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Abstract

Real world datasets often contain noisy labels, and learning from such datasets using standard classi-

fication approaches may not produce the desired performance. In this paper, we propose a Gaussian

Mixture Discriminant Analysis (GMDA) with noisy label for each class. We introduce flipping proba-

bility and class probability and use EM algorithms to solve the discriminant problem with label noise.

We also provide the detail proofs of convergence. Experimental results on synthetic and real-world

datasets show that the proposed approach notably outperforms other four state-of-art methods.

Keywords: Gaussian mixture models, label noise, discriminant analysis, maximum likelihood

estimate

1. INTRODUCTION

Noisy label problem have been investigated for a long time in the machine learning literature

and label noise-robust algorithms have numerous applications in medical image processing, spam fil-

tering [1, 2, 3], Alzheimer disease prediction[1], gene expression classification [4] , text processing

[5, 6, 7, 8, 9, 10, 11], image recognition [12, 13, 14, 15, 16, 17]. Noisy labels are introduced by expert

error and other unknown and unexpected factors. Mislabeled instances may lead to various poten-

tial negative consequences: bias the learning process, debase the prediction accuracy, and increase

algorithm complexity of inferred models [3, 4] and the number of necessary labeling training samples,

which is often produced by an expensive and time-consuming hand-annotation process or inefficient

automatic annotation [1, 2], and increase difficulties in feature selection [18, 19]. The methods to deal

with label noise can be classified into three [1]: 1) the label noise is ignored, and approaches that

are robust to the presence of label noise, such as ensemble AdaBoost [20] and decision trees [5], are

searched; 2) mislabeled instances are detected and removed, and then cleaned training samples [21, 22]

are used to learn; and 3) models considering label noise are designed, and label noise-tolerant methods

are determined. Label noise-tolerant methods enable researchers to take advantage of noise knowledge

and use more sample information than noise-cleansing methods. The disadvantages are the increment
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in algorithm complexity and the increase in the number of parameters to estimate.

Bootkrajang presented a robust normal discriminant analysis (rNDA) algorithm [23]. The algorithm

solves the maximum likelihood estimate problem by employing the EM (Expectation Maximization)

algorithm [24, 25, 26]. The rNDA model assumes that the examples in each class obey single Gaussian

distribution; it is scarcely to verify. Thus, its performance on datasets that are not strictly Gaussian

in each class seems insufficient.

Numerous studies on GMM have appeared in many fields, such as outlier mining [27], image pro-

cessing [28, 29], clustering [30] and community detection[6]. [27] devised a approach to adapt to a

continuously evolving outlier distribution. [31] proposed initializing mean vectors by choosing points

with higher concentrations of neighbors, and using a truncated normal distribution for the preliminary

estimation of dispersion matrices. DivideMix models the per-sample loss distribution with a mixture

model to dynamically divide the training data into a labeled set with clean samples and an unlabeled

set with noisy samples [28]. [29] addressed noisy labels issue and proposed selective negative learning

and positive learning approach trained using a complementary label. [30] constructed a kernel Fisher

discriminant (KFD) from training examples with noisy labels. [6] presented a procedure for commu-

nity detection using GMMs that incorporates certain truncation and shrinkage effects that arise in the

non-vanishing noise regime.

To solve this problem, we propose a new scheme to carry out the discriminant analysis with Gaussian

mixture models (GMM) which has the ability to handle the non-Gaussian distributions. We employ

a linear combination of Gaussian distributions to approximate the probabilistic distributions in each

class and use the EM algorithm to solve the maximum likelihood estimate [32, 25, 26]. In the last

several decades, researchers in the fields of statistics and computer vision have been interested in GMM.

The discriminant analysis discussed in this paper uses GMM to approximate data distributions

and is applied to classification in the case of label noise. Maximum likelihood estimate method is used

to determine the parameters. Moreover, this study derives the updating formulas of the parameters

of the proposed Gaussian Mixture Discriminant Analysis (GMDA). The performance of GMDA is

then compared with that of AdaBoost, rNDA, rLR, and rmLR [6] on two synthetic and six real-world

datasets. Results show that our method can effectively and correctly estimate the parameters of both

distribution and noise.

Our main contributions are as follows:

1) We propose a general discriminant analysis framework for attacking the noisy label problem. Dif-
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ferent from previous approach, in this framework, the probabilistic distribution of each class on real

data is captured by GMM instead of the single Gaussian distribution, this single Gaussian assumption

for each class is apparently too harsh to be verified, and can scarcely reflect the actual scenarios.

2) We show that when flipping probability and class probability is introduced, the parameters of

GMDA model and posterior probability to predict an unlabeled instance can be computed by using

EM algorithm.

3) We provide the detail proofs of convergence for general situation, e.g., Gaussian classes with noisy

labels and class-conditional Gaussian mixtures with noisy labels.

4) We have conducted extensive experiments on two synthetic datasets and six real-life datasets, which

have different properties and scales, to demonstrate the effectiveness and efficiency of our proposed

formulation.

The rest of this paper is organized as follows: the proposed GMMs discriminant analysis with

noisy label for each class is formally introduced in Section II, convergence analysis for general situ-

ation, Gaussian classes with noisy labels and class-conditional Gaussian mixtures with noisy labels

is presented in Section III, and related work in Section IV. Experimental results using synthetic and

real-world datasets are discussed in Section V. Finally, the conclusion and future work are summarized

in Section VI.

2. DISCRIMINANT ANALYSIS BASED ON GAUSSIAN MIXTURE MODELS

2.1. Description of the problem with the noise labels

Considering a statistical decision problem (pattern recognition, classification, and discrimination),

we assume that some real data vectors

x = (x1, ..., xd) ∈ X ,
(
X = Rd

)
have to be classified with respect to a finite set of classes Ω = {ω1, ω2, · · · , ωK} . The data vectors

x ∈ X are supposed to occur randomly according to some unknown class-conditional pdfs p (x|ω) and

the respective priori class probabilities p (ω) , ω ∈ Ω.

In case of supervised learning we are given a training set Sω for each class ω ∈ Ω :

Sω = {x ∈ X} , ω ∈ Ω ; S =
⋃
ω∈Ω

Sω, |S| =
∑
ω∈Ω

|Sω|

where |S| and |Sω| denote the number of elements in set Sω. The decision problem can be solved by

means of Bayes decision function by computing the maximum-likelihood estimates of the conditional

densities p (x|ω) . The related log-likelihood criterion Lω is given by

Lω =
1

|Sω|
∑

x∈Sω

logp (x|ω) p (ω) , (ω ∈ Ω)
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with normalization coefficient 1/ |Sω| included for convenience.

In case of noisy labels we assume that the true label ω ∈ Ω of a given observation x ∈ S may be

randomly interchanged (flipped, corrupted, substituted), i.e. for each data vector x ∈ S we are given a

unique observed label ω̃ ∈ Ω , which may differ from the true label ω . Obviously, the probabilities p(ω̃)

of the observed labels ω̃ may differ from the true probabilities p (ω) of the true labels ω . Assuming

randomly substituted labels we denote p (ω|ω̃) is the probability of the true label ω given the observed

label ω̃. In this sense the conditional probability density p̃ (x|ω̃) of x ∈ X given an observed label ω̃ is

a mixture

p̃ (x|ω̃) =
∑
ω∈Ω

p (x|ω)p (ω|ω̃) ,x ∈ X , ω̃ ∈ Ω

consequently, with the probability p (ω|ω̃) , any of the classes ω ∈ Ω can be the true source of the

observation x ∈ X . Note that the probabilities p (ω|ω̃) , ω ∈ Ω , p(ω̃) , ω̃ ∈ Ω are generally unknown

and have to be estimated from data.

2.2. Gaussian mixture model

Lawrence and Schölkopf [19] proposed a probabilistic approach to label noise, and Bootkrajang

[22], [8] extended the same model to multi-class case, assuming a Gaussian density for each class. We

propose discriminant analysis based on GMM where GMM is used to approximate the probabilistic

distribution of each class on real data. Supposed that the data log-likelihood is:

L = log
∏

x∈S
p (x |ω̃, θω̃ ) p (ω̃)

=
∑
x∈S

logp (x |ω̃, θω̃ ) p (ω̃)

under our assumption conditions, the given model may be no longer valid. Thus, a hidden variable

ω ∈ Ω is introduced to address the problem. The hidden variable ω is considered as the real class

label:

L =
∑
x∈S

log
∑
ω∈Ω

p (x, ω |ω̃, θω̃ ) p (ω̃)

= log
∏

x∈S

∑
ω∈Ω

p (x, ω |ω̃, θω̃ ) p (ω̃)
(1)

The observed labels are generated from true labels and random noise. The joint probability ω and

ω̃ can be expressed as p (ω, ω̃n) = p (ω̃n |ω ) p (ω). Input x is conditionally independent from observed

label ω̃n after knowing true label ω, because the label noise is random. Thus, we change Eq.(1) into

L (Θ) =
∑
x∈S

log
∑
ω∈Ω

p (x |ω̃, ω, θω̃n ) p (ω̃n, ω)

=
∑
x∈S

log
∑
ω∈Ω

p (x |ω, θω ) p (ω̃ |ω ) p (ω)

=
∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

log
∑
ω∈Ω

p (x |ω, θω )p (ω̃ |ω ) p (ω)

(2)

where I (·) is an indicator function. Flipping probability is defined as γω̃,ω
def
= p (ω̃ |ω ) ,which is similar

to reference [11], indicating the probability of true label ω flipped to the observed label ω̃ . Class
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probability is defined as πω
def
= p (ω), and the constraint conditions are

∑̃
ω∈Ω

γω̃,ω = 1 and
∑
ω∈Ω

πω = 1 .

The set of flipping probability and class probability are denoted as Γ = {γω̃,ω}ω̃∈Ω and Π = {πω}ω∈Ω,

respectively. The Gaussian mixture density function is

p (x |ω, θω ) =
∑
m∈M

wmg (x |ω, µm,Σm )

where θω = {wm, µm,Σm}m∈M is the parameter set of the class k , The elements are weight, mean

vector, and covariance matrix of the component m,and M is the number of components. The logarithm

of a sum in (2) can be rewritten as:

log
∑
ω∈Ω

p (x |ω; θω ) p (ω̃ |ω ) p (ω)

= log
∑
ω∈Ω

γω̃,ωπω
∑

m∈M
wmg (x |ω, µm,Σm )

= log
∑
ω∈Ω

q (ω)
γω̃,ωπω

∑
m∈M

wmg(x|ω,µm,Σm )

q(ω)

(3)

where q (·) is an arbitrary distribution of ω, and the constraint condition is
∑
ω∈Ω

q (ω) = 1.

According to Jensen’s inequality [33], if Z is a random variable, and g (·) is a concave function,

then

g (E (Z)) ≥ E (g (Z))

Thus the lower bound of (3) is derived. Since g (·) is a concave function, and again by Jensen’s

inequality we have:

f
(
Eω∼q(ω)

(
γω̃,ωπωp(x|ω,θω )

q(ω)

))
≥ Eω∼q(ω)

(
f
(
γω̃,ωπωp(x|ω,θω )

q(ω)

))
i.e.

log
∑
ω∈Ω

q (ω)
γω̃,ωπωp(x|ω,θω )

q(ω)

≥
∑
ω∈Ω

q (ω) log
γω̃,ωπωp(x|ω,θω )

q(ω)

A Lagrange multiplier λG1 is introduced to find a local optimum of the objective function subject to∑
ω∈Ω

q (ω) = 1, and the corresponding Lagrange function is:

G1 =
∑
ω∈Ω

q (ω) [log γω̃,ωπωp (x |ω, θω )− log q (ω)]

+λG1

[
1−

∑
ω∈Ω

q (ω)

]
By setting the derivative w.r.t q (ω) equals to zero, we obtain the formula as follow:

log p (x|ω, θω) γω̃,ωπω − log q (ω)− 1− λG1 = 0

⇒ log q (ω) = log p (x|ω, θω) γω̃,ωπω − 1− λG1

⇒ q (ω) = p (x|ω, θω) γω̃,ωπω · e−(1+λG1)

(4)
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Further, we integrate q (ω) in the field of Ω , and the optimal solution w.r.t λG1 is:∑
ω∈Ω

q (ω) = e−(1+λG1) ∑
ω∈Ω

p (x|ω, θω) γω̃,ωπω = 1

⇒ λG1 = log
∑
ω∈Ω

p (x|ω, θω) γω̃,ωπω − 1

λG1
is plugged back into (4), and q (ω) is solved as follows:

q (ω) =
p(x|ω,θω)γω̃,ωπω∑

ω∈Ω

p(x|ω,θω)γω̃,ωπω

= p (ω |x, ω̃ )

(5)

Jensen’s inequality is employed and the lower bound of log p (x |ω, θω ) = log
∑

m∈M
wω,mg (x |ω, µω,m,Σω,m )

is derived as

log p (x |ω, θω )

= log
∑

m∈M
wω,mg (x |ω, µω,m,Σω,m )

= log
∑

m∈M
hω,m

wω,mg(x|ω,µω,m,Σω,m )
hω,m

≥
∑

m∈M
hω,m log

wω,mg(x|ω,µω,m,Σω,m )
hω,m

=
∑

m∈M
hω,m [logwω,mg (x |ω, µω,m,Σω,m )− log hω,m]

where
∑

m∈M
hω,m = 1 . Lagrange multiplier λG2

is introduced again to solve for hω,m, the corresponding

Lagrange function is as follows:

G2 =
∑

m∈M
hω,m [logwω,mg (x |ω, µω,m,Σω,m )− log hω,m]

+λG2

(
1−

∑
m∈M

hω,m

)
By setting the derivative w.r.t hω,m equals to zero, we obtain the formula as follow:

logwω,mg (x |ω, µω,m,Σω,m )− log hω,m − 1− λλG2
= 0

⇒ log hω,m = logwω,mg (x |ω, µω,m,Σω,m )− 1− λλG2

⇒ hω,m = wω,mg (x |ω, µω,m,Σω,m ) · e−
(

1+λλG2

)

Furthermore, we integrate hω,m and the optimal solution w.r.t λG2
is:

∑
m∈M

hω,m =
∑

m∈M
wω,mg (x |ω, µω,m,Σω,m ) · e−(1+λG2)

⇒ λG2 = log
∑

m∈M
wω,mg (x |ω, µω,m,Σω,m )− 1

We plug λG2
back and solve for hω,m as follows:

hω,m =
wω,mg(x|ω,µω,m,Σω,m )∑

m∈M
wω,mg(x|ω,µω,m,Σω,m )

= Pr (m |x, ω )

(6)
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As a result, equation (5) and (6) are plugged back to derive the objective function (7):

Q =
∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

∑
ω∈Ω

{p (ω |x, ω̃ )

·
∑

m∈M
Pr (m |x, ω ) log

wω,mg(x|ω,µω,m,Σω,m )
Pr(m|x,ω )

}
+
∑
x∈S

∑
ω∈Ω

p (ω |x, ω̃ ) log γω̃,ω +
∑
x∈S

∑
ω∈Ω

p (ω |x, ω̃ ) log πω

(7)

The parameters to be estimated are Θ = {θω}ω∈Ω, Γ = {γω̃,ω}ω̃∈Ω , and Π = {πω}ω∈Ω , where

θω = {wω,m, µω,m,Σω,m}m∈M . The EM method is employed to solve for the parameters.

E step: p (ω |x, ω̃ ) and Pr (m |x, ω ) are calculated according to equations (5) and (6), which are

listed as follows:

p (ω |x, ω̃ ) =
p (x |ω, θω ) γω̃,ωπω∑

ω∈Ω

p (x|ω, θω) γω̃,ωπω
(8)

Pr (m |xn, ωn = k ) =
wω,mg (x |ω, µω,m,Σω,m )∑

m∈M
wω,mg (x |ω, µω,m,Σω,m )

(9)

M step: (7) is optimized to solve for the local optimum of Θ = {θω}ω∈Ω ,Γ = {γω̃,ω}ω̃∈Ω , and

Π = {πω}ω∈Ω .

2.3. Updating

Updating rule of µω,m : by setting the derivative of equation (7) w.r.t µω,m equals to zero, we

derive the updating rule as follow:

∂Q
∂µω,m

=
∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S
{p (ω |x, ω̃ )

·Pr (m|x, ω) ·Σ−1
ω,m · (x− µω,m)

}
= 0

⇒ µω,m =

∑
ω̃∈Ω

I(ω̃=ω)
∑
x∈S

p(ω|x,ω̃ ) Pr(m|x,ω)x∑
ω̃∈Ω

I(ω̃=ω)
∑
x∈S

p(ω|x,ω̃ ) Pr(m|x,ω)

(10)

Updating rule of Σω,m : by setting the derivative of equation (7) w.r.t Σω,m equals to zero, we

derive the updating rule as follow:

∂Q
∂Σω,m

= −
∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

{
p (ω |x, ω̃ ) Pr (m |x, ω ) ·

[
Σω,m

−1

−Σω,m
−1 (x− µω,m) (x− µω,m)

T
Σω,m

−1
]}

= 0

⇒ Σω,m

=

∑
ω̃∈Ω

I(ω̃=ω)
∑
x∈S

p(ω|x,ω̃ ) Pr(m|x,ω)(x−µω,m)(x−µω,m)T∑
ω̃∈Ω

I(ω̃=ω)
∑
x∈S

p(ω|x,ω̃ ) Pr(m|x,ω)

(11)

Updating rule of wω,m : a Lagrange multiplier λwω,m is introduced to guarantee the constraint

condition
∑

m∈M
wω,m = 1, the corresponding Lagrange function is designed as follows:

Qλwω,m = Q+ λwω,m

(
1−

∑
m∈M

wω,m

)
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and by setting the derivative of Qλwω,m w.r.t wω,m equals to zero, we derive the formula as follow:

∂Qλwω,m
∂wω,m

= 0

=
∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

p (ω |x, ω̃ ) Pr (m|x, ω) 1
wω,m

− λwω,m

⇒ λwω,mwω,m =
∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

p (ω |x, ω̃ ) Pr (m|x, ω)

intergratewω,m⇒ λwω,m
∑

m∈M
wω,m = λwω,m

=
∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

p (ω |x, ω̃ )
∑

m∈M
Pr (m|x, ω)

and we plug λwω,m back and solve for wω,m as follows:

wω,m =

∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

p (ω |x, ω̃ ) Pr (m|x, ω)∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

p (ω |x, ω̃ )
∑

m∈M
Pr (m|x, ω)

(12)

Updating the rule of γω̃,ω : a Lagrange multiplier λγω̃,ω is introduced to guarantee the constraint

condition , and the corresponding Lagrange function is designed as follows:

∂Qγω̃,ω
∂γω̃,ω

=
∑
x∈S

p (ω |x, ω̃ ) 1
γω̃,ω
− λγω̃,ω = 0

⇒ λγω̃,ωγω̃,ω =
∑
x∈S

p (ω |x, ω̃ )

intergrateγω̃,ω⇒ λγω̃,ω
∑̃
ω∈Ω

γω̃,ω = λγω̃,ω

=
∑
x∈S

∑̃
ω∈Ω

p (ω |x, ω̃ )

and we plug λγω̃,ω back and solve for γω̃,ω as follows:

γω̃,ω =

∑
x∈S

p (ω |x, ω̃ )∑
x∈S

∑̃
ω∈Ω

p (ω |x, ω̃ )
(13)

Updating class probability: a Lagrange multiplier λπω is introduced to guarantee the constraint

condition
∑
ω∈Ω

πω = 1 , a Lagrange function is designed as follows:

Qλπω = Q+ λπω

(
1−

∑
ω∈Ω

πω

)
and by setting the derivative of Qλπω w.r.t πω equals to zero, we derive the formula as follow:

∂Qλπω
∂πω

=
∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

p (ω |x, ω̃ ) 1
πω
− λπω= 0

⇒ λπωπω=
∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

p (ω |x, ω̃ )

intergrateπω⇒ λπω=
∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

∑
ω∈Ω

p (ω |x, ω̃ )

and we plug λπω back and solve for πω as follows:

πω =

∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

p (ω |x, ω̃ )∑̃
ω∈Ω

I (ω̃ = ω)
∑
x∈S

∑
ω∈Ω

p (ω |x, ω̃ )
(14)
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Predicting posterior probability: to predict an unlabeled instance xu, the posterior probability of

each class is calculated as follows:

p (ω |xu ) = p(xu|ω,θω )πω∑
ω∈Ω

p(xu|ω,θω )πω

=
πω

∑
m∈M

wω,mg(x|ω,µω,m,Σω,m )∑
ω∈Ω

πω
∑

m∈M
wω,mg(x|ω,µω,m,Σω,m )

The maximum class posterior probability decides the class of this unlabeled instance.

For convenience, we summarize the overall updating process in algorithm 1.

Algorithm 1 GMDA

input:Θ = {θω}ω∈Ω,Γ = {γω̃,ω}ω̃∈Ω , and Π = {πω}ω∈Ω .

Initialize: wω,m, µω,m,Σω,m is obtained by employing k-means method, and the initialization value

of πω is:

πω =

∑
ω∈Ω

I (ω̃)

|Ω|

if iter ¡ itermax then

p (ω = k |xn,, ω̃ = j ) and Pr (m |xn, ωn = k ) are calculated according to (8) and (9).

µω,m,Σω,m, wω,m, γω̃,ω, πω is updated according to (10)–(14).

end if

end

Output: Θ ,Γ , and Π.

3. CONVERGENCE ANALYSIS

3.1. General Solution

The log-likelihood function for the general decision problem with randomly substituted labels is

given by

L0 = 1
|S|
∑
x∈S

log p̃ (x|ψ (x))π (ψ (x))

= 1
|S|
∑
x∈S

log
∑
ω∈Ω

[p (x|ω) p (ω|ψ (x))π (ψ (x))]
(15)

If we denote Sω̃ the training set of data vectors with the observed label ω̃:

Sω̃ = {x ∈ S : ψ (x) = ω̃} , ω̃ ∈ Ω,S =
⋃
ω̃∈Ω

Sω̃, |S| =
∑
ω̃∈Ω

|Sω̃|

then, using the relation ω̃ = ψ (x) , we can express the log-likelihood function (15) equivalently in the

form

L0 =
1

|S|
∑
ω̃∈Ω

∑
x∈Sω̃

[
log

(∑
ω∈Ω

p (x|ω) p (ω|ω̃)

)
+ logπ (ω̃)

]

9



and further

L0 =
∑
ω̃∈Ω

|Sω̃|
|S|

logπ(ω̃) +
1

|S|
∑
x∈S

log [p(x|ω)p(ω|ψ(x))] (16)

We recall that for any two probability distributions p (ω) , π(ω) the well-known Kullback-Leibler

information divergence is non-negative

I (p, π) =
∑
ω∈Ω

p (ω) log
p (ω)

π (ω)
≥ 0

and the inequality (11) can be rewritten in the form∑
ω∈Ω

p (ω) logπ (ω) ≤
∑
ω∈Ω

p (ω) logp (ω) (17)

Consequently, the left-hand part of the inequality (17) is maximized by setting π(ω)=p (ω),ω ∈ Ω . For

the same reason the first sum in (16) is maximized by the maximum likelihood estimate π(ω̃)= |Sω̃| / |S|,

ω̃ ∈ Ω in terms of relative frequencies. In the following we repeatedly make use of this practically

useful consequence of the inequality (17).

The second term in L0 can be maximized by EM algorithm. If we define the conditional weights

q (ω|x, ψ (x)) = p(x|ω)p(ω|ψ(x))∑
ω∈Ω

p(x|ω)p(ω|ψ(x))

ω ∈ Ω,
∑
ω∈Ω

q (ω|x, ψ (x)) = 1,x ∈ S
(18)

then the second part of the log-likelihood function (16):

L =
1

|S|
∑
x∈S

log

[∑
ω∈Ω

p (x|ω) p (ω|ψ(x))

]
(19)

can be expanded in the form [46, 47]:

L =
∑
ω∈Ω

1
|S|
∑
x∈S
{q (ω|x, ψ (x)) log[p (x|ω) p (ω|ψ(x))]

− q (ω|x, ψ (x)) logq (ω|x, ψ (x))}
(20)

Similarly, denoting by apostrophe the mixture components and mixture parameters in the next itera-

tion of EM algorithm, we can write

L′ = 1
|S|
∑
x∈S

log

[ ∑
ω∈Ω

p′ (x|ω) p′ (ω|ψ(x))

]
=
∑
ω∈Ω

1
|S|
∑
x∈S
{q (ω|x, ψ (x)) log[p′ (x|ω) p′ (ω|ψ(x))]

− q (ω|x, ψ (x)) logq′ (ω|x, ψ (x)) }

(21)

where

q′ (ω|x, ψ (x)) = p′(x|ω)p′(ω|ψ(x))∑
ω∈Ω

p′(x|ω)p′(ω|ψ(x)) ,

ω ∈ Ω,x ∈ S
(22)
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Now, the increment of EM algorithm in one iteration can be expressed as follows

L′ − L

=
∑
ω∈Ω

1
|S|
∑
x∈S

q (ω|x, ψ (x))log
[
p′(x|ω)p′(ω|ψ(x))
p(x|ω)p(ω|ψ(x))

]
+ 1
|S|
∑
x∈S

∑
ω∈Ω

q (ω|x, ψ (x)) log q(ω|x,ψ(x))
q′(ω|x,ψ(x))

(23)

The last sum in Eq. (23) is again the well-known non-negative Kullback-Leibler information divergence:

I (q, q′) =
∑
ω∈Ω

q (ω|x, ψ (x))log
q (ω|x, ψ (x))

q′ (ω|x, ψ (x))
≥ 0 (24)

and therefore, we can write

L′ − L

≥ 1
|S|
∑
x∈S

∑
ω∈Ω

q (ω|x, ψ (x))log
[
p′(x|ω)p′(ω|ψ(x))
p(x|ω)p(ω|ψ(x))

] (25)

Thus, for the sake of the monotonic property of EM algorithm, we have to guarantee the inequality

L′ − L

≥
∑
ω∈Ω

1
|S|
∑
x∈S

[
q (ω|x, ψ (x)) log p

′(x|ω)
p(x|ω)

]
+
∑
ω∈Ω

1
|S|
∑
x∈S

[
q (ω|x, ψ (x)) log p

′(ω|ψ(x))
p(ω|ψ(x))

]
≥ 0

(26)

Here the sum over x ∈ S in the second term can be decomposed into summing over x ∈ Sω̃:

L′ − L

=
∑
ω∈Ω

1
|S|
∑
x∈S

[
q (ω|x, ψ (x)) log p

′(x|ω)
p(x|ω)

]
+
∑̃
ω∈Ω

|Sω̃|
|S|

∑
ω∈Ω

[
1
|Sω̃|

∑
x∈Sω̃

q (ω|x, ω̃)

]
log p

′(ω|ω̃)
p(ω|ω̃)

(27)

Now, if we define the EM iteration equations in the form

p′ (ω|ω̃) =
1

|Sω̃|
∑

x∈Sω̃

q (ω|x, ω̃) , ω ∈ Ω, ω̃ ∈ Ω (28)

p′ (·|ω) =arg max
p(·|ω)

{
1
|S|
∑
x∈S

q (ω|x, ψ (x)) logp (x|ω)

}
ω ∈ Ω

(29)

then the monotonic property of EM algorithm is guaranteed because, by substitution (28), the second

term in (26) is nonnegative as a sum of nonnegative Kullback-Leibler information divergences:∑
ω∈Ω

p′ (ω|ω̃) log
p′ (ω|ω̃)

p (ω|ω̃)
≥ 0, ω̃ ∈ Ω (30)

and the Eq. (29) implies the inequalities

1
|S|
∑
x∈S

q (ω|x, ψ (x)) log p′ (x|ω)

≥ 1
|S|
∑
x∈S

q (ω|x, ψ (x)) log p (x|ω) , ω ∈ Ω

11



which can be rewritten in the form:

1

|S|
∑
x∈S

q (ω|x, ψ (x)) log
p′ (x|ω)

p (x|ω)
≥ 0, ω ∈ Ω (31)

Consequently, the first term in (27) is nonnegative and in view of the above inequalities (30), (31), the

EM iteration equations in the general form (23), (28) and (29) imply the basic monotonic property of

EM algorithm [25, 26].

3.2. Gaussian Classes with Noisy Labels

Assuming a particular type, e.g. Gaussian class-conditional densities

p(x|ω) = f(x|µω,Σω), ω ∈ Ω (32)

we can write Eq. (29) in a more specific form

{µ′ω,Σ′ω}=

arg max
{µω,Σω}

[
1
|S|
∑
x∈S

q (ω|x, ψ (x)) log f(x|µω,Σω)

]
ω ∈ Ω

(33)

As the maximized expression in Eq. (33) is a weighted likelihood function, we can easily verify [26]

that the explicit solution can be expressed as a weighted analogy of the standard maximum likelihood

estimate. In particular, let F (x|µ) be a probability density with a parameter µ having a standard

maximum likelihood estimate µ̂ :

Lµ =
1

|S|
∑
x∈S

log f(x|µ)→ max⇒ µ̂ =
1

|S|
∑
x∈S

x (34)

If N(x) is the number of repeated occurrences of x ∈ X in S and q(x) denotes the relative frequency

of x ∈ S:

q(x) =
N(x)

|S|
,
∑
x∈X

q(x) = 1, (x /∈ S ⇒ q(x) = 0)

then the Eq. (34) can be rewritten equivalently in the form

Lµ =
∑
x∈X

q(x) log F (x|µ)→ max⇒ µ̂ =
∑
x∈X

q(x) x (35)

From the comparison of Eq. (34) and (35) it follows that the weighted likelihood (35) is maximized by

the corresponding weighted maximum likelihood estimate (for a detailed proof in [47]). Consequently,

in view of (33), we can write:

µ′ω= 1∑
x∈S q(ω|x,ψ(x))

∑
x∈S

q (ω|x, ψ (x)) x

ω ∈ Ω

(36)
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Σ′ω= 1∑
x∈S q(ω|x,ψ(x))

∑
x∈S

q (ω|x, ψ (x)) xxT

−µ′ωµ′ω
T
, ω ∈ Ω

(37)

We can conclude that the problem of parameter estimation for the Gaussian classes with noisy

labels can be solved by repeating the EM iteration equations (18), (28), (36) and (37).

3.3. Class-conditional Gaussian Mixtures with Noisy Labels

The Gaussian assumption (32) is well known to be rather restrictive and can be essentially relaxed

by approximating the unknown class-conditional densities p (x|ω) by Gaussian mixtures. In particular,

we assume

p (x|ω) =
∑

m∈Mω

wmωf(x|µmω,Σmω),∑
m∈Mω

wmω = 1, ω ∈ Ω
(38)

where m ∈ Mω denotes the component’s index set of the class-conditional mixture P (x|ω). Making

substitution (38) in (19) we obtain the log-likelihood function in the following more general form:

L =
1

|S|
∑
x∈S

log

[∑
ω∈Ω

∑
m∈Mω

p (ω|ψ(x)) wmωf(x|µmω,Σmω)

]

If we introduce the conditional component weights:

h (m,ω|x, ψ(x))

= p(ω|ψ(x))wmωf(x|µmω,Σmω)∑
ω∈Ω

∑
m∈Mω

p(ω|ψ(x)) wmωf(x|µmω,Σmω) ,

m ∈Mω, ω ∈ Ω,x ∈ S

(39)

then, in analogy with (20), we can expand the log-likelihood criterion (36) in the form:

L = 1
|S|
∑
x∈S

∑
ω∈Ω

∑
m∈Mω

h (m,ω|x, ψ(x))

·log [p (ω|ψ(x))wmωf(x|µmω,Σmω)]−

−h (m,ω|x, ψ(x)) log h (m,ω|x, ψ(x))

s.t.
∑
ω∈Ω

∑
m∈Mω

h (m,ω|x, ψ(x)) =1

Again, in analogy with (17) - (25), we come to the inequality

L′ − L

≥ 1
|S|
∑
x∈S

∑
ω∈Ω

∑
m∈Mω

h (m,ω|x, ψ(x))

log
[
p′(ω|ψ(x))wmωf(x|µ′

mω,Σ
′
mω)

p(ω|ψ(x))wmωf(x|µmω,Σmω)

]
≥ 0

(40)

to be guaranteed for the sake of the monotonic property of EM algorithm. The right-hand side of (40)

can be satisfied separately in two parts:

1

|S|
∑
x∈S

∑
ω∈Ω

∑
m∈Mω

h (m,ω|x, ψ(x)) log
f(x|µ′mω,Σ′mω)

f(x|µmω,Σmω)
≥ 0 (41)
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∑
ω∈Ω

1

|S|
∑
x∈S

∑
m∈Mω

h (m,ω|x, ψ(x)) log
p′ (ω|ψ(x))w′mω
p (ω|ψ(x))wmω

≥ 0 (42)

The first inequality (41) is satisfied if we define the new parameters µ′mω ,Σ′mω by Eq. (33)

{µ′mω,Σ′mω}=

arg max
{µmω,Σmω}

[ ∑
x∈S

h (m,ω|x, ψ(x)) log f(x|µmω,Σmω)

]
,

ω ∈ Ω

(43)

Again, using the weighted likelihood analogy of the standard maximum likelihood estimate [46,47], we

can write the following explicit solution of the Eq. (43) :

µ′mω = 1∑
x∈S h(m,ω|x,ψ(x))

∑
x∈S

h (m,ω|x, ψ(x)) x

m ∈Mω, ω ∈ Ω

(44)

Σ′mω = 1∑
x∈S h(m,ω|x,ψ(x))

·
∑
x∈S

h (m,ω|x, ψ(x)) xxT − µ′mωµ′mω
T

m ∈Mω, ω ∈ Ω

(45)

The inequality (42) can be further decomposed as follows

∑̃
ω∈Ω

|Sω̃|
|S|

∑
ω∈Ω

[
1
|Sω̃|

∑
x∈Sω̃

∑
m∈Mω

h (m,ω|x, ω̃)

]
,

log p
′(ω|ω̃)
p(ω|ω̃) ≥ 0

(46)

∑
ω∈Ω

∑
m∈Mω

[
1

|S|
∑
x∈S

h (m|ω,x, ψ(x))

]
log

w′mω
wmω

≥ 0 (47)

where

h (m|ω,x, ψ(x)) =
h (m,ω|x, ψ(x))∑

m∈Mω
h (m,ω|x, ψ(x))

Considering the inequality (17) we can write again the EM iteration equations for the parameters

p′ (ω|ω̃) , w′mω in explicit form. In particular, the inequality (45) is satisfied if we set

p′ (ω|ω̃) =
1

|Sω̃|
∑

x∈Sω̃

∑
m∈Mω

h (m,ω|x, ω̃), ω ∈ Ω, ω̃ ∈ Ω (48)

and the second inequality (47) is satisfied if we define the new component weights w′mω by equation:

w′mω= 1
|S|
∑
x∈S

h (m|ω,x, ψ(x))

= 1
|S|
∑
x∈S

h(m,ω|x,ψ(x))∑
m∈Mω

h(m,ω|x,ψ(x)) ,

m ∈Mω, ω ∈ Ω

(49)

The EM algorithm for the problem of estimating class-conditional Gaussian mixtures with noisy labels

can be summarized in terms of the iteration equations (39), (44), (46), (48) and (49).
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4. RELATED WORK

The problem of discriminant analysis has been studied by researchers from many disciplines, such

as physical, biological and social sciences, cognitive science, psychology, engineering, and medicine [34].

Recently, the discriminant analysis with label noise has gained substantial research attention. Vari-

ous solution strategies have been proposed to prevent a learning algorithm from overfitting the noisy

data, the robust classifiers with capability to diminish the effect of label noise to a certain extent have

obtained varying levels of success. [24, 25, 26, 27, 28, 29, 30, 31, 32][35, 9, 36, 10, 37, 38, 11, 39, 40].

For instance, in [38], the emphasis functions that combine both sample errors and their proximity to

the classification border are explored. Long and Servedio demonstrated in [11] that for a broad class

of convex potential functions, any boosting algorithm was highly susceptible to random classification

noise. They also emphasized that the result was unsuitable for non-convex potential function. In [39],

a comprehensive empirical investigation using neural network algorithms to learn from imbalanced

data with labeling errors was explored.

Lee and Liu transformed the learning problem with positive and unlabeled examples into a prob-

lem of learning with noise by labeling all unlabeled examples as negative and using logistic regression

to learn from the weighting noisy examples [40]. In [41], based on consistency assurance that the

label noise ultimately did not hinder the search for the optimal classifier of the noise-free sample,

the study proved that any surrogate loss function could be used for classification with noisy labels

by using importance reweighting. [41] also showed that the noise rate that could be estimated was

upper bounded by the conditional probability of the noisy sample. Bootkrajang and Kabán built a

discriminative model by modeling class noise distributions and reinterpreted existing discriminative

models from the class noise perspective [8]. They proved that the error of label-noise robust logistic

regression was bounded, and that label-noise robust logistic regression behaved in the same way as

logistic regression when label noise did not exist or when the label flipping was symmetric. They also

demonstrated that the weighting mechanism of label-noise robust logistic regression improved upon

logistic regression with asymmetric label flipping. However, in [8], the loss function did not define the

latent true label but defined the observed noisy label instead. Rooyen et al. proposed in [12] a convex

classification calibrated unhinged loss and proved that it is robust under symmetric label noise. The

loss further avoided minimization of any convex potential over a linear function class that could result

in classification performance equivalent to random guessing. In [42], corruption problems that were

classified as mutually contaminated distributions were considered, and authors argued that optimized

balanced error on corrupted data was equivalently optimized as the binary label error on clean data.

Based on the boundary conditional class noise assumption, instead of modeling data generation or
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conditional class probability both for symmetric and asymmetric cases, Jun and Cai assumed that the

class noise was distributed as an unnormalized Gaussian and an unnormalized Laplace centered on the

linear class boundary, and proposed Gaussian noise model and Laplace noise model, respectively [13].

They then further reinterpreted logistic regression and probit regression by using the proposed class

noise probability.

Previous theoretical work on the label noise problem assumed that the two classes were separable,

and the label noise was independent of the true class label or that the noise proportions for each

class were known. [42, 14] introduced a general mixture proportion estimation framework for classi-

fication with label noise that eliminated these assumptions. When the class-conditional distributions

overlapped and the label noise was not symmetric, [42, 14] presented assumptions ensuring identifia-

bility and the existence of a consistent estimator of the optimal risk and given associated estimation

strategies. For any arbitrary pair of contaminated distributions, a unique pair of non-contaminated

distributions satisfied the proposed assumptions. Scott argued in [15] that a solution to mixture pro-

portion estimation led to solutions to various weakly supervised learning problems, such as anomaly

detection, learning from positive and unlabeled examples, domain adaptation, and classification with

label noise. He established a rate of convergence for mixture proportion estimation under an appro-

priate distributional assumption based on surrogate risk minimization and showed that this rate of

convergence can derive the consistency of the algorithm and provide a practical implementation of

mixture proportion estimation and demonstrate its efficacy in classification with noisy labels [15].

By modeling the corruption process through a Markov kernel and defining the corrupted learning

problem to be the corrupted experiment, Brendan and Williamson developed a general framework for

tackling corrupted learning problems as well as introduced minimax upper and lower bounds on the

risk for learning in the presence of corruption [43].

Manwani and Sastry studies in [44] noise tolerance under risk minimization. They assume that

the actual training set given to the learning algorithm was obtained from the noise-free data set, the

class label of each example is corrupted and that a learning method was noise tolerant if the classi-

fiers learned with noise-free data and with noisy data, and both have the same classification accuracy

on the noise-free data. They showed that risk minimization under 0-1 loss function was a promising

approach for learning from noisy training data, and that Fisher linear discriminant and linear least

squares under squared error loss were noise tolerant under uniform noise, but not under non-uniform

noise. The risk minimization under other loss functions was not noise tolerant [16].

A great deal of research has been conducted on both theory and applications for such label noise
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problem. Despite much attention paid to discriminant analysis for noisy data [17], the investigation

focused on the instances of generating a single Gaussian model. Furthermore, symmetric and asym-

metric label noise was introduced to describe the contaminated distribution of corrupted binary labels.

However, the instances that belonged to the same class usually were ruled by multiple GMM because

of the presence of non-Gaussian distribution, which is mixed proportionally by Gaussian distribution

of different means and variances. However, to the best of our knowledge, the discriminant analysis

with noisy labels based on GMM has received limited research attention mainly because of mathemat-

ical difficulties. In particular, the commonly used approaches, such as matrix analysis, are no longer

directly applicable to deal with both symmetric and asymmetric label noise problem because the pres-

ence of asymmetric label noise cannot be expressed in the normal form. In this paper, therefore, we

intend to tackle such an important yet challenging problem. [45] presents a novel deep self-learning

framework, which does not rely on any assumption on the distribution of the noisy labels, and train a

robust network on the real noisy datasets without extra supervision.

Similar to our approach, Bouveyron also proposed to use the explicit global mixture model of more

than two classes [46], however, Bouveyron’s method is totally different from our approach. Bouvey-

ron’s approach compare the supervised information given by the learning data with an unsupervised

modelling based on the Gaussian mixture model, if some learning data have wrong labels, the com-

parison of the supervised information with an unsupervised modelling of the data allows to detect

the inconsistent labels. Then it is possible afterward to build a supervised classifier by giving a low

confidence to the learning observations with inconsistent labels.

5. EXPERIMENTS AND DISCUSSION

5.1. Datasets and Preprocessing

Synthetic datasets and real-world datasets are used in our experiments. Table I presents a sum-

mary of the datasets. Two synthetic datasets are created randomly by our Matlab code. We apply

the following real-world datasets: Boston, Breast Issue, SPECT Heart, Waveform, Wine, and Iris.

Real-world datasets are UCI datasets [47].

The datasets are equally divided into training data and test data. The original class labels are

treated as true labels. Symmetric and asymmetric label errors are injected into the datasets artificially.

As the label noise was generated randomly, the label noise rate and label error rate were not equal.

5.2. Results and Discussion

First, we illustrate the convergence of object function value of the proposed method. We use the

synth1 dataset with 20% label errors as a representative. The objective function value is almost stable
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Table 1: CHARACTERISTICS OF THE DATASETS

Dataset
Characteristics

Samples Dimensionality Classes

Synth1 2000 30 5

Synth2 1000 2 2

Breast 106 9 6

Iris 150 4 3

Wine 178 13 3

Heart 267 22 2

Boston 506 13 2

Waveform 5000 21 3

Figure 1: Convergence of the proposed method using EM algorithm
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after 5 iterations in Fig. 1. As shown in Fig. 2, the error rate of prediction after 5 iterations is 12.80%

and 12.80% after 10 iterations. The error rate changes rapidly during the first 4 iterations, and the

error rate stabilizes after 5 iterations. The proposed method using the EM approach is convergent and

effective. The change of the mixture models centers at different iterations is illustrated in Fig. 3. We

Figure 2: Error rates at different iterations

compare the proposed method to rNDA, AdaBoost, rLR, and rmLR. As the maximum likelihood used

in our method is totally dependent on the training data, we change the training sample size from 20%

to 80% to determine the effect of the size of the training data on the performance of classifiers. Fig.

4 shows the effect of the number of training samples on error rates of the predictions of the methods.

All the methods mentioned are affected by the number of training samples, and all methods perform

best with 50% samples. We run the following experiments with 50% samples.

Fig. 5 shows the original dataset synth2 and the estimated mixture centers obtained by our method

in comparison with 20% label errors synth2 and its estimated mean vectors obtained by our method.

Table 2 shows the parameters and the error rates of predictions obtained by our method using the

original dataset synth2 and synth2 with 20% label errors. The diagonal elements γij (i = j) indicate

the probability of labels that are not flipped. Table II shows that the unflipped probabilities of original

dataset synth2 are extremely close to 1, whereas that of 20% label errors data are close to 0.8; and the

real probability of each class is 0.5. The estimated class probabilities are all close to 0.5. The results

confirm the reality. The error rates of predictions using the two datasets mentioned are 13.00% and

12.60%, respectively, which differ slightly. In the noisy case, prediction is better than the original case

because our method has already considered flipping. Fig. 6 shows the results of two synthetic datasets

and six real-world datasets using the proposed method and the other four methods mentioned. All

results are presented in Tables III–V. The bold values of error in % shown in Table III and IV indicate
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(a) Iteration 1 (b) Iteration 5

(c) Iteration 15 (d) Iteration 20

Figure 3: Model’s mixture centers at different iterations

Table 2: RESULTS ON DATASET SYNTH2 USING THE PROPOSED METHOD

Dataset
Results

Flipping Probability Class Probability Error Rate

Original Synth2

 1 2.49e− 05

3.03e− 04 1

 [
0.4994 0.5006

]
13.00%

Synth2 with 20% Label Error

 0.7825 0.2175

0.1977 0.8023

 [
0.5101 0.4899

]
12.60%

Figure 4: Effect of the number of samples

20



the winners.The trend is that at a higher label noise level, a higher prediction error rate is obtained.

The AdaBoost method, which is a label noise-robust method, is affected most by the label errors

and has mostly the largest error rate. The rLR and the rmLR methods have similar performance.

The proposed method has a much better performance and the lowest error rate in most cases, and

outperforms others mostly both in the symmetric and asymmetric noise cases. The AdaBoost, rLR,

and rmLR methods cannot predict when samples of one class label are all flipped in binary cases. On

(a) Iteration 1 (b) Iteration 5

Figure 5: Dataset synth2 and estimated mixture centers obtained by using the proposed method

the other hand, Fig. 6 also shows that the proposed method significantly outperforms other methods

on synthetic datasets synth1 with larger dimension. We run another experiment to determine the effect

of the dimension of the datasets. We create a set of datasets consisting of 1000 samples, three classes,

and dimension from 5 to 30. Then, 20% label errors are artificially injected into these datasets.

Fig. 7 shows the results on different datasets with different dimensions using different methods.

The trend is that with a higher dimension, a lower error rate is obtained. The proposed method

performs much better than the others in all dimensionality cases.

We employ a set of synthetic datasets to study the effect of the mixture number of the datasets and

that of the component number of the model. Each dataset contains 1000 samples with 10 dimensions

and comprises three classes, component numbers from 1 to 5 for each class. Fig. 7 shows that the

more components in each class the dataset has, the larger the error rate is. In almost all cases, the

proposed method notably outperforms the other methods. According to Fig. 6 and Tables III, IV, V,

our method achieves better performance in a multi-class case than in a two-class case. We run one

more experiment to investigate the effect of the number of classes. Datasets used are created artificially

as well; they all contain 1000 samples with 10 dimensions. Fig. 8 shows that our proposed method is

affected much less than the other methods. Our previous experiments on synthetic datasets have been

conducted on the premise of taking the correct mixture number. In this paper, we tested the datasets

using an invalid mixture number. We take a three-component dataset as a representative and set the

component number of the model from 1 to 6. From Fig. 9, we can discern that an invalid mixture
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(a) Dataset synth1 with symmetric label

errors

(b) Dataset synth1 with asymmetric label

errors

(c) Dataset synth2 with symmetric label

errors

(d) Dataset synth2 with asymmetric label

errors

(e) Boston dataset with symmetric label

errors

(f) Boston dataset with asymmetric label

errors

(g) Breast Issue dataset with symmetric

label errors

(h) Breast Issue dataset with asymmetric

label errors

Figure 6: Results on different datasets with different noise levels using different methods
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Table 3: PREDICTION ERROR RATE ON TWO SYNTHETIC DATASETS AND SIX REAL-WORLD DATASETS

WITH DIFFERENT SYMMETRIC LABEL NOISE RATES

Dataset Method
Symmetric label noise rate

0 0.1 0.2 0.3 0.4 0.5

Synth1

Ada 0.03 0.056 0.061 0.078 0.116 0.224

rNDA 0.035 0.064 0.064 0.065 0.065 0.065

GMDA 0.005 0.003 0.003 0.003 0.030 0.003

rmLR 0.142 0.138 0.138 0.184 0.504 0.504

rLR 0.147 0.138 0.138 0.17 0.186 0.504

Synth2

Ada 0.142 0.14 0.142 0.184 0.226 0.318

rNDA 0.138 0.138 0.138 0.266 0.524 0.532

GMDA 0.128 0.120 0.126 0.166 0.19 0.182

Breast Issue

Ada 0.396 0.333 0.381 0.523 0.571 0.619

rNDA 0.305 0.404 0.357 0.5 0.504 0.542

GMDA 0.377 0.238 0.357 0.357 0.500 0.504

Iris

Ada 0.026 0.05 0.183 0.200 0.333 0.233

rNDA 0.026 0.033 0.033 0.05 0.100 0.08

GMDA 0.013 0.016 0.033 0.05 0.083 0.08

Wine

Ada 0.078 0.123 0.112 0.157 0.236 0.606

rNDA 0.044 0.011 0.044 0.044 0.044 0.078

GMDA 0.033 0.022 0.044 0.033 0.045 0.076

rmLR 0.548 0.654 0.691 0.737 0.6 0.5

rLR 0.533 0.635 0.672 0.7 0.65 0.6

Heart

Ada 0.270 0.261 0.299 0.537 0.32 0.537

rNDA 0.609 0.626 0.607 0.637 0.39 0.7

GMDA 0.248 0.261 0.261 0.289 0.287 0.271

rmLR 0.130 0.138 0.128 0.193 0.336 0.514

rLR 0.130 0.183 0.113 0.188 0.316 0.638

Boston

Ada 0.17 0.158 0.163 0.183 0.292 0.549

rNDA 0.233 0.198 0.198 0.198 0.445 0.717

GMDA 0.205 0.183 0.188 0.183 0.188 0.185

Wave form

Ada 0.188 0.201 0.223 0.223 0.290 0.312

rNDA 0.293 0.248 0.249 0.251 0.252 0.253

GMDA 0.222 0.228 0.231 0.232 0.244 0.244
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Table 4: PREDICTION ERROR RATE ON TWO SYNTHETIC DATASETS AND SIX REAL-WORLD DATASETS

WITH DIFFERENT ASYMMETRIC LABEL NOISE RATES

Dataset Method
Asymmetric label noise rate

0 0.1 0.2 0.3 0.4 0.5

Synth1

Ada 0.03 0.073 0.085 0.138 0.211 0.221

rNDA 0.035 0.035 0.067 0.067 0.065 0.79

GMDA 0.005 0.005 0.005 0.005 0.026 0.191

rmLR 0.142 0.138 0.148 0.138 0.192 /

rLR 0.147 0.138 0.142 0.134 0.23 /

Synth2

Ada 0.142 0.142 0.296 0.468 0.494 /

rNDA 0.138 0.128 0.144 0.144 0.148 0.504

GMDA 0.128 0.128 0.132 0.13 0.144 0.52

Breast Issue

Ada 0.396 0.333 0.357 0.343 0.452 0.509

rNDA 0.305 0.238 0.285 0.437 0.523 0.5

GMDA 0.377 0.261 0.214 0.25 0.404 0.415

Iris

Ada 0.026 0.016 0.183 0.177 0.433 /

rNDA 0.026 0.016 0.016 0.022 0.033 /

GMDA 0.013 0.016 0.016 0.022 0.033 /

Wine

Ada 0.078 0.140 0.112 0.197 0.408 /

rNDA 0.044 0.056 0.056 0.042 0.056 /

GMDA 0.033 0.042 0.042 0.042 0.056 /

rmLR 0.548 0.448 0.336 0.355 0.700 /

rLR 0.533 0.420 0.411 0.336 0.672 /

Heart

Ada 0.270 0.299 0.307 0.392 0.719 /

rNDA 0.609 0.364 0.271 0.364 0.729 /

GMDA 0.248 0.261 0.261 0.261 0.327 /

rmLR 0.130 0.163 0.173 0.178 0.198 0.336

rLR 0.130 0.163 0.183 0.173 0.193 0.347

Boston

Ada 0.17 0.178 0.262 0.415 0.485 0.442

rNDA 0.233 0.198 0.198 0.198 0.445 0.233

GMDA 0.205 0.168 0.183 0.183 0.163 0.221

Wave form

Ada 0.188 0.196 0.286 0.339 0.390 /

rNDA 0.293 0.23 0.231 0.493 0.500 /

GMDA 0.222 0.227 0.226 0.280 0.296 /
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Table 5: WIN / DRAW / LOSE

Dataset Method
Win/Draw/Lose

Symmetric Asymmetric

Synth1

Ada 0/0/6 0/0/6

rNDA 0/0/6 0/0/6

GMDA 6/0/0 6/0/0

rmLR 0/0/6 0/0/6

rLR 1/0/5 0/0/6

Synth2

Ada 0/0/6 0/0/6

rNDA 0/0/6 1/1/4

GMDA 5/0/1 4/1/1

Breast Issue

Ada 0/0/6 0/0/6

rNDA 1/1/4 2/0/4

GMDA 4/1/1 4/0/2

Iris

Ada 0/0/6 0/0/5

rNDA 0/3/3 0/4/1

GMDA 3/3/0 1/4/0

Wine

Ada 0/0/6 0/0/5

rNDA 1/2/3 0/2/3

GMDA 3/2/1 3/2/0

rmLR 0/0/6 0/0/5

rLR 0/0/6 0/0/5

Heart

Ada 0/1/5 0/0/5

rNDA 0/0/6 0/0/5

GMDA 5/1/0 5/0/0

rmLR 1/1/4 1/2/3

rLR 1/1/4 1/2/3

Boston

Ada 0/1/5 0/0/6

rNDA 0/0/6 0/0/6

GMDA 2/1/3 2/0/4

Wave form

Ada 4/0/2 2/0/3

rNDA 0/0/6 0/0/5

GMDA 2/0/4 3/0/2
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Figure 7: Effect of the dimension of datasets

Figure 8: Effect of the number of components of the model (number of dataset mixtures is 3)
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number makes an increment on error rate, whereas rNDA and AdaBoost have error rates of 0.5040

and 0.4660, respectively. Our method still performs remarkably better even when an invalid mixture

number is used. Poor performance is expected when the number of the component of the number is 1.

The EM method we employed finds the local optimum each time; the initial cluster center is

significant. The initial values used in this paper are obtained by k-means method, which is very

sensitive to initial cluster centers. A bad initial cluster center leads to poor cluster performance and

affects the error rate of the proposed method. Moreover, the difference between samples in the same

class is much smaller than that between classes; thus, obtaining proper initial values for our method

is difficult. The mixture model proposed in this paper is finite; the number of mixture components

is provided in advance and cannot be changed to adapt to a simpler or more complicated situation.

Thus, the estimation of the number of components and adapted mixture number remain to be studied.

Figure 9: Effect of the number of classes

6. EXPERIMENTAL RESULTS ON LARGE SCALE DATA SETS

To verify the performance of our proposed approach on large scale data sets, we employ six synthetic

datasets to study the effect of the mixture number of the datasets and that of the component number

of the model. Each dataset contains 15000 samples with 200 dimensions and comprises two classes,

component numbers from 1 to 5 for each class. The 6 datasets together with their sizes N and number

of features D are listed in TABLE VI. More specifically, first, we randomly generate six synthetic

datasets for verification goal. The data set is a mixture of two types of labels, with the covariance

range from 0 to 250, which means that the correlation between these two types of labels is from

27



Figure 10: Effect of the number of classes

Table 6: CHARACTERISTICS OF THE LARGE SCALE DATASETS

Dataset
Characteristics

N D covariance ross-validation Number of samples in class 1 Number of samples in lass 2

Synth1 15000 200 250 5 7592 7408

Synth2 15000 200 0 5 6619 8381

Synth3 15000 200 250 10 8434 6566

Synth4 15000 200 0 10 6619 8381

Synth5 15000 200 250 3 7707 7293

Synth6 15000 200 0 3 7796 7204

uncorrelation to the maximum correlation. Similarly, for the division of data sets according to the

TABLE VI, we have carried out 10 fold, 5 fold and 3 fold cross-validation respectively. In addition, we

add noise labels based on 0%, 10%, 20%, 30%, 40% and 50% of the total number of labels. TABLE

VII shows the error rate with 5, 10, and 3-cross-validation for all comparison methods. In the TABLE

VII, (a1), (b1), and (c1) summarize the error rates on synthetic datasets with label correlation group,

(a2), (b2), and (c2) summarize the error rates on synthetic datasets with label uncorrelation group.

Fig. 11 shows the learning performances for all comparison methods, similarly, in the Fig. 11, (a1),

(b1), and (c1) are the learning performances on synthetic datasets with label correlation group, (a2),

(b2), and (c2) are the learning performances on synthetic datasets with label uncorrelation group.

From TABLE VII and Fig. 11, we can see that:

(a) The number of these two types of tags in synthetic data sets is comparable to each other. They

belong to the synthetic data sets with relatively balanced class size and large sample size, it has certain
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Table 7: EXPERIMENTAL RESULTS IN ERROR RATE ON SIX DIFFERENT CORRELATED SYNTHETIC

DATASETS WITH DIFFERENT CROSS -VALIDATION PROCESSES

(a) error rate with 5-cross-validation on correlated Synth1 dataset

Method
label noise rate

0.0 0.1 0.2 0.3 0.4 0.5

GMDA 0.5023 0.5023 0.5023 0.5023 0.5023 0.4977

rNDA 0.5063 0.5063 0.5063 0.5063 0.5063 0.4937

Ada 0.4953 0.4853 0.4997 0.5007 0.5090 0.5047

rLR 0.4927 0.4907 0.5057 0.5017 0.5110 0.5087

rmLR 0.4890 0.4877 0.4953 0.5080 0.5080 0.5090

(b) error rate with 10-cross-validation on correlated Synth3 dataset

Method
label noise rate

0.0 0.1 0.2 0.3 0.4 0.5

GMDA 0.5073 0.5073 0.4927 0.4927 0.4927 0.4927

rNDA 0.5067 0.5067 0.4933 0.4933 0.4933 0.4933

Ada 0.4520 0.4520 0.4520 0.4520 0.5480 0.5480

rLR 0.5033 0.5087 0.4973 0.4807 0.4867 0.4947

rmLR 0.5120 0.4987 0.4973 0.4740 0.4827 0.4967

(c) error rate with 3-cross-validation on correlated Synth5 dataset

Method
label noise rate

0.0 0.1 0.2 0.3 0.4 0.5

GMDA 0.5060 0.5060 0.5060 0.5060 0.5060 0.4938

rNDA 0.4944 0.5056 0.5056 0.5056 0.5056 0.5056

Ada 0.4812 0.4812 0.4812 0.4812 0.5188 0.5188

rLR 0.4838 0.4956 0.4884 0.4818 0.4934 0.5144

rmLR 0.4846 0.4908 0.4904 0.4950 0.4904 0.5152

(d) error rate with 5-cross-validation on uncorrelated Synth2 dataset

Method
label noise rate

0.0 0.1 0.2 0.3 0.4 0.5

GMDA 0.5570 0.5570 0.5570 0.5577 0.9640 0.5570

rNDA 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427

Ada 0.4427 0.4427 0.4427 0.5573 0.5573 0.4427

rLR 0.1653 0.1103 0.3853 0.5573 0.9483 0.1653

rmLR 0.2730 0.2730 0.4303 0.5477 0.7920 0.2730

(e) error rate with 10-cross-validation on uncorrelated Synth4 dataset

Method
label noise rate

0.0 0.1 0.2 0.3 0.4 0.5

GMDA 0.0420 0.5440 0.5453 0.5440 0.5473 0.9613

rNDA 0.4560 0.4560 0.4560 0.4560 0.4560 0.4560

Ada 0.4560 0.4560 0.4560 0.4560 0.5440 0.5440

rLR 0.0647 0.2313 0.2320 0.2133 0.4267 0.9353

rmLR 0.0600 0.2313 0.3453 0.3733 0.4473 0.9400

(f) error rate with 3-cross-validation on uncorrelated Synth6 dataset

Method
label noise rate

0.0 0.1 0.2 0.3 0.4 0.5

GMDA 0.0424 0.5572 0.5572 0.5570 0.5673 0.9628

rNDA 0.4422 0.4422 0.4422 0.4422 0.4422 0.4422

Ada 0.4422 0.4422 0.4422 0.4422 0.5578 0.5578

rLR 0.0754 0.1754 0.1562 0.1902 0.4370 0.9264

rmLR 0.0708 0.2686 0.2376 0.3258 0.4577 0.9112
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(a) correlated synth1 dataset (b) correlated synth3 dataset

(c) correlated synth5 dataset (d) uncorrelated synth2 dataset

(e) uncorrelated synth4 dataset (f) uncorrelated synth6 dataset
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representativeness.

(b) When the characteristics difference between the two classes is small, that is, the covariance

between two classes is equal to 250. The effect of the increase of noise labels is not very obvious.

Compared with other methods, the GMDA has a certain capability of noise resistance, and its error

rate is up and down at 50%. Secondly, with the increase of noise tags, the error rate of the GMDA

decreases by about 1%. Similar to the GMDA, under these synthetic datasets, the other comparison

algorithms also fluctuate at specific values. We suspect that this is caused by the randomly generated

synthetic datasets, and this small fluctuation does not affect the evaluation of the noise resistance

performance of various models.

(c) When the characteristics difference between the two classes is large, that is, the covariance

between two classes is equal to 0, the addition of noise tags have different degrees of impact on these

algorithms. Generally speaking, the more noise tags are, the higher the classification error rate is. But

when we look the label noise rate at the interval [0.2, 0.4], these algorithms all are with good anti-noise

performance and have ability of active noise cancelation. It is worthy of note that ADA algorithm

is different from the trend curve of other algorithms. When the difference between the two kinds of

tags is small, the fluctuation is large. When the difference between the two kinds of tags is large, the

fluctuation is small. We can choose the appropriate algorithm according to the actual data set.

In sum up, when the characteristics difference between the two classes in mixture model is obvious,

it is meaningful to analyze and compare the experimental results. Whereas the correlation between

the two classes in mixture model is large, the effect of the increase of noise labels is vague and limited.

As increase of noise labels, prediction error rate does not change much.

7. CONCLUSION

This paper presented a discriminant analysis based on Gaussian mixture models and applied to

classification in the presence of label noise. We derived the updating formulas of the parameters.

The experiments on two synthetic datasets and several real-world datasets showed that the proposed

method was convergent and effective and mostly outperformed the other methods. Compared with

the other methods, our method was less affected by the factors discussed in the preceding sections.

We found that the number of training samples affected the performance significantly, that is, the

number of training samples is increased if necessary. If the samples were insufficient for maximum

likelihood to estimate, Bayes estimation was used, where prior information was utilized, or domain

adaptation learning was used, where a source dataset that was akin to a target dataset was used to
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help.

The number of components of a model given in advance may not be adapted to all the classes;

it might lead to further calculation on a simpler case or less approximation on a more complicated

case. Therefore, we considered a more flexible and adaptable infinite mixture model that estimates

the hidden number of components from the training datasets.
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