit-wise fault injection

in the neuron output memory by applying a definable

Boolean fault mask (see Fig. 1).

float to

fixpoint

fixpoint

to float
XOR

fault mask

feature

maps

feature maps

with error

Fig. 1: Steps performed by fault injection framework

between the computation of two neural network layers

[82].

4.3 Results

4.3.1 Trade-off analysis between objectives

Table 1 lists the properties of certain DNN architectures

N obtained for both benchmarks, CIFAR-10 and GT-

SRB. The selected models are the ones that minimize

each an individual objective function fi(N) (BestASI,

BestValErr, BestEfficiency and BestADCR), the model

with maximum error sensitivity (WorstASI) as well as

the model with lowest normalized worst objective value

(see Section 2.3)
∥∥̄f(N)

∥∥
∞, i.e. the balanced optimizer

of all objectives (BalOpt). The BestEfficiency models

actually minimize both flatency(N) (i.e. operations) and

fenergy(N) (i.e. data transfer). This indicates a correla-

tion between the two quantities. The respective models

are also the smallest in terms of weight parameters.

It can be seen in Table 1 that choosing a DNN with

minimal cost in one objective often leads to the out-

come that at least one other objective is close to its

worst value. This is especially the case for CIFAR-10,

where
∥∥̄f(N)

∥∥
∞ is 1 or close to 1 for all single-objective

optimizers, BestASI, BestValErr, BestEfficiency, and

BestADCR. The optimal trade-off models (BalOpt),

however, come quite close to the ideal point, with nor-

malized distances of 0.371 (CIFAR-10) and 0.267 (GT-

SRB).

Another aspect visible in Table 1 is that 8-bit quan-

tization does not significantly increase test set clas-

sification error rates of the models in comparison to

the 32-bit float case (in some cases the error is even

smaller after quantization). The differences between the

MaxRange and MinPQE quantization methods with re-

spect to test error rate are marginal.

The resulting distributions of objective values for

all 50 models that were selected after the optimiza-

tion with LEMONADE are shown in Fig. 2 and Fig. 3 for

CIFAR-10 and GTSRB, respectively. The sub-figures

(a)–(d) each depict the outcomes of fASI(N) versus one

of the other objective functions. It can be seen that the

WorstASI models have comparatively few operations

and data transfers. However, the reverse is not always

true, since there are models with few operations and

data transfers as well as low ASI. In other words, it is

possible to have high efficiency and high error resilience

at the same time.

Another interesting aspect visible in Fig. 2 (d) and

Fig. 3 (d) is a correlation between ADCR and ASI. Con-

sequently, a low ratio of data transfers to operations is

not only beneficial for limiting the required bandwidth

of the DNN accelerator, but also helps to reduce er-

ror sensitivity. This aspect becomes also apparent in

Fig. 4. It can be seen that models with more operations

typically also require more data transfers. However, the

BestASI models have a relatively high number of oper-

ations in comparison to their data transfers, as they are

located offside the main trend in the scatter plot.

4.3.2 Evaluation of resilience prediction

We now evaluate the predictive performance of our ASI

metric by performing bit-flip fault injections using the

framework described in Section 4.2. Bit-flips are ran-

domly injected in all convolutional layer feature map

outputs (after ReLU activation and pooling, where ap-

plicable) that are written to memory. MinPQE quanti-

zation with 8 bits is used, except where otherwise speci-

fied. The value of each bit in the feature map outputs is

toggled with a probability given by a defined BER. To

get statistically meaningful results [52], random fault

Automated design of error-resilient and hardware-efficient deep neural networks 11

Table 1: Properties of models that optimize a respective cost dimension. E.g. model BestASI (second row) denotes

the optimizer of the ASI objective. Bold numbers indicate minimal values among the selected 50 models with best

validation error. Data transfer and accumulated data-computation ratio are calculated taking 8-bit fixed-point

quantization of activations and weights into account.

Model Optimized Quantities Other Quantities

A
rc

h
it

ec
tu

re
S

en
si

ti
v
it

y
In

d
ex

(×
1
0
−

3
)

V
a
li

d
a
ti

o
n

S
et

E
rr

o
r

R
a
te

(%
)

O
p

er
a
ti

o
n

s
(G

O
p

/
F

ra
m

e)

D
a
ta

T
ra

n
sf

er
(M

B
/
F

ra
m

e)

A
cc

.
D

a
ta

-
C

o
m

p
u

ta
ti

o
n

R
a
ti

o
(B

/
O

p
)

N
o
rm

a
li
ze

d
W

o
rs

t
O

b
je

c-
ti

v
e

V
a
lu

e

N
u

m
b

er
o
f

P
a
ra

m
et

er
s

(×
1
0
6
)

T
es

t
S

et
E

rr
o
r

R
a
te

(%
)

(3
2
b

fl
o
a
t)

T
es

t
S

et
E

rr
o
r

R
a
te

(%
)

(8
b

M
a
x
R

a
n

g
e)

T
es

t
S

et
E

rr
o
r

R
a
te

(%
)

(8
b

M
in

P
Q

E
)

CIFAR-10
WorstASI 8.891 9.20 0.050 0.672 7.279 1.000 0.344 7.31 7.58 7.52
BestASI 0.336 9.16 0.420 2.112 1.422 0.959 1.645 6.95 6.91 6.87
BestValErr 4.267 6.52 0.186 2.381 10.230 0.996 1.489 5.48 5.33 5.41
BestEfficiency 1.750 9.18 0.049 0.665 10.264 1.000 0.337 6.54 6.68 6.61
BestADCR 0.336 9.30 0.429 2.122 1.150 0.993 1.654 6.42 6.57 6.47
BalOpt 0.970 7.56 0.127 1.668 4.241 0.371 1.330 5.72 5.66 5.63

GTSRB
WorstASI 8.120 0.45 0.045 0.478 10.218 1.000 0.101 2.53 2.66 2.64
BestASI 0.109 0.30 0.490 1.220 1.058 0.501 0.865 2.60 2.64 2.60
BestValErr 0.217 0.00 0.966 4.629 4.081 1.000 3.200 0.90 1.08 0.99
BestEfficiency 0.651 0.45 0.012 0.181 1.166 0.600 0.041 1.32 1.41 1.41
BestADCR 0.145 0.12 0.600 3.161 1.048 0.670 2.833 2.50 2.61 2.62
BalOpt 0.326 0.20 0.126 0.676 1.057 0.267 0.513 2.78 2.84 2.81

0 5 10

Test Classification Error (%)
at 8-bit Quantization

0.0

0.2

0.4

0.6

0.8

1.0

A
rc

h
it

ec
tu

re
S

en
si

ti
v
it

y
In

d
ex

×10−2

BalOpt

BestValErr

BestASI

WorstASI

(a)

0.0 0.2 0.4

Operations
(GOp/Frame)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc

h
it

ec
tu

re
S

en
si

ti
v
it

y
In

d
ex

×10−2

BalOpt

BestValErr

BestASI

WorstASI

(b)

0 1 2 3 4

Data Transfer
(MB/Frame)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc

h
it

ec
tu

re
S

en
si

ti
v
it

y
In

d
ex

×10−2

BalOpt

BestValErr

BestASI

WorstASI

(c)

0 5 10

Accumulated Data-Computation
Ratio (B/Op)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc

h
it

ec
tu

re
S

en
si

ti
v
it

y
In

d
ex

×10−2

BalOpt

BestValErr

BestASI

WorstASI

(d)

Fig. 2: Pairwise comparison of ASI with each of the other objective function outcomes for 50 Pareto-optimal

architectures on CIFAR-10.

locations are sampled n = 200 times and for each trial

the effect on the classification output of the network is

measured using the complete test set of the respective

benchmark. For this purpose, the classification change

rate (CCR), i.e. the fraction of images in the test set

that are classified differently after the fault injection, is

calculated. The sample mean of CCR over all n = 200

trials is reported. This can be interpreted as expected

probability of SDC at the given BER.

The results of a linear least-squares regression on the

ASI versus CCR value pairs of the 50 optimized models

for each benchmark are shown in Fig. 5. A BER of 0.003

was used for bit-flip injections. A correlation coefficient

R = 0.741 is achieved for CIFAR-10 and R = 0.898 for

GTSRB. While this indicates that the prediction is not

100% accurate, the correlation is relatively strong. This

is especially surprising, considering the fact that ASI is

completely determined by the architecture of the neural

network and does not require any cumbersome measure-

12 Schorn et al.

0 2 4

Test Classification Error (%)
at 8-bit Quantization

0.0

0.2

0.4

0.6

0.8

1.0

A
rc

h
it

ec
tu

re
S

en
si

ti
v
it

y
In

d
ex

×10−2

BalOpt

BestValErr BestASI

WorstASI

(a)

0.0 0.5 1.0

Operations
(GOp/Frame)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc

h
it

ec
tu

re
S

en
si

ti
v
it

y
In

d
ex

×10−2

BalOpt BestValErrBestASI

WorstASI

(b)

0 1 2 3 4

Data Transfer
(MB/Frame)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc

h
it

ec
tu

re
S

en
si

ti
v
it

y
In

d
ex

×10−2

BalOpt

BestValErrBestASI

WorstASI

(c)

0 5 10

Accumulated Data-Computation
Ratio (B/Op)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc

h
it

ec
tu

re
S

en
si

ti
v
it

y
In

d
ex

×10−2

BalOpt

BestValErrBestASI

WorstASI

(d)

Fig. 3: Pairwise comparison of ASI with each of the other objective function outcomes for 50 Pareto-optimal

architectures on GTSRB.

0.0 0.2 0.4

Operations (GOp/Frame)

0

1

2

3

4

D
at

a
T

ra
n

fe
r

(M
B

/F
ra

m
e)

BestASI

(a) CIFAR-10

0.0 0.5 1.0

Operations (GOp/Frame)

0

1

2

3

4

D
at

a
T

ra
n

fe
r

(M
B

/F
ra

m
e)

BestASI

(b) GTSRB

Fig. 4: Data transfer vs. number of operations for

Pareto-optimal architectures. BestASI models are lo-

cated offside the main trend.

0.0000 0.0025 0.0050 0.0075

Architecture Sensitivity Index

0

20

40

60

80

100

C
la

ss
ifi

ca
ti

on
C

h
an

ge
R

at
e

(%
)

Fitted Line, R = 0.741

BER = 0.003

(a) CIFAR-10

0.0000 0.0025 0.0050 0.0075

Architecture Sensitivity Index

0

20

40

60

80

100

C
la

ss
ifi

ca
ti

on
C

h
an

ge
R

at
e

(%
)

Fitted Line, R = 0.898

BER = 0.003

(b) GTSRB

Fig. 5: Correlation of ASI and CCR. A correlation

coefficient R = 0.741 is achieved for CIFAR-10 and

R = 0.898 for GTSRB.

ments based on test data or weight parameters. Thus,

we argue that ASI is an efficient and useful metric to

guide NAS towards more resilient DNN architectures.

We also evaluate CCRs for varying BERs for a sub-

set of models. The results for CIFAR-10 and GTSRB

are plotted in Fig. 6 and Fig. 7, respectively. An ap-

proximately linear dependency between BER and CCR

can be observed at very low bit error rates. At higher

BERs a transition first to a rapid growth of CCR (note

the log scales) is visible and then the value saturates at

a value corresponding to chance probability of choosing

the same label after fault injection.

10−5 10−4 10−3 10−2

Bit Error Rate (log scale)

10−3

10−2

10−1

100

C
la

ss
ifi

ca
ti

on
C

h
an

ge
R

at
e

(l
og

sc
al

e)

WorstASI

BestValErr

BalOpt

BestASI

Fig. 6: Resulting CCR for different obtained optimizers

on CIFAR-10 over a range of BERs.

An interesting finding observable in Fig. 6 and Fig. 7

is that the BestValErr models exhibit an unexpectedly

low CCR at low BERs, while they degrade less grace-

fully (much steeper increase CCR) at high BERs. In

the case of GTSRB BestValErr is actually, despite its

higher ASI, much more resilient than BestASI at low

BERs. An explanation might be that a good baseline

classification performance adds an extra degree of error

resilience, which is not captured by ASI. The steeper

Automated design of error-resilient and hardware-efficient deep neural networks 13

10−5 10−4 10−3 10−2

Bit Error Rate (log scale)

10−3

10−2

10−1

100

C
la

ss
ifi

ca
ti

on
C

h
an

ge
R

at
e

(l
og

sc
al

e)

WorstASI

BestValErr

BalOpt

BestASI

Fig. 7: Resulting CCR for different obtained optimizers

on GTSRB over a range of BERs.

increase, on the other hand, could be due to an overfit-

ting to the task (i.e. weaker ability for generalization).

4.3.3 Comparison of quantization methods

Finally, we compare the MaxRange and MinPQE quan-

tization methods (see Section 3.3), with respect to re-

sulting CCRs after bit-flip fault injections with a BER

of 0.005. Results are shown in Fig. 8 and Fig. 9. The

models are sorted in ascending order of CCR after Min-

PQE quantization in these figures.

0 10 20 30 40 50

Model

0

20

40

60

80

100

C
la

ss
ifi

ca
ti

on
C

h
an

ge
R

at
e

(%
)

BestASI Model

WorstASI Model

MaxRange Quantization, BER = 0.005

MinPQE Quantization, BER = 0.005

Fig. 8: Comparison of CCR at bit error rate 0.005 for

CIFAR-10 models quantized with the MaxRange and

MinPQE quantization methods. Models sorted after

CCR observed with MinPQE quantization.

It can be seen that MaxRange results in a signif-

icantly worse CCR in most of the cases. This can be

explained by the fact that MaxRange tends to quantize

values to a larger range, which is determined by far out-

liers, while these outliers are ignored (i.e. clipped) by

0 10 20 30 40 50

Model

0

20

40

60

80

100

C
la

ss
ifi

ca
ti

on
C

h
an

ge
R

at
e

(%
)

BestASI Model

WorstASI Model

MaxRange Quantization, BER = 0.005

MinPQE Quantization, BER = 0.005

Fig. 9: Comparison of CCR at bit error rate 0.005

for GTSRB models quantized with the MaxRange and

MinPQE quantization methods. Models sorted after

CCR observed with MinPQE quantization.

MinPQE. Consequently, MaxRange leads to a weaker

signal-to-noise ratio compared to MinPQE in the case

of bit-flip errors. We thus argue that MinPQE is the

preferable method, since it achieves both, low baseline

classification error rates as well as high error resilience.

5 Conclusions

We have introduced a method for hardware-focused and

automated neural architecture design. Our proposed

hardware-specific objective functions, which only re-

quire network topology information for their evalua-

tion, enable a fast design space exploration and find-

ing of Pareto-optimal solutions of the NAS algorithm.
This makes our method efficient and applicable also for

more complex classification benchmarks than the ones

considered in this paper. We verified the accuracy of re-

silience prediction with memory bit-flip simulations and

found it to be reasonably accurate to guide our NAS al-

gorithm towards architectural resilience optimization.

Joint resilience, efficiency, and performance optimiza-

tion has not been considered in the context of NAS

before. Finally, our findings about the influence of dif-

ferent quantization techniques on DNN error resilience

highlight the importance of choosing an optimization

technique that fosters a high signal-to-noise ratio to

limit the influence of bit-flip errors.

References

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen

Z, Citro C, Corrado GS, Davis A, Dean J, Devin

M, Ghemawat S, Goodfellow I, Harp A, Irving

14 Schorn et al.

G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kud-

lur M, Levenberg J, Mane D, Monga R, Moore

S, Murray D, Olah C, Schuster M, Shlens J,

Steiner B, Sutskever I, Talwar K, Tucker P, Van-

houcke V, Vasudevan V, Viegas F, Vinyals O,

Warden P, Wattenberg M, Wicke M, Yu Y, Zheng

X (2015) Tensorflow: Large-scale machine learn-

ing on heterogeneous distributed systems. URL

https://www.tensorflow.org/

2. Aitken R, Cannon EH, Pant M, Tahoori MB

(2015) Resiliency challenges in sub-10nm tech-

nologies. In: IEEE 33rd VLSI Test Symposium

(VTS), pp 1–4

3. Azizimazreah A, Gu Y, Gu X, Chen L (2018) Tol-

erating soft errors in deep learning accelerators

with reliable on-chip memory designs. In: IEEE

International Conference on Networking, Archi-

tecture and Storage (NAS), pp 1–10

4. Bach S, Binder A, Montavon G, Klauschen F,

Müller KR, Samek W (2015) On pixel-wise ex-

planations for non-linear classifier decisions by

layer-wise relevance propagation. PLOS ONE

10(7):e0130140

5. Baker B, Gupta O, Naik N, Raskar R (2017) De-

signing neural network architectures using rein-

forcement learning. In: International Conference

on Learning Representations

6. Baker B, Gupta O, Raskar R, Naik N (2017)

Accelerating Neural Architecture Search using

Performance Prediction. In: NIPS Workshop on

Meta-Learning

7. Bender G, Kindermans PJ, Zoph B, Vasudevan V,

Le Q (2018) Understanding and simplifying one-

shot architecture search. In: International Confer-

ence on Machine Learning

8. Blasco X, Herrero JM, Sanchis J, Mart́ınez

M (2008) A new graphical visualization of n-

dimensional Pareto front for decision-making in

multiobjective optimization. Information Sciences

178(20):3908–3924

9. Cai H, Chen T, Zhang W, Yu Y, Wang J (2018)

Efficient architecture search by network transfor-

mation. In: AAAI

10. Cai H, Yang J, Zhang W, Han S, Yu Y (2018)

Path-Level Network Transformation for Efficient

Architecture Search. In: International Conference

on Machine Learning

11. Cai H, Zhu L, Han S (2019) ProxylessNAS: Di-

rect neural architecture search on target task and

hardware. In: International Conference on Learn-

ing Representations

12. Cai L, Barneche AM, Herbout A, Sheng Foo C,

Lin J, Ramaseshan Chandrasekhar V, M Sabry

M (2018) TEA-DNN: the quest for time-energy-

accuracy co-optimized deep neural networks.

arXiv preprint

13. Carter NP, Naeimi H, Gardner DS (2010) Design

techniques for cross-layer resilience. In: Design,

Automation & Test in Europe Conference & Ex-

hibition (DATE), pp 1023–1028

14. Chen T, Goodfellow IJ, Shlens J (2016) Net2Net:

Accelerating learning via knowledge transfer. In:

International Conference on Learning Representa-

tions

15. Chen YH, Krishna T, Emer JS, Sze V (2017) Ey-

eriss: An energy-efficient reconfigurable accelera-

tor for deep convolutional neural networks. IEEE

Journal of Solid-State Circuits 52(1):127–138

16. Cheng AC, Dong JD, Hsu CH, Chang SH, Sun M,

Chang SC, Pan JY, Chen YT, Wei W, Juan DC

(2018) Searching toward Pareto-optimal device-

aware neural architectures. In: Proceedings of the

International Conference on Computer-Aided De-

sign, ICCAD ’18

17. Chenxi L, Liang Chieh C, Florian S, Hartwig A,

Wei H, Alan L Y, Li FF (2019) Auto-DeepLab: Hi-

erarchical neural architecture search for semantic

image segmentation. In: Conference on Computer

Vision and Pattern Recognition

18. Chollet F (2017) Xception: Deep learning with

depthwise separable convolutions. In: IEEE Con-

ference on Computer Vision and Pattern Recog-

nition (CVPR), pp 1800–1807

19. Chollet F, et al. (2015) Keras. URL

https://keras.io

20. Deb K, Kalyanmoy D (2001) Multi-Objective Op-

timization Using Evolutionary Algorithms. John

Wiley & Sons, Inc., New York, NY, USA

21. Deb K, Agrawal S, Pratap A, Meyarivan T (2000)

A fast elitist non-dominated sorting genetic algo-

rithm for multi-objective optimization: Nsga-ii. In:

Schoenauer M, Deb K, Rudolph G, Yao X, Lutton

E, Merelo JJ, Schwefel HP (eds) Parallel Problem

Solving from Nature PPSN VI, Springer Berlin

Heidelberg, Berlin, Heidelberg, pp 849–858

22. Deng J, Fang Y, Du Z, Wang Y, Li H, Temam

O, Ienne P, Novo D, Li X, Chen Y, Wu C (2015)

Retraining-based timing error mitigation for hard-

ware neural networks. In: Design, Automation &

Test in Europe Conference & Exhibition (DATE),

pp 593–596

23. DeVries T, Taylor GW (2017) Improved regu-

larization of convolutional neural networks with

cutout. eprint arXiv:1708.04552

24. Dias FM, Borralho R, Fontes P, Antunes A (2010)

FTSET: A software tool for fault tolerance eval-

Automated design of error-resilient and hardware-efficient deep neural networks 15

uation and improvement. Neural Computing and

Applications 19(5):701–712

25. Dong JD, Cheng AC, Juan DC, Wei W, Sun M

(2018) DPP-Net: Device-aware progressive search

for pareto-optimal neural architectures. In: Fer-

rari V, Hebert M, Sminchisescu C, Weiss Y (eds)

Computer Vision – ECCV 2018

26. Dreslinski RG, Wieckowski M, Blaauw D,

Sylvester D, Mudge T (2010) Near-threshold com-

puting: Reclaiming Moore’s law through energy

efficient integrated circuits. Proceedings of the

IEEE 98(2):253–266

27. Ehrgott M, Tenfelde-Podehl D (2003) Computa-

tion of ideal and Nadir values and implications for

their use in MCDM methods. European Journal of

Operational Research 151(1):119–139

28. El Mhamdi EM, Guerraoui R (2017) When neu-

rons fail. In: IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pp

1028–1037

29. Elsken T, Metzen JH, Hutter F (2017) Simple

And Efficient Architecture Search for Convolu-

tional Neural Networks. In: NIPS Workshop on

Meta-Learning

30. Elsken T, Metzen JH, Hutter F (2019) Effi-

cient multi-objective neural architecture search

via Lamarckian evolution. In: International Con-

ference on Learning Representations

31. Elsken T, Metzen JH, Hutter F (2019) Neural ar-

chitecture search: A survey. Journal of Machine

Learning Research 20(55):1–21

32. Glorot X, Bordes A, Bengio Y (2011) Deep sparse

rectifier neural networks. In: International Confer-

ence on Artificial Intelligence and Statistics (AIS-

TATS), vol 15

33. Gomez LB, Cappello F, Carro L, DeBardeleben

N, Fang B, Gurumurthi S, Pattabiraman K, Rech

P, Reorda MS (2014) GPGPUs: How to combine

high computational power with high reliability. In:

Design, Automation & Test in Europe Conference

& Exhibition (DATE)

34. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai

B, Liu T, Wang X, Wang G, Cai J, Chen T (2018)

Recent advances in convolutional neural networks.

Pattern Recognition 77:354–377

35. He K, Zhang X, Ren S, Sun J (2016) Deep residual

learning for image recognition. In: IEEE Confer-

ence on Computer Vision and Pattern Recognition

(CVPR), pp 770–778

36. Henkel J, Bauer L, Dutt N, Gupta P, Nassif S,

Shafique M, Tahoori M, Wehn N (2013) Reliable

on-chip systems in the nano-era. In: 50th Annual

Design Automation Conference (DAC), pp 695–

704

37. Hinton G, Vinyals O, Dean J (2015) Dis-

tilling the knowledge in a neural net-

work. arXiv preprint abs/1503.02531, URL

https://arxiv.org/abs/1503.02531, 1503.02531

38. Horowitz M (2014) Computing’s energy problem

(and what we can do about it). In: IEEE Interna-

tional Solid- State Circuits Conference (ISSCC),

pp 10–14

39. Hsu CH, Chang SH, Juan DC, Pan JY, Chen YT,

Wei W, Chang SC (2018) Monas: Multi-objective

neural architecture search. arXiv preprint

40. Huang G, Liu Z, van der Maaten L, Weinberger

KQ (2017) Densely connected convolutional net-

works. In: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp 4700–4708

41. Hutter F, Kotthoff L, Vanschoren J (eds)

(2019) Automated Machine Learning: Meth-

ods, Systems, Challenges. Springer, available at

http://automl.org/book.

42. Ioffe S, Szegedy C (2015) Batch normalization:

Accelerating deep network training by reducing

internal covariate shift. In: Proceedings of the

32nd International Conference on Machine Learn-

ing

43. Jacob B, Kligys S, Chen B, Zhu M, Tang M,

Howard AG, Adam H, Kalenichenko D (2018)

Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In:

IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR)

44. Kerlirzin P, Vallet F (1993) Robustness in multi-

layer perceptrons. Neural Computation 5(3):473–

482

45. Kim S, Howe P, Moreau T, Alaghi A, Ceze L,

Visvesh S (2018) MATIC: Learning around errors

for efficient low-voltage neural network accelera-

tors. In: Design, Automation & Test in Europe

Conference & Exhibition (DATE)

46. Kim YH, Reddy B, Yun S, Seo C (2017) NEMO:

Neuro-evolution with multiobjective optimization

of deep neural network for speed and accuracy. In:

ICML’17 AutoML Workshop

47. Klein A, Falkner S, Springenberg JT, Hutter F

(2017) Learning curve prediction with Bayesian

neural networks. In: International Conference on

Learning Representations

48. Koopman P, Wagner M (2016) Challenges in auto-

nomous vehicle testing and validation. SAE Inter-

national Journal of Transportation Safety 4(1):15–

24

49. Krizhevsky A (2009) Learning multiple layers of

features from tiny images. Master Thesis, Univer-

16 Schorn et al.

sity of Toronto

50. Krogh A, Hertz JA (1991) A simple weight decay

can improve generalization. In: Advances in Neu-

ral Information Processing Systems

51. LeCun Y, Bengio Y, Hinton G (2015) Deep learn-

ing. Nature 521(7553):436–444

52. Leveugle R, Calvez A, Maistri P, Vanhauwaert P

(2009) Statistical fault injection: Quantified error

and confidence. In: Design, Automation & Test

in Europe Conference & Exhibition (DATE), pp

502–506

53. Li G, Hari SKS, Sullivan M, Tsai T, Pattabiraman

K, Emer J, Keckler SW (2017) Understanding er-

ror propagation in deep learning neural network

(DNN) accelerators and applications. In: Proceed-

ings of the International Conference for High Per-

formance Computing, Networking, Storage and

Analysis

54. Lin DD, Talathi SS, Annapureddy VS (2016)

Fixed point quantization of deep convolutional

networks. In: Proceedings of the 33rd Interna-

tional Conference on Machine Learning, vol 48,

pp 2849–2858

55. Lin SC, Zhang Y, Hsu CH, Skach M, Haque ME,

Tang L, Mars J (2018) The architectural impli-

cations of autonomous driving: Constraints and

acceleration. In: International Conference on Ar-

chitectural Support for Programming Languages

and Operating Systems, pp 751–766

56. Liu C, Hu M, Strachan JP, Li H (2017) Rescuing

memristor-based neuromorphic design with high

defects. In: 54th Annual Design Automation Con-

ference (DAC), pp 1–6

57. Liu C, Zoph B, Neumann M, Shlens J, Hua W,

Li LJ, Fei-Fei L, Yuille A, Huang J, Murphy K

(2018) Progressive Neural Architecture Search. In:

European Conference on Computer Vision

58. Liu H, Simonyan K, Yang Y (2019) DARTS: Dif-

ferentiable architecture search. In: International

Conference on Learning Representations

59. Loshchilov I, Hutter F (2017) SGDR: Stochastic

gradient descent with warm restarts. In: Inter-

national Conference on Learning Representations

(ICLR)

60. Lu Z, Whalen I, Boddeti V, Dhebar Y, Deb K,

Goodman E, Banzhaf W (2019) NSGA-net: A

multi-objective genetic algorithm for neural archi-

tecture search

61. Mahdiani HR, Fakhraie SM, Lucas C (2012) Re-

laxed fault-tolerant hardware implementation of

neural networks in the presence of multiple tran-

sient errors. IEEE Transactions on Neural Net-

works and Learning Systems 23(8):1215–1228

62. Marques J, Andrade J, Falcao G (2017) Unreliable

memory operation on a convolutional neural net-

work processor. In: IEEE International Workshop

on Signal Processing Systems (SiPS)

63. Miettinen K (1999) Nonlinear Multiobjective Op-

timization. Springer Science & Business Media

64. Miikkulainen R, Liang J, Meyerson E, Rawal

A, Fink D, Francon O, Raju B, Shahrzad H,

Navruzyan A, Duffy N, Hodjat B (2017) Evolv-

ing Deep Neural Networks. In: arXiv:1703.00548

65. Mittal S (2016) A survey of techniques for ap-

proximate computing. ACM Computing Surveys

48(4):1–33

66. Montavon G, Lapuschkin S, Binder A, Samek W,

Müller KR (2017) Explaining nonlinear classifi-

cation decisions with deep Taylor decomposition.

Pattern Recognition 65:211–222

67. Montavon G, Samek W, Müller KR (2018) Meth-

ods for interpreting and understanding deep neu-

ral networks. Digital Signal Processing 73:1–15

68. Mutlu O (2017) The RowHammer problem and

other issues we may face as memory becomes

denser. In: Design, Automation & Test in Europe

Conference & Exhibition (DATE)

69. Pham H, Guan MY, Zoph B, Le QV, Dean J

(2018) Efficient neural architecture search via pa-

rameter sharing. In: International Conference on

Machine Learning

70. Piuri V (2001) Analysis of fault tolerance in ar-

tificial neural networks. Journal of Parallel and

Distributed Computing 61(1):18–48

71. Reagen B, Whatmough P, Adolf R, Rama S,

Lee H, Lee SK, Hernandez-Lobato JM, Wei GY,

Brooks D (2016) Minerva: Enabling low-power,

highly-accurate deep neural network accelerators.

In: ACM/IEEE 43rd Annual International Sym-

posium on Computer Architecture (ISCA), pp

267–278

72. Reagen B, Gupta U, Pentecost L, Whatmough P,

Lee SK, Mulholland N, Brooks D, Wei GY (2018)

Ares: A framework for quantifying the resilience

of deep neural networks. In: 55th Annual Design

Automation Conference (DAC)

73. Real E, Moore S, Selle A, Saxena S, Suematsu

YL, Tan J, Le QV, Kurakin A (2017) Large-scale

evolution of image classifiers. In: Precup D, Teh

YW (eds) Proceedings of the 34th International

Conference on Machine Learning, PMLR, Interna-

tional Convention Centre, Sydney, Australia, Pro-

ceedings of Machine Learning Research, vol 70, pp

2902–2911

74. Real E, Aggarwal A, Huang Y, Le QV (2019)

Aging Evolution for Image Classifier Architecture

Automated design of error-resilient and hardware-efficient deep neural networks 17

Search. In: AAAI

75. Saikia T, Marrakchi Y, Zela A, Hutter F, Brox T

(2019) Autodispnet: Improving disparity estima-

tion with automl

76. Salami B, Unsal OS, Kestelman AC (2018) On

the resilience of RTL NN accelerators: Fault char-

acterization and mitigation. In: 30th International

Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD), pp 322–

329

77. Sandler M, Howard A, Zhu M, Zhmoginov A,

Chen LC (2018) MobileNetV2: Inverted residu-

als and linear bottlenecks. In: IEEE Conference

on Computer Vision and Pattern Recognition

(CVPR)

78. Santos FFd, Pimenta PF, Lunardi C, Draghetti L,

Carro L, Kaeli D, Rech P (2019) Analyzing and

increasing the reliability of convolutional neural

networks on GPUs. IEEE Transactions on Relia-

bility 68(2):663–677

79. Saxena S, Verbeek J (2016) Convolutional neural

fabrics. In: Lee DD, Sugiyama M, Luxburg UV,

Guyon I, Garnett R (eds) Advances in Neural In-

formation Processing Systems 29, Curran Asso-

ciates, Inc., pp 4053–4061

80. Schorn C, Guntoro A, Ascheid G (2018) Accurate

neuron resilience prediction for a flexible reliabil-

ity management in neural network accelerators.

In: Design, Automation & Test in Europe Confer-

ence & Exhibition (DATE)

81. Schorn C, Guntoro A, Ascheid G (2018) Effi-

cient on-line error detection and mitigation for

deep neural network accelerators. In: Gallina B,

Skavhaug A, Bitsch F (eds) Computer Safety, Re-

liability, and Security (SAFECOMP), Springer,

LNCS, vol 11093

82. Schorn C, Guntoro A, Ascheid G (2019) An ef-

ficient bit-flip resilience optimization method for

deep neural networks. In: Design, Automation &

Test in Europe Conference & Exhibition (DATE),

pp 1486–1491

83. Sridharan V, DeBardeleben N, Blanchard S, Fer-

reira KB, Stearley J, Shalf J, Gurumurthi S (2015)

Memory errors in modern systems: The good, the

bad, and the ugly. In: Twentieth International

Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASP-

LOS), pp 297–310

84. Srinivasan G, Wijesinghe P, Sarwar SS, Jaiswal

A, Roy K (2016) Significance driven hybrid 8T-6T

SRAM for energy-efficient synaptic storage in ar-

tificial neural networks. In: Design, Automation &

Test in Europe Conference & Exhibition (DATE)

85. Srivastava N, Hinton GE, Krizhevsky A, Sutskever

I, Salakhutdinov RR (2014) Dropout: A simple

way to prevent neural networks from overfitting.

Journal of Machine Learning Research 15:1929–

1958

86. Stallkamp J, Schlipsing M, Salmen J, Igel C (2012)

Man vs. computer: Benchmarking machine learn-

ing algorithms for traffic sign recognition. Neural

Networks 32:323–332

87. Stanley KO, Miikkulainen R (2002) Evolving neu-

ral networks through augmenting topologies. Evo-

lutionary Computation 10:99–127

88. Sze V, Chen YH, Yang TJ, Emer JS (2017)

Efficient processing of deep neural networks: A

tutorial and survey. Proceedings of the IEEE

105(12):2295–2329

89. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna

Z (2016) Rethinking the inception architecture for

computer vision. In: IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR),

pp 2818–2826

90. Tan M, Chen B, Pang R, Vasudevan V, Le QV

(2018) Mnasnet: Platform-aware neural architec-

ture search for mobile. arXiv preprint

91. Torres-Huitzil C, Girau B (2017) Fault and error

tolerance in neural networks: A review. IEEE Ac-

cess 5:17322–17341

92. Vanhoucke V, Senior A, Mao MZ (2011) Improv-

ing the speed of neural networks on CPUs. In:

Deep Learning and Unsupervised Feature Learn-

ing Workshop, NIPS 2011

93. Venkataramani S, Ranjan A, Roy K, Raghu-

nathan A (2014) AxNN: Energy-efficient neuro-

morphic systems using approximate computing.

In: IEEE/ACM International Symposium on Low

Power Electronics and Design (ISLPED), pp 27–

32

94. Vogel S, Springer J, Guntoro A, Ascheid G (2019)

Self-supervised quantization of pre-trained neural

networks for multiplierless acceleration. In: De-

sign, Automation & Test in Europe Conference

& Exhibition (DATE), pp 1088–1093

95. Wei T, Wang C, Rui Y, Chen CW (2016) Net-

work morphism. In: Balcan MF, Weinberger KQ

(eds) Proceedings of The 33rd International Con-

ference on Machine Learning, PMLR, New York,

New York, USA, Proceedings of Machine Learning

Research, vol 48, pp 564–572

96. Whatmough PN, Lee SK, Brooks D, Wei GY

(2018) DNN Engine: A 28-nm timing-error toler-

ant sparse deep neural network processor for IoT

applications. IEEE Journal of Solid-State Circuits

53(9):2722–2731

18 Schorn et al.

97. WikiChip (2019) FSD Chip - Tesla. URL

https://en.wikichip.org/wiki/fsd chip

98. Williams S, Waterman A, Patterson D (2009)

Roofline: An insightful visual performance model

for multicore architectures. Communications of

the ACM 52(4):65–76

99. Wu B, Dai X, Zhang P, Wang Y, Sun F, Wu Y,

Tian Y, Vajda P, Jia Y, Keutzer K (2019) FBNet:

Hardware-aware efficient convnet design via differ-

entiable neural architecture search. arXiv preprint

100. Xia L, Liu M, Ning X, Chakrabarty K, Wang Y

(2017) Fault-tolerant training with on-line fault

detection for RRAM-based neural computing sys-

tems. In: 54th Annual Design Automation Con-

ference (DAC)

101. Xie S, Zheng H, Liu C, Lin L (2019) SNAS:

stochastic neural architecture search. In: Interna-

tional Conference on Learning Representations

102. Yang L, Murmann B (2017) SRAM voltage scal-

ing for energy-efficient convolutional neural net-

works. In: 18th International Symposium on Qual-

ity Electronic Design (ISQED), pp 7–12

103. Zela A, Elsken T, Saikia T, Marrakchi Y, Brox T,

Hutter F (2019) Understanding and Robustifying

Differentiable Architecture Search. arXiv preprint

104. Zhang C, Sun G, Fang Z, Zhou P, Pan P, Cong

J (2018) Caffeine: Towards uniformed representa-

tion and acceleration for deep convolutional neural

networks. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems

105. Zhang H, Cisse M, Dauphin YN, Lopez-Paz D

(2018) mixup: Beyond empirical risk minimiza-

tion. In: International Conference on Learning

Representations (ICLR)

106. Zhang Q, Wang T, Tian Y, Yuan F, Xu Q (2015)

ApproxANN: An approximate computing frame-

work for artificial neural network. In: Design, Au-

tomation & Test in Europe Conference & Exhibi-

tion (DATE), pp 701–706

107. Zhong Z, Yang Z, Deng B, Yan J, Wu W, Shao

J, Liu CL (2018) BlockQNN: Efficient block-wise

neural network architecture generation. arXiv

preprint

108. Zoph B, Le QV (2017) Neural architecture search

with reinforcement learning. In: International

Conference on Learning Representations

109. Zoph B, Vasudevan V, Shlens J, Le QV (2018)

Learning transferable architectures for scalable

image recognition. In: Conference on Computer

Vision and Pattern Recognition

