
Format-aware Learn&Fuzz: Deep Test Data Generation
for Efficient Fuzzing

Morteza Zakeri Nasrabadia, Saeed Parsaa,∗, Akram Kalaeea

aIran University of Science and Technology, Tehran, Iran.

Abstract

Appropriate test data is a crucial factor to reach success in dynamic software

testing, e.g., fuzzing. Most of the real-world applications, however, accept

complex structure inputs containing data surrounded by meta-data which is

processed in several stages comprising of the parsing and rendering (execution).

It makes the automatically generating efficient test data, to be non-trivial and

laborious activity. The success of deep learning to cope in solving complex tasks

especially in generative tasks has motivated us to exploit it in the context of

complex test data generation. To do so, a neural language model (NLM) based on

deep recurrent neural networks (RNNs) is used to learn the structure of complex

input. Our approach generates new test data while distinguishes between data

and meta-data that makes it possible to target both the parsing and rendering

parts of software under test (SUT). Such test data can improve, input fuzzing.

To assess the proposed approach, we developed a modular file format fuzzer,

IUST-DeepFuzz. Our conducted experiments on the MuPDF, a lightweight and

favorite portable document format (PDF) reader, reveal that IUST-DeepFuzz

reaches high coverage of SUT in comparison with the state-of-the-art tools such

as learn&fuzz, AFL, Augmented-AFL and random fuzzing. We also observed

that the simpler deep learning models, the higher code coverage.

Keywords: Test data generation, File format fuzzing, Code coverage, Neural

∗Corresponding author
Email addresses: morteza_zakeri@comp.iust.ac.ir (Morteza Zakeri Nasrabadi),

parsa@iust.ac.ir (Saeed Parsa), kalaee@comp.iust.ac.ir (Akram Kalaee)

Preprint submitted to arXiv May 29, 2019

ar
X

iv
:1

81
2.

09
96

1v
2

 [
cs

.S
E

]
 2

8
M

ay
 2

01
9

language model, Recurrent neural network, Deep learning.

1. Introduction

Fuzzing [1, 2, 3, 4] is a dynamic software testing technique to detect faults

and vulnerabilities in programs. To this aim, test data sets are generated and

injected into the SUT as far as the program crashes, or an unexpected behavior

is observed. File format fuzzing is of great significance in the case of software

handling malformed and untrusted files, including web browsers, PDF readers

and multimedia players [5, 6].

The primary challenge concerned with the file format fuzzer is to generate

test data as files, covering execution paths of the SUT. To generate test data for

fuzzing programs dealing with files as their major inputs, the fuzzer requires to

know the file format. In fact, without prior knowledge of the file format, most

of the generated test data may be rejected very soon after running the SUT,

and this can result in low code coverage [7]. Manual extraction of a file format

is a common solution to deal with this problem. However, such a solution is

costly, time-consuming, and requires the file format specification which may not

be available, always. Therefore, automatic detection of the file format has been

of great concern to test data generation approaches [8, 9].

An input with complex structure consists of textual and binary data fields

described by some meta-data. File formats such as PDF [10] are good example

of complex input structures. Figure 1 shows a PDF data object and its different

parts. A major dilemma concerned with the automatic detection of a file format

is to distinguish meta-data such as tags and parameters, used to define the

format, from the pure data, stored in the file. Typically, a program such as

MuPDF [11] processes a given PDF file in two distinct stages of parsing and

rendering or execution [12, 7] shown in Figure 2. Parsing mostly deals with

meta-data. More specifically, the parser checks the format and at the same time

loads the checked format into defined data structures in the main memory by

employing meta-data parts. In the rendering stage, the loaded data is processed

2

Textual
data

Binary
data

Meta-data

Figure 1: A PDF data object and its different parts. An example of complex input structure.

Parsing Rendering
(Execution)

Complex inputs

PassInject Pass
Expected

output

Exploiting and
processing meta-data

Exception
handling

Exploiting and
processing data

Fail

Unexpected
error

(Crash)

Exception
handling

Fail

Unexpected
error

(Crash)

Figure 2: Stages of processing complex inputs in real-world applications.

to generate the desired output. For example, the content of the file is shown to

the user.

To perform a proper software testing and find more faults a file format fuzzer

should fuzz the SUT both at the parsing and the rendering stages. Testing

the parser requires all type of input including syntactically invalid test data.

On the other hand, testing the rendering part requires a well-formed test data

passed by the parser and meets the rendering code. Therefore, a test data

generation method is needed to thoroughly understand the input structure

and distinguish data from meta-data while generates new test data targeted at

parsing or rendering stage. During fuzzing a program in addition to well-formed

test data, malformed data are also required. The malformed data should be

kept in an appropriate position within the input file such that defects of the

corresponding SUT could be revealed [9]. Here, the test data generation method

is also responsible for generating malformed data in appropriate positions.

There has been a significant challenge to achieve a relatively high code

3

coverage in fuzzing. For instance, AFL [13] is a well-known mutation based file

format fuzzer which follows an evolutionary approach, targeted at generating

test data with maximum code coverage. AFL mutates a population of randomly

selected files to achieve files, covering new paths which were not already observed.

However, it is observed that for a large number of execution paths, AFL cannot

meet an acceptable code coverage in a reasonable time and it is not suitable for

fuzzing programs with complex input structures [14].

A promising approach is to use learning techniques to generate test data.

For example, Learn&Fuzz [8], a generation based file format fuzzer, employs a

sequence-to-sequence generative model [15, 16] to learn the structure of input files.

The learned model is then used to generate files as input test data. Originally, the

sequence-to-sequence model has intended for mapping two sequences of different

domains [15]. Learning the structure of a file is not, however, a mapping problem

and can be done with simpler models. In Learn&Fuzz [8] only textual data are

learned, while a complex file format contains both textual and non-textual data.

Moreover, in the Learn&Fuzz, generating data always begins with a fixed prefix

obj which results in a low variety of test data and finally, the presented fuzzing

algorithm, called SampleFuzz [8], may not terminate in all executions.

In this paper, to alleviate the aforementioned challenges, we propose a novel

test data generation method to be applied to file format fuzzers. Our method

learns the structure of complex input files by using the NLMs based on deep

RNNs [17], instead of sequence-to-sequence model. Two new fuzzing algorithms

are introduced to fuzz both textual and binary parts of the input file, each of

which targets one stage of processing the file. We also developed IUST-DeepFuzz,

a new modular file format fuzzer to do fuzz testing. IUST-DeepFuzz can learn

any complex file format, then generate and fuzz new test data fully automatic.

In summary, our main contributions are as follows:

• We transfer the complex fuzzing test data generation problem into a

language modeling task by applying NLM [17] to learn the structure of

complex file formats and construct a generative model.

4

• We propose two specific fuzzing algorithms, MetadataNeuralFuzz and

DataNeuralFuzz, which are based on a learned generative model. The

former targets the parsing stage and the latter focuses on rendering stage

in the processing of the input files.

• We improve the coverage rate for SUTs with complex inputs by introducing

a novel hybrid test data generation method which generates the textual

data by generative model and binary data by mutation.

• We investigate the effectiveness of various language models with different

configurations and several sampling strategies in the context of complex

test data generation. Also, we study various parameters required when

generating and fuzzing test data with deep learning techniques.

• We develop a modular file format fuzzer, IUST-DeepFuzz 1, and make it

publicly available to facilitate the other practitioners who work in dynamic

software testing area as well as our dataset including a set of numerous

PDF objects and PDF files, IUST-PDFCorpus2., which was not previously

available.

• We evaluate and compare the power of our presented method with different

well-known fuzzers such as AFL [13], Augmented-AFL [14], Learn&Fuzz

[8], and FileFuzz [5], regards to code coverage for the complex file format,

i.e., PDF [10] and real-world application, namely MuPDF [11].

The proposed method is evaluated by learning PDF file format [10] and then

using the resulted format to generate PDF files as test data to fuzz an open-source

PDF viewer, MuPDF [11]. Our evaluation results indicate a relatively higher

code coverage than the state of the art file format fuzzers [8, 13]. Moreover, in

1The complete source code and documentation of IUST-DeepFuzz are available on our
GitHub repository https://github.com/m-zakeri/iust deep fuzz

2The IUST-PDFCorpus is available on our GitHub page: https://github.com/m-
zakeri/iust deep fuzz/tree/master/dataset

5

https://github.com/m-zakeri/iust_deep_fuzz
https://github.com/m-zakeri/iust_deep_fuzz/tree/master/dataset
https://github.com/m-zakeri/iust_deep_fuzz/tree/master/dataset

this paper, we show that NLMs outperforms Learn&Fuzz sequence-to-sequence

model regarding the accuracy of learning file formats.

The rest of this paper is organized as follows. In Section 2, we briefly

introduce language models (LMs) and RNNs as a fundamental concept used

in our proposed method. In Section 3, we describe our proposed method for

learning the structure of the file, generating, and fuzzing new test data. Section

4, deals with various experiments and evaluations, provided by applying our

method in comparison with existing methods. Related works are discussed in

Section 5. Finally, in Section 6, we conclude our proposed method and discuss

some future works on fuzzing and complex test data generation.

2. Language Model and Recurrent Neural Network

We have applied language model to learn the structure of a file as a sequence of

symbols. Language model is a fundamental concept in NLP, which allows pre-

dicting the next symbol in a sequence [18]. More precisely, LM is a probabilistic

distribution over a sequence of words/symbols that identifies the probability

of a given sequence. By using an LM, we can choose a more likely sequence

among some existing ones. An LM for sequence x =< x(1), ..., x(n) > is defined

as follows [19]:

p(x) =

n∏
t=1

p(x(t)|x<t) (1)

In Equation 1, each of the individual terms p(x(t)|x<t) indicates the condi-

tional probability of the current symbol x(t) given previous symbols x<t, also

referred to as the context. In practice, calculating this probability in the form of

Equation 1 is almost impossible, because we need to see all possible sequences.

To overcome the computational challenge, traditional n-gram LMs consider

only a fixed context window of n− 1 words, based on some sort of Markovian

assumption. Although promising, in many cases, these models are not suitable

for long sequences (more than 4 or 5 symbols) or unseen sequences [19].

6

x

h

y

U

V

W

xt-1

ht-1

yt-1

U

V

xt

ht

yt

U

V

xt+1

ht+1

yt+1

U

V

Time

W W W

t-1 t t+1

Input
layer

Output
layer

Hidden
layer

W

Unfold

Figure 3: Computational graph of a recurrent neural network with one hidden layer [20].

To address the n-grams problems, one can use a family of deep neural networks,

namely, recurrent neural network for building an LM which is called neural

language model [17]. NLMs can extend to longer context without encountering

the zero probabilities problem. RNN is used to process sequential data. It

handles the input sequence in a series of time steps and updates its memory to

produce a hidden state, h(i). Figure 3 shows a simple RNN with one hidden

layer. In each time step t, one vector of the input sequence is processed. The

feed forward equations of an RNN are defined as Equation 2 to 5 [20]:

z(t) = Ux(t) +Wh(t−1) + b (2)

h(t) = σ(z(t)) (3)

y(t) = V h(t) + c (4)

ŷ(t) = softmax(y(t)) (5)

where b and c are bias vectors and matrices U , V , and W , respectively, are the

weights of input-to-hidden, hidden-to-output and hidden-to-hidden connections

learned during the training of the network. Learning is achieved via defining a

7

Corpus of input files
(E.g. PDF files)

Text parts
(E.g. PDF data objects)

Binary parts
(E.g. PDF streams)

obj
<<
 /P 350 0 R
 /S /P
 /Type /jpeg
stream
 /k [231]
 /Pg 3 0 R
>>
Endobj
Obj
[3 4 7]
...

4 .0,`€3pÞ „€H–
WÀp€G@ÁK0Þ ‚ð¢Aª
¤™BÖyCAP8ÅC‰ ’@ù
Ð&¨*ƒª¡CP=ô#t]ƒ
ú Ð 4ý}„˜ÓaØ
¶€Ù°G2n5®·×Œ»€ë
Ãá&ñx¼*Þ

Generative
model

 Fuzz

New test data
(Inputs for fuzz testing)

 Preprocess

Build and train
language model

1

2

3

Figure 4: Flowchart of our hybrid test data generation method.

loss (objective) function and using an optimization method to minimize it. σ is

an activation function such as sigmoid. The softmax function is applied on the

output layer to convert the network output into a valid probability distribution.

LMs, as generative models, provide a probabilistic distribution over a sequence

of symbols. By sampling from such a distribution, new sequences can be

generated. In our proposed approach, each file is considered as a sequence

of bytes, derived from the language of that file. Hence, we will build the

corresponding language model for each file format.

3. Neural Fuzzing

Our proposed method for test data generation consists of three main steps. First,

gathering some sample data, i.e., input files, and preprocessing them. Second,

training a language model on the provided train set. Third, generating and

fuzzing test data through the learned model. Once the test data is generated,

we can start fuzz testing on any given target. Figure 4 shows the flowchart of

our proposed method, to be discussed in more details in the following sections.

3.1. Overview

As shown in Figure 4, at the beginning (step 1), we collect a large number of

sample files in the format that we want to learn, e.g., HTML or PDF files. Then,

the binary (not-ASCII) parts within each sample file are replaced with a unique

8

token, called binary token (BT). For example, we substitute all streams in a

PDF file with the token stream. By using this simple strategy, we can train an

LM only with a set of ASCII sequences. Such a model probably predicts BT in

the generation phase, and thus we can replace BT with a mutated binary part,

which is previously generated by a mutation-based method. Of course, we need

to keep the original binary elements for the future mutations and replacements.

In this way, unlike the current methods which ignore the binary parts [8], we

could generate both the binary and text parts of a test data, at once.

In the preprocessing phase, we also add an end token (ET) to the end of each

file, indicating the completeness of the processed file. Then, we concatenate all

of the files together and build a large sequence of files. This sequence is used

for training LMs, but before training, we divide it into three separate sets as

the train set, the test set, and the validation set. Such a division is required to

measure model accuracy and perplexity on the unseen data. It, also, helps us in

generating new data (See Section 3.3). Some file formats have ET explicitly. For

example, HTML files are ended with the token ¡/html¿. In such a case, there is

no need to add an extra token. Now, we can define our models and train them

on the provided dataset, (step 2).

Finally, our two newly introduced fuzzing algorithms are used to generate

and fuzz the new test data, called DataNeuralFuzz and MetadataNeuralFuzz

(step 3). The former is used to fuzz the data in a test data, and the latter is

used to fuzz the format or meta-data of the file.

In order to study the effect of model complexity in learning file structures

and using the resultant structure to generate test data, we build four models

with different hyper-parameters and architectures based on the RNNs, shown in

Table 1. In the first glance, it seems that the more complex the model, the more

accurate language model describing the desired file format will be. However, our

experiments have shown that this is not always true. Our experiments with the

application of language models resulted from models of different complexities

showed that in contrast, the simpler models resulted in language models that

could reach relatively higher code coverage.

9

Table 1: The proposed NLMs details including the number of trainable parameters.

Model
ID

Model name
Number of

hidden layer(s)
Number of units

in each layer
Number of

trainable parameters

1
Unidirectional LSTM
(Many to One)

1 128 127584

2
Unidirectional LSTM
(Many to One)

2 128 238656

3
Unidirectional LSTM
(Many to One)

2 256 870464

4
Bidirectional LSTM
(Many to One)

2 128 469056

Each one of the models, addressed in Table 1, uses the Long-Short Term

Memory (LSTM) cells [21] as RNNs units which can learn long sequences of

inputs. The first three models are unidirectional many-to-one LSTMs [22], whose

architectures are similar to Figure 3. These models are different w.r.t. the size

of the hidden layers and units in each layer that affects the number of training

parameters for each model. The last model (model 4) is a bidirectional LSTM.

A bidirectional LSTM visits the input sequence in the backward and forward

order. The bidirectional LSTM is composed of two unidirectional LSTMs. One

of them processes the input sequence from left to right and the other from right

to left. As a result, each forward pass has two outputs. A merge function is

required to combine these outputs and produce a single output. We chose to use

the sum function, which adds two output vectors elementwise.

3.2. Training the Model

The training process for all the models, shown in Table 1, is the same. Neural

networks are trained in a supervised mode; that is, an output label is required

for each input of the network. To train each model, we need to specify the input

and output of the corresponding deep neural network. We split the train set

sequence S into multiple smaller subsequences with fixed length d such that the

ith subsequence, xi, will be:

xi = S[i ∗ j : (i ∗ j) + d] (6)

10

<html>

<body>

<h1>Data</h1>

</body>

</html> <

U

h

U

m

U

V

W W

t h

U

t

U

l

U

V

W W

m t

U

m

U

>

U

V

W W

l

(a) An HTML file (b) First training sequence (c) Second training sequence (d) Third training sequence

Figure 5: An example of training many to one RNN on a sample HTML file.

where S[l : u] is a subsequence of S between the indices l and u and j is a jump

step, indicating the forward jump to select the next subsequence from original

sequence, S; xis are input sequences for the model. The corresponding output

or in other words label to each input sequence, xi, is defined as:

Yxi = S[(i ∗ j) + d+ 1] (7)

Indeed, the output is the next symbol of the input sequence. After gener-

ating all input sequences and their corresponding output symbols, the model

can be trained. During training, the model learns the conditional probability

p(x(i+d+1)| < x(i), ..., x(i+d) >) which will eventually enables it to predict the

occurrence of the next symbol, x(i+d+1), of the given subsequence, xi.

Figure 5 shows an example of the above-mentioned training method on a

sample HTML file. The first three training sequences and their presentation to

the network are shown in the figure. The parameters d and j are set to 3 and

1, respectively. In practice, d can be set to a large number, i.e., 40 or even 100

which makes it possible to learn long dependencies.

3.3. Generating New Test Data

After the training process is completed, we can use the learned model to generate

new data. To this aim, we first randomly select a prefix P of length d, from the

test set sequences, and feed it to the model. The model makes predictions for

the next symbol as a valid distribution on all symbols. Afterward, a symbol

form this distribution is selected and is augmented to the end of P . Next, the

11

first symbol of P is removed, while the length of P is yet d. Now, we query the

model with the updated prefix and generate the next symbol. This process will

continue until the end token ET is produced.

There are many strategies to choose one symbol from the output distribution.

A straightforward strategy is to select the symbol with the highest probability,

greedily. Such a strategy results in a well-formed file. However, the generated

test data is always limited to the number of prefixes, i.e., the size of the test

set. Another common strategy is to sample the predicted distribution as a

multinomial distribution. The sampling can result in various test data, but it

does not guarantee that they are all well-formed. Hence, we need a mechanism

to control the diversity of generated test data during sampling.

In [8] the authors have introduced SampleSpace which combines a greedy

selection with sampling, but the method is somewhat complicated and not a

clear way to generate new test data. Their pure sampling strategy has produced

better results. We have introduced a hyperparameter, diversity, to our sampling

strategy. Diversity, D, is a real number in the interval (0, 1]. At the generating

phase, the model prediction values are divided by the diversity, D. After applying

the softmax function; sampling is done. As a result, a lower diversity causes

the sampling strategy to close a greedy strategy and generates less various but

well-formed test data. On the other hand, a higher diversity makes the sampling

strategy to get away from the greedy strategy and creates more various yet

mal-formed test data.

3.4. Fuzzing Test Data

When we generate test data using the models in Table 1 and the sampling

strategy, outlined in the previous section, there will be an inherent variation

in the generated data, and so these data can be used as test data. However,

learning the file structure and fuzzing it are two ends of a spectrum. Learning

wants to capture the structure of well-formed files and generates files which can

pass the file parser while fuzzing intends to break-down the file structure, hope

to make the program execution fail. In this section, we present the neural fuzzing

12

algorithms with the aim of establishing a tradeoff between the two previous goals

and the final generation of the test data for file format fuzzing. Our algorithms

extend and improve the SampleFuzz algorithm [8]. As we mentioned, a file

consists of two parts of the data and meta-data, each of which is processed in

a separate stage. We introduce two algorithms called DataNeuralFuzz to fuzz

data, targeted at rendering stage and MetadataNeuralFuzz to fuzz meta-data,

aimed at parsing stage.

DataNeuralFuzz is shown in Algorithm 1 and MetadataNeuralFuzz is shown

in Algorithm 2. Both algorithms take as inputs the learned model M , sequence

prefix P , diversity D, fuzzing rate FR, end token ET , binary token BT and

return as output the test data TD. Each algorithm has a main loop which

continues until the ET is not generated. Inside the while loop, M is sampled

with D. Then the predicted symbol is modified (fuzzed) under certain conditions

which are different in the algorithms. After exit the while loop, the algorithm

checks whether TD contain BT or not. If it includes BT , then BT is replaced by

the actual binary part which is fuzzed in the mutation based method, for example

randomly. Remember that we already stored binary parts when separating them

from the original dataset. Finally, TD is returned by the algorithm.

One of the main features of both of these algorithms is that unlike SampleFuzz,

they always terminate. Before each of the algorithms goes into their while loop,

a random integer number with the minimum value a and the maximum value b

is set as the maximum length of TD, the MaxLen variable. During generation

of TD in while loop if ET is not produced by model and the length of TD is

larger than MaxLen, then ET is added to the end of TD by the algorithm, and

the while loop will break. The values of a and b should be determined by the

tester. A good practice is to set them around the average length of dataset files.

3.4.1. DataNeuralFuzz

The DataNeuralFuzz algorithm is aimed at fuzzing data stored in a file. The most

apparent property of the data stored in different files is its high variety. Therefore,

it is observed that the learned model predicts the lower probability for the stored

13

Algorithm 1 DataNeuralFuzz

Input: Learned model M , Sequence prefix P , Diversity D, Fuzzing rate FR,
End token ET , Binary token BT

Output: Test data TD

1 TD ← P
2 MaxLen ← RandInt (a, b)
3 while not EndsWith (TD, ET) do
4 predicts ← Predict (M(P))
5 c, p(c) ← Sample (predicts, D) /* Sample c from the learned model

*/

6 p fuzz ← Random (0, 1) /* Decide whether to fuzz */

7 if p(c) < α ∧ c 6∈ Chars (BT
⋃
ET) ∧p fuzz < FR then

8 c ← argminc′{p(c′) ∈ predicts} /* Fuzz c by c’ where c’ is the

lowest likelihood */

9 end
10 TD ← TD + c
11 P ← P [1 :] + c /* Propagate fuzz to prefix */

12 if Len (TD) ¿ MaxLen then
13 TD ← TD + ET
14 break

15 end

16 end
17 if BT ∈ TD then

/* Binary data fuzzing: */

18 TD ← AddBinaryPart (TD)
19 TD ← MutateBinaryPart (TD)

20 end
21 return TD

14

Algorithm 2 MetadataNeuralFuzz

Input: Learned model M , Sequence prefix P , Diversity D, Fuzzing rate FR,
End token ET , Binary token BT

Output: Test data TD

1 TD ← P
2 MaxLen ← RandInt (a, b)
3 while not EndsWith (TD, ET) do
4 predicts ← Predict (M(P))
5 c, p(c) ← Sample (predicts, D) /* Sample c from the learned model

*/

6 p fuzz ← Random (0, 1) /* Decide whether to fuzz */

/* Simpler condition to fuzz a symbol in meta-data mode: */

7 if p(c) > β ∧ p fuzz < FR then

8 end

9 c′ ← argminc”{p(c”) ∈ predicts} /* Fuzz c by c’ where c’ is the

lowest likelihood */

10 TD ← TD + c′

11 P ← P [1 :] + c /* Don’t propagate fuzz to prefix */

12 if Len (TD) ¿ MaxLen then
13 TD ← TD + ET
14 break

15 end

16 end
17 if BT ∈ TD then

/* Binary data fuzzing: */

18 TD ← AddBinaryPart (TD)
19 TD ← MutateBinaryPart (TD)

20 end
21 return TD

15

data than the meta-data, describing the files format. This means the model

prediction vector in the positions containing pure data is smoother than the

positions containing meta-data. Using this property of the probabilities stored

in the prediction vector, the type of the data, as pure or meta-data, could be

determined. To determine the data type, as pure or meta-data, we set a threshold,

α, obtained by experiment as the borderline. If the probability of a symbol c, i.e.,

p(c), is less than α, then c is considered as pure data. DataNeuralFuzz replaces

the pure data item c with c′, where c′ has the lowest likelihood, provided that:

1. The probability p(c), of the symbol c is less than a given threshold, α.

2. Symbol c belongs to neither a BT nor ET .

3. The fuzzing rate, FR, given by the tester, is higher than a random number,

p Fuzz, which is generated by the i.i.d.3 random generator.

The fuzzing rate, FR, indicates the percentage of data, to be fuzzed during

test data generation. For example, if FR is set to 0.1, only 10 percent of data

will be fuzzed by the algorithm. Also, we are not willing to fuzz critical token,

i.e., BT and ET because these tokens are inserted into the files to address the

binary sections and end of the file, respectively. That is why, it is ensured that

the pure data item, c, does not belong to BT and ET .

Another aspect of pure data is that it appears as tokens with a length longer

than one. Our DataNeuralFuzz algorithm is designed to fuzz a pure data token

by changing one or more symbols of the token. It is suggested [23, 6] to change

a data token with the highest possible value, dependent on the type of the token.

Experimentally, the best practice in fuzzing is to replace a data token with its

boundary values. For example, it is a good idea to use 999...9 instead of an

integer data. In general, it is widely known that boundary values, used as input

data, may result in a crash in the rendering stage of the SUT execution.

The learned model can be used to generate any file, as input for fuzzing

the SUT. To do so, a file, as an input string of fixed length, is given to the

3Independent and identically distributed

16

model, and the model generates the next symbol. Next time the input string is

shifted one symbol ahead and this time the input string will include the newly

generated symbol. The resultant string is again fed to the learned model to

generate the second symbol. This process is repeated as far as enough symbols

are created and a new input file is built. In order to increase the effectiveness of

the generated input files, each time a new symbol is generated by the learned

model we fuzz the symbol before using it, provided that the above mentioned

three conditions are held. Each time that the model decides to fuzz the first

symbol of a data token by adding this symbol to next prefix, we let the model

stay in fuzzy prediction state. Next time that the learned model wants to predict

a symbol, its prediction will be affected by the fuzzed symbol which probably

results in another malformed symbol. We call this mechanism ”propagating fuzz

to the prefix”.

3.4.2. MetadataNeuralFuzz

As described above our fuzing algorithm consists of two distinct parts, Data-

NeuralFuzz and MetadataNeuralFuzz, to generate and fuzz the pure data and

format/meta-data of the generated file, respectively. In fact, the generated file is

further malformed to achieve a higher probability of making the SUT execution

to crash. MetadataNeuralFuzz attempts to crash the file format parser of the

SUT. To avoid being trapped by exception handling mechanism used in the SUT

parsing stage, MetadataNeuralFuzz attempts to:

1. Applies the learned model, describing the appropriate structure of the files,

to generate a new file, to test the SUT.

2. Fuzz some of the symbols, describing the file format, with a certain per-

centage given by the tester.

MetadataNeuralFuzz algorithm is intended to fuzz the file format while

preserving the overall file structure as much as possible. In this way, Meta-

dataNeuralFuzz can check the parser robustness against invalid or malformed

file formats. The learned model by itself does not have any assumptions about

17

meta-data and pure data. It simply predicts the probability of occurrence of the

next symbol while generating a file. MetadataNeuralFuzz fuzzes meta-data while

generating it. To distinguish meta-data from pure data, MetadataNeuralFuzz

uses the frequency of the symbols, gained at the training step. In general,

meta-data is repeated more than pure data in the corpus. It is observed that the

learned model predicts meta-data with a higher probability, very close to one,

than the pure data. If the probability of a predicted symbol, c, is more than a

given threshold, β, the algorithm guesses that the symbol, c, probably belongs

to file format and replaces it with a symbol of the lowest occurrence probability.

In order to control the percentage of the fuzzed symbols, a fuzzing rate, FR, is

used. MetadataNeuralFuzz fuzzes meta-data provided that a randomly generated

number p fuzz is less than a predetermined fuzzing rate, FR, given by the

tester.

MetadataNeuralFuzz considers ET and BT for fuzzing because these tokens

are parts of the format. When a symbol generated by the learned model is fuzzed,

it is simply stored in the targeted file and does not affect the prediction of the

next symbol by the learned model. In this way, it is ensured that the fuzzed

symbol does not propagate to the next prefix (line 10 of the MetadataNeuralFuzz

algorithm). The differences between the two algorithms, MetadataNeuralFuzz

and DataNeuralFuzz, are highlighted in the MetadataNeuralFuzz algorithm which

is shown in Algorithm 2.

3.5. Implementation

To implement deep NLMs, we used a high level deep learning library, Keras

[24]. Keras includes a set of high-level APIs for building deep learning models

written in Python and need a low-level runtime back-end to execute deep learning

code. We have decided to use TensorFlow [25], a Google framework for machine

learning tasks, as the back-end for Keras. We used cross-entropy as the objective

function and Adam [26] with learning rates 1× 10−4 and 1× 10−3 as optimizer

algorithm in the training process. We also applied Dropout [27] technique to

prevent our models from overfitting.

18

Monitoring the test process

Generate and fuzz the test data

Generative Model
Test Data

 SUT

 Application Verifier

VSPerfMon

Error
Reports

Code
Coverage
Reports

Store

Inject

Figure 6: IUST DeepFuzz architecture.

The purpose of this paper is to provide a method for automatically generating

test data. However, the test data generation alone is not enough for fuzz testing.

For evaluating the proposed method, we need to have a file format fuzzer. The

fuzzer injects test data to SUT and checks for unexpected results such as crash

the memory of the SUT. We develop IUST-DeepFuzz as a modular file format

fuzzer. IUST-DeepFuzz uses Microsoft Application Verifier [28], a free runtime

monitoring tool, as a monitoring module to catch any memory corruption. It also

uses VSPerfMon [29], another tool from Microsoft, to measure code coverage.

The main module of IUST-DeepFuzz is a test data generator that implements

our neural fuzz algorithms. These modules are connected using modest Python

and batch scripts. IUST-DeepFuzz in the above configuration can run on the

Windows operating system. To use it on the other operating systems we need

to replace the monitoring tool, that is, Application Verifier [28]. The test data

generator is written in Python and could be run on any platform. The code

coverage measurement module is only used for evaluating purposes, and our

fuzz testing does not need it. IUST-DeepFuzz is a black box fuzzer [1] with

hybrid test data generator. Each generated test data is stored on the disk before

injection to SUT so if Application Verifier reports a crash, the test data which

causes that crash can be retrieved to do fault localization process. Figure 6

shows the architecture and data flow of IUST-DeepFuzz.

19

4. Experiments and Evaluations

In this section, the results of our various experiments are presented. We use

IUST-DeepFuzz to fuzz MuPDF [11], a free and an open source PDF, XPS,

and E-book viewer, which takes as input complex PDF file [10] and processes

it. PDF is a complex and highly-structured file format. The full specification

of the PDF file is described in Adobe PDF specification [10]. Similarly, a brief

description of the essential part of the PDF file specified in [8]. The main part

in the PDF file is data object which expresses all features and aspects of the file.

Following the proposed method in [8], we trained our models on the set of PDF

objects and then generated new PDF file to fuzz MuPDF viewer [11].

We also implemented the Learn&Fuzz method [8] and evaluated it on MuPDF

viewer [11] because the Edge PDF parser and other material of Learn&Fuzz,

include dataset and model hyperparameters, did not make available publicly.

In this way, we have been able to make a meaningful comparison between our

proposed method and mentioned method as the most relevant work done in this

area.

4.1. Evaluation Metrics

The primary purpose of fuzzing is to find faults and vulnerabilities in SUT

which is directly associated with code coverage. The primary goal of learning

file structure is to generate well-formed files which are associated with model

accuracy. According to these facts, we consider the following metrics in our

experiments to measure the effectiveness of our proposed method.

1. Models accuracy and error: These metrics are based on objective

function reported by Keras [24] during training each model. Accuracy and

error and are computed on the validation set data, which is derived from

the dataset in the preprocessing phase.

2. Models perplexity: Perplexity is the most common metric to evaluate

20

an LM, and it is defined as [30]:

PPLM (x) = n

√√√√ n∏
i=1

(
1

p(x(i)| < x(1), ..., x(i−1) >)

= 2−
1
n

∑n
i=1 log2 p(x(i)|<x(1),...,x(i−1)>)

(8)

In Equation 8, x is a sequence with length n to evaluate the perplexity.

The perplexity shows the difference between predicted sequence and test

set sequence. So, the lower perplexity means the better LM. For each

model, we compute perplexity on the validation set during training. We

use perplexity to evaluate how proposed models are excellent in capturing

the structure of the input file and to compare different proposed NLMs.

3. Code coverage: For each test data execution, basic block coverage is

measured by VSPerfMon tool [29]. Basic block coverage is an extension of

statement coverage, in which each sequence of non-branching statements is

treated as one statement unit. The main advantage of basic block coverage

is that it can be applied to object code with low overhead. Total coverage

for test set is the union of individual coverages. VSPerfMon also reports

line coverage which is the same statement coverage for the high-level code.

4. Faults and vulnerabilities: For each test data execution, Application

Verifier [28] creates a log file. We then search these log files with a simple

script to find any error or security warning.

The first two metrics, determine the effectiveness of learning file format and

the next two metrics measure the quality and usefulness of fuzz testing.

4.2. Experiments Setup

Training the models in Table 1 was performed on physical ubuntu 16.04 machine

with single Nvidia GTX 1080 GPU, Intel Core i7 CPU and 20 gigabytes of RAM.

Fuzz testing is done on virtual Windows 10 machine with Intel Core i7 CPU and

8 gigabytes of RAM. We used the final version of MuPDF viewer [11] in time of

21

Table 2: Training details for proposed models in Table 1.

Parameter
Model ID

1 2 3 4
Input sequence length (d) 50 50 50 50
Jump step (j) 3 3 1 1
Number of training epochs 50 50 50 50
One epoch training time (hour: min) 1:00’ 1:45’ 5:30’ 9:30’
Model size (megabytes) 1.24 2.76 9.99 5.41

doing our experiments, i.e., version MuPDF 2017-04-114.

Before we can generate test data, we should train our models. Table 2 shows

the critical hyperparameters of our models along with the number of epochs and

training time for each model. The complexity of the model, i.e., the number of

training parameters, increases with the model’s ID. For more complex models,

it is rational to have more training samples. Therefore, in models 3 and 4, we

decrease the jump step which is lead to increase training samples. In model 3,

we used the Dropout [27] with p = 0.3 for regularizations purpose.

4.3. Dataset and Host Files

The successful training of deep neural networks requires a large and enough

dataset. Hence, we collected a large corpus of PDF files from various source

include Mozilla PDF.js open test corpus [31], some PDFs which are used in AFL

[13] as initial seed and PDFs gathered from public web in different languages.

Finally, we published IUST-PDFCorpus with more than 6, 000 PDF files. Such

a corpus was not available publicly earlier, and it can also be used for others

type of PDF manipulation and testing.

To learn the statistical structure of the PDF objects, we extracted 500, 000

objects from IUST-PDFCorpus. About 27% of these objects had a binary stream.

We replaced binary streams with the binary token stream, extracted and stored

them into a separate dataset, and included modified objects in our training

process. A key difference with [8] is that we did not apply seed minimization

4This release is available for download at https://mupdf.com/release history.html

22

https://mupdf.com/release_history.html

before extracting objects because we want to learn the structure of the file and

more data probably improve learning. The entire set of extracted PDF data

objects is available beside the IUST-PDFCorpus.

Since we only learn and generate PDF objects, we need a mechanism to

create complete PDF files. Follow the method presented in [8] we decided to

append newly generated objects to an existing well-formed PDF file, called host.

PDF files can be incrementally updated as described in the PDF Reference

Guide [10]. The new object appends to end of existing PDF, and its offset

adds to the cross-reference table. This method allows one to update a PDF file

without rewriting the entire file. Indeed, the new object rewrites the content of

an existing object which is identified by an ID and absolutes the old one. More

detail on the incremental update can be found on [10].

Next step is to choose a host file. In work proposed by [8], this is done

almost randomly by only selecting the smallest three PDF files from their corpus.

Against that work, in order to study the effect of the host complexity on the code

coverage, we first compute code coverage for all of the PDF files in our corpus

by running MuPDF and then select the three files with maximum, minimum,

and average code coverage respectively as host1 max, host2 min, and host3 avg.

4.4. Baselines for Code Coverage

To compare code coverage of newly generated PDF files with the existing PDF

files, we first measured the MuPDF [11] code coverage for every single host,

then built 1, 000 PDF files with the objects that are selected from the test set,

randomly. The objects are appended to the host files in two different modes:

1. Single Object Update (SOU): Find the last object ID in the host file

and rewrite it with the new object. In this mode, only one object will be

changed in each file.

2. Multiple Objects Update (MOU): Rewrite the fix portion of the

objects within each PDF file. In this mode first, the number of total

objects in the host is computed, and then a randomly selected list of

objects IDs will be overridden by new objects.

23

Table 3: Host files details include the number of objects exists in each host.

Hosts Number of objects A portion of rewrite objects in the MOU mode

host1 max 250 1/5
host2 min 9 1/3
host3 avg 19 1/4

0

5000

10000

15000

20000

25000

30000

host1_max host2_min host3_avg host123

Ba
si

c
Bl

oc
ks

Hosts

single host

baseline_sou

baseline_mou

Figure 7: Code coverage of each host beside the baseline coverages.

Table 3 shows the number of objects in each host and the portion of rewrite

objects in the MOU mode. Figure 7 shows the code coverage obtained by running

the MuPDF viewer on three hosts besides the coverage of two test suites one for

SOU called baseline sou and one for MOU called baseline mou. host123 denotes

the union of code coverages obtained from the hosts 1, 2 and 3. The following

results are observed.

• The code coverage of each baseline is higher than the coverage of the

alone host. This means that changing the hosts leads to increase the code

coverage.

• The baseline coverage has a direct relationship with host coverage. For

example, host1 max has the highest code coverage among host1 max,

host2 min and host3 avg. This shows that selecting an appropriate host

24

Table 4: Perplexity, accuracy, and error of proposed models. The best value in each row is
bolded.

Metric
Model ID

1 2 3 4 laf

Perplexity 1.440 1.391 1.335 1.350 Undefined
Maximum training accuracy 0.886 0.902 0.893 0.909 0.820
Maximum validation accuracy 0.884 0.895 0.904 0.905 0.800
Minimum training error 0.353 0.298 0.324 0.276 0.623
Minimum validation error 0.365 0.330 0.289 0.299 0.725

file is an essential job and has a significant impact on the baseline coverage.

• Code coverage for baseline mou is greater than baseline sou in all cases.

This incomes that further modification of the file content leads to increase

the code coverage.

• The maximum code coverage belongs to host123 which shows every host

has executed different basic blocks.

• Finally, the order of covered code is in the range 20,000 basic blocks which

show MuPDF viewer [11] is a large-size application and PDF files have a

complex format.

4.5. Model Evaluation

Table 4 shows the perplexity, accuracy, and error of our models after training

for 50 epochs. The last column named laf shows this value for the Learn&Fuzz

model [8]. These metrics are reported by Keras. The perplexity is computed by

Equation 8. Accuracy and error come from the cross-entropy loss function. Also

Figure 8 shows the validation error diagram for model 2 and model laf during

the training process. The model 2 has been illustrated in this diagram because

it is the most similar model to laf in both architecture and hyperparameter

setting. The following results are observed.

• The error of all NLMs is less than laf error, and their accuracy is more

than it. This means that the NLM is better than the encoder-decoder

model in the learning grammar of the file.

25

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60

Lo
ss

Epoch

model2

model_laf

Figure 8: Validation error per epoch for model 2 and model laf during the training process.

• The maximum accuracy belongs to model 4, our only bidirectional LSTM.

This network processes the input sequence in both left-to-right and right-

to-left direction. So it can reach an upper accuracy which results in a lower

perplexity.

• In Figure 8, the error diagram for model 2 always is under the model laf.

Of course, the epochs have a different period, so a peer-to-peer comparison

may not be exciting. However, we also see this relationship is true for an

equal interval from the start of the training process.

• The maximum perplexity of all models, which is perplexity in the absence

of an NLM, is 64 on our dataset. The perplexity after 50 training epochs

is less than 1.5 which shows NLMs can learn the language of the file

so excellent. The minimum perplexity belongs to model 3 that has the

maximum number of trainable parameters.

4.6. Sampling Diversity and Code Coverage

To study the impact of diversity on code coverage when generating test data, we

produce 1,000 PDF files on each host, using the sampling strategy with different

diversities 0.5, 1.0 and 1.5. This experiment provides information about the

26

best model, host, diversity, and updating mode (i.e., SOU and MOU) in code

coverage. As a result, we can choose the best configuration for use in fuzz testing.

We save a checkpoint at the end of each epoch in training time then select the

model with the minimum validation error between all checkpoints. We choose

the best-learned model to sample it.

Generating 1,000 PDF file with our models in SOU mode took about 60

minutes and in MOU mode took about 190 minutes. Also running each test

suit on MuPDF viewer and obtaining the coverage took in average 65 minutes.

In total, we generate and test 72,000 PDF files in this experiment. All code

coverages are shown in figure 9. The following results are observed.

• Code coverage for generated data is less than the baselines code coverage

in most cases because generated objects are not well-formed as real PDF

objects in our test set. However, in such case, we see the increase in code

coverage for example in diagram host2 min mou. This means that for

small host adding the more content result in better code coverage.

• Increasing diversity leads to increase code coverage in Bidirectional LSTM

(model 4) but not in the other models. In general, it seems that generating

data with diversity one is more effective in most models and on most hosts

w.r.t the code coverage of SUT.

• Almost in all diagrams, model 2 outperforms other models in the code

coverage. This means simpler NLMs act better than more complex NLMs.

• By looking at host123 diagrams, as an aggregation of the results, we can

conclude that model 2 with diversity one is the best model for fuzz testing.

Hence, we chose this model for using in our neural fuzz algorithms in

Section 4.7.

4.7. Comparison with the Sequence-to-Sequence Model

To compare our models with the sequence to sequence model described in [8],

we generate 1,000 PDF files with this model by using sampling strategy as the

27

20000

20500

21000

21500

22000

22500

23000

0.5 1 1.5

Ba
si

c
Bl

oc
ks

Diversity

host1_max_sou

model1

model2

model3

model4

baseline_sou
21000

21500

22000

22500

23000

23500

24000

24500

25000

0.5 1 1.5

Ba
si

c
Bl

oc
ks

Diversity

host1_max_mou

model1

model2

model3

model4

baseline_mou

7200

7400

7600

7800

8000

8200

8400

8600

0.5 1 1.5

Ba
si

c
Bl

oc
ks

Diversity

host2_min_sou

model1

model2

model3

model4

baseline_sou
8000

8200

8400

8600

8800

9000

9200

9400

9600

0.5 1 1.5

Ba
si

c
Bl

oc
ks

Diversity

host2_min_mou

model1

model2

model3

model4

baseline_mou

11800
12000
12200
12400
12600
12800
13000
13200
13400
13600

0.5 1 1.5

Ba
si

c
Bl

oc
ks

Dicersity

host3_avg_sou

model1

model2

model3

model4

baseline_sou
13500

14000

14500

15000

15500

16000

16500

17000

17500

0.5 1 1.5

Ba
si

c
Bl

oc
ks

Diversity

host3_avg_mou

model1

model2

model3

model4

baseline_mou

21000

21500

22000

22500

23000

23500

24000

24500

0.5 1 1.5

Ba
si

c
Bl

oc
ks

Diversity

host123_sou

model1

model2

model3

model4

baseline_sou
22500

23000

23500

24000

24500

25000

25500

26000

0.5 1 1.5

Ba
si

ck
 B

lo
ck

s

Diversity

host123_mou

model1

model2

model3

model4

baseline_mou

Figure 9: Code coverage per diversity for all models when evaluating them on each host file.

28

best strategy reported in [8] and then obtain the code coverage for the created

test suite. For each of our models, we choose the best code coverage from the

previous section results. Figure 10 shows the code coverage values in both MOU

and SOU modes. We observed the following results.

• In SOU mode, all NLMs on host1 max have a better code coverage than laf.

However, on host2 min and host3 avg there is a subtle difference between

models.

• In MOU mode, our proposed models are significantly better than the

Learn&Fuzz model. This show the effectiveness of MOU in generating

PDF files. More changes result in higher code coverage.

• In both modes, the increase in the code coverage of host1 max is higher

than the increase in code coverage of host2 min. This means, in general,

that more complex host files have more potential to execute new part of

codes when their content is changed by the generative models.

Another parameter that affects code coverage is the number of training

epochs. We compare code coverage of model 2 and Learn&Fuzz [8] in five

different epochs include epochs 10, 20, 30, 40 and 50. To do this, the model

checkpoint at the specific epoch is used to generate 1,000 PDF files and then

code coverage is obtained, again by running the test suits on MuPDF viewer

[11]. The result is shown in Figure 11. In both models, the coverage increases in

early epochs of training and then begins to decrease. This occurs because the

training improves the model in the early epochs then the model behavior shows

a bias on trainset, and it may be overfitting. However, in general, it seems that

there is no definite relationship between the number of training epochs and code

coverage. The remarkable point is that model 2 has a higher code coverage in

all training epochs.

4.8. Neural Fuzz Testing

In the fourth and the last experiment, we put MuPDF [11] on the real fuzz

testing. We generate 10,000 PDF files using each of DataNeuralFuzz and

29

0

5000

10000

15000

20000

25000

30000

host1_max host2_min host3_avg host123

Ba
si

c
Bl

oc
ks

Hosts

model1

model2

model3

model4

model_laf

(a) SOU mode

0

5000

10000

15000

20000

25000

30000

host1_max host2_min host3_avg host123

Ba
si

c
Bl

oc
ks

Hosts

model1

model2

model3

model4

model_laf

(b) MOU mode

Figure 10: Code coverage per host for proposed models in comparison with the model laf in
SOU and MOU modes.

30

20500

21000

21500

22000

22500

23000

23500

0 10 20 30 40 50 60

B
as

ic
 B

lo
ck

s

Epoch

model2

model_laf

Figure 11: Code coverage per epoch for model 2 and model laf during the training process.

MetadataNeuralFuzz algorithms and then use IUST-DeepFuzz to do fuzz testing.

Besides fuzzing with our neural fuzzing algorithms, we do fuzz testing by FileFuzz

[5], a simple mutation-based file format fuzzer, and Learn&Fuzz (i.e. SampleFuzz

algorithm) [8]. In all experiments, we use host1 max as the host file or initial

seed in the case of FileFuzz. We fuzzed MuPDF viewer with total of 40,000

(40K) PDF files in this experiment.

Table 5 shows the input and constant values which are set for DataNeuralFuzz

and MetadataNeuralFuzz algorithms to generate test data among the available

values. Table 6 shows the code coverage results of various fuzz testing methods

include Learn&Fuzz [8] and FileFuzz[5]. Finally, table 7 shows the difference

between code coverage of our proposed method and four other known file format

fuzzers: Learn&Fuzz, AFL [13], Augmented-AFL [14], and FileFuzz. Augmented-

AFL has been introduced recently by Microsoft research as an improvement for

AFL. The following results are observed.

• MetadataNeuralFuzz code coverage is less than DataNeuralFuzz. As we

have said already, manipulating a small part of the file format may make

it wholly invalid, and hence the file is rejected by the parser as soon as

and lead to low code coverage. However, changing the data within file

affects the rendering stage of the file execution. The results prove that both

31

Table 5: Input and constant values for our neural fuzz algorithms during test data generation.

Input / constant Available values Selected values

Learned model M 1, 2, 3, 4, laf 2
Sequence prefix P String constant Randomly selected from the test set
Diversity D (0, +∞) 1
Fuzzing rate FR (0, 1] 0.1
End token ET String constant endobj
Binary token BT String constant stream
(a, b) (len(p), +∞) (450, 550)
α in DataNeuralFuzz (0, 1) 0.5
β in MetadataNeuralFuzz (0, 1) 0.9

Table 6: Results of fuzz testing with 10,000 PDF files for each algorithm.

Algorithm Basic block coverage Percent Line coverage Percent

DataNeuralFuzz 23,719 19.36 18,673 20.81
MetadataNeuralFuzz 22,583 18.43 17,894 19.95
SampleFuzz [8] 20,957 17.10 16,793 18.72
RandomFuzz (FileFuzz [5]) 7,563 6.17 5,002 5.58

Table 7: Improvement of proposed algorithms code coverage in comparison with existing
fuzzers. Each number shows the difference between code coverage of algorithms in its column
with its row. All value is in percent.

Algorithm / fuzzer DataNeuralFuzz MetadataNeuralFuzz

SampleFuzz [8] +2.26 +1.33
AFL [14] +7.73 +6.80
Augmented-AFL [14] +7.56 +6.63
RandomFuzz (FileFuzz [5]) +13.19 +12.26

32

algorithms act as we expected. The one fuzzes format, and the another

fuzzes data.

• Both DataNeuralFuzz and MetadataNeuralFuzz have covered more basic

blocks (of course more lines) of MuPDF viewer code than SampleFuzz [8].

That shows NLMs with RNNs outperforms encoder-decoder models in fuzz

testing. Another interpretation is that hybrid test data generation beats

the generation-based methods.

• Our hybrids test data generation methods also outperform mutation based

fuzzers such as AFL and AugmentAFL, as shown in table 7. The code cov-

erage for AFL and Augmented-AFL have taken from [14] as benchmarks.

• The advantage of intelligence algorithms versus random mutation based

on the test data generation part of fuzz testing is obvious. The random

algorithms cannot access the high code coverage in the complex input

structures. The coverage of the DataNeuralFuzz algorithm is more than

three times the algorithm using in FileFuzz [5].

• Although we have improved the code coverage of MuPDF viewer [11] during

fuzz testing somewhat, as we see in table 6, the percentage of covered

code is still below 25%. This means the most of the viewer codes are not

executed, and it is not good news. On the other hand, we should know

that MuPDF viewer can parse and play different file format such as XPS.

This means that part of the not executed code is used when inputs are in

such formats. Thus, we do not expect to run them just by generating and

injecting PDF files.

4.9. Faults and Vulnerabilities

The best metric which can be used to evaluate a fuzzer is the number of faults

and vulnerabilities found during fuzz testing. We did not see any errors in reports

generated by Application Verifier [28] after each test execution. Given that we

tested the final version of the MuPDF software [11], it is assumed that most of

33

its errors are fixed in the trial versions, and thus it will be difficult to find the

new fault. On the other hand, MuPDF is software under active development,

and it has great developers and user community that makes it robust software.

However, the DataNeuralFuzz algorithm detected several uses of unsafe functions

and reported them as a security warning.

It seems that Application Verifier [28] when running on Windows 10 x64

unable to detect 32bit applications memory errors. We try to fuzz testing a

trivial 32bit application with known fault, but ApplicationVerifier does not

report anything. The 64bit application but do not have such problems, and their

faults are detected by ApplicationVerifier. Hence we tested both 32bit and 64bit

version of MuPDF viewer [11]. IUST DeepFuzz opens SUT with a test data

and closes it after a fixed time, the try to inject next test data in test suit. At

our configuration each test suit contains 10,000 test data take about 28 hours

to be processed. Fuzzing is kind of stress testing typically done in several days

or weeks to find faults and vulnerabilities. We are planning to test MuPDF on

more massive test suits in order of 100,000 (100K) PDF files and more which

probably can break MuPDF.

5. Related Works

In this section, we discuss some related works in fuzzing and explain their

existing problems concerning test data generation. According to the test data

generation methods, fuzzers are categorized as Mutation-based and generation-

based [32, 33, 34]. Various techniques are applied to both methods to improve

them. Most of these techniques have focused on artificial intelligence algorithms.

I. Mutation-based Fuzzing. In mutation-based, one or more valid input

data is used as the initial seed. This seed then mutates to produce another

test data. It is easy to construct mutation-based fuzzer and generate

mal-formed test data with it. In this case, there is no necessity for a

prior understanding of the input data structure. The drawback of the

mutation-based method is that this method depends on the variation of

34

the initial seed. Without different sample inputs, mutation-based fuzzers

does not achieve high code coverage [35] which shows the importance of

the initial seed in the mutation-based methods. AFL [13] and FileFuzz [5]

are examples of the mutation-based fuzzers.

II. Generation-based Fuzzing. The generation-based method generates

test data entirely random or from a formal description such as grammar,

template, or model. The latest uses the input format specifications to

construct a generative model. This method is most often applied to the

formats that some documentation available for them. Usually, it achieves

a higher code coverage, in comparison with mutation-based fuzzers [35].

However, as we said, a lot of time and money should be spent to get

the specifications of the file format fully understood and build a proper

grammar, template, or model for it. SAGE [36] and Peach [37] are examples

of generation-based fuzzer. There are also hybrid methods which utilize

the features of both approaches. IUST DeepFuzz proposed in this paper

is a hybrid fuzzer that generate structured textual data by a generative

model and unstructured binary data by mutations.

III. Evolutionary Fuzzing. First attempts to bring intelligence to fuzzing

were done by applying evolutionary algorithms such as genetic [38]. An

evolutionary fuzzer receives feedback from runtime information, typically

code coverage information, and adds those test data that leads to the

new execution paths into a queue. After that, when the fuzzer wants to

generate test data, it only mutates the test data which exist in the queue,

hoping to be able to run new parts of the code. AFL [13] is the state of

the art evolutionary file format fuzzer works exactly like those above. By

using the feedback taken from previous runs, AFL can choose better test

data; however, it mutates them randomly. As a result, a large number

of duplicate test data will be generated that do not necessarily affect the

testing criteria including code coverage. On the other hand, in complex

input structures, changing some critical parts causes the input test data

to be rejected by the parser at the initial stage of parsing. So, we need a

35

mechanism to inform fuzzer where to mutate (which offset) the input file.

IV. Deep Learning in Mutation-based and Evolutionary Methods.

Augmented-AFL [14], as an improvement patch for AFL [13], tries to

find suitable places for mutating bytes using deep learning techniques.

After Augmented-AFL created a new test data, it queries a model to see

whether the generated test data is good enough or not? This method

increases the test speed, but a large amount of data are rejected by the

model (veto) while being produced. Also, Augmented-AFL does not exhibit

significant improvements in code coverage for MuPDF parser [11]. It seems

for the applications with complex input structure mutation-based methods

cannot rich high code coverage.

V. Deep Learning in Generation-based Methods. Applying the neural-

network-based statistical learning to automatically generate input grammars

from sample inputs was initially proposed by Godefroid et al. [8]. They

also presented an algorithm for generating fuzzing inputs. The main idea

of the work is to learn a generative model over a set of PDF files [10]. To

this aim, they used a kind of sequence to sequence architecture [15, 16]

which is originally used in mapping two sequences from different domain

together, e.g., the task of machine translation. They called their method

Learn&Fuzz. Throughout the paper, we argued some weaknesses of the

Learn&Fuzz method and provided some solutions for them. Based on

this work, Cummins et al. introduced DeepSmith [39] that uses LSTM

architecture of RNN [21] to model the program code. They applied the

tool for fuzzing compiler of OpenCL programming language. Their model

is not a hybrid model and can use only to generate textual test data.

6. Conclusion

This article is aimed at the introduction of a new intelligent test data generation

technique for complex input structures such as PDF files. Deep neural language

models, built by recurrent neural networks, could be best applied to learn the

36

structure of complex input files as a sequence of symbols. Textual sections of

input files could be simply learned. However, it is a difficult job to learn the

format of a binary section. To resolve the difficulty, we suggest to temporarily

delete binary sections and substitute these sections with a specific token. After

the training phase is completed and when the learned model is applied to generate

test data, the tokens are replaced with the mutated form of the deleted sections.

To improve the fuzzer efficiency, we fuzz both the data and meta-data when

applying the learned model to generate new input files as test data. We believe

that both of the presented algorithms are required when fuzz testing is done

regardless of the code coverage. Neural fuzzing algorithms are designed to test

different parts of the program. MetadataNeuralFuzz tests parser of file format

and DataNeuralFuzz tests renderer of file format.

Test data generator is the most important module in fuzzers. Providing

an automatic test data generator that can achieve high code coverage in the

software under test, especially the targets with complex input structure, is

essential to find faults. Generation-based and mutation-based methods have

been successfully applied to generate test data for fuzzing. However, the former

is not fully automatic, and the latter suffers from poor code coverage.

To address these problems, we propose an approach based on NLMs and

deep learning techniques. Our hybrid test data generation method automatically

learns the structure of the input file and then generates new diverse test data

by fuzzing both textual and binary parts of the input format. As the method

intelligently determines the location of fuzz and the value which should be used

to fuzz, it can be promisingly applied for testing complex targets.

We conducted our experiments on a complex file format, i.e., PDF, and

the results confirm the significant improvement of the code coverage and the

accuracy of our proposed approach compared to the previous methods. Besides

the general conclusion, our analysis reveals some worthwhile empirical facts,

most notably:

• Hybrid test data generation for fuzzing both textual and binary parts of

37

complex input structures, increase code coverage of the SUT.

• It is widely recognized that bidirectional LSTM as an LM can obtain more

accuracy and less error on the same dataset. However, it is observed that

simpler NLMs such as unidirectional LSTM without dropout, e.g., model 2

in this paper, can outperform more complex method in the code coverage.

A similar result is reported in [14].

• The incremental update process based on a PDF file with high code

coverage results in more code coverage.

• Despite providing relatively higher code coverage than random and existing

intelligence fuzzers, our proposed fuzzer can be improved to provide higher

coverage for complex input structures such as PDF file structure.

There is a vast area of future work on this topic. One is to use other powerful

deep learning models such as generative adversarial networks (GANs) [40] to

generate the test data. Another direction is to apply these models for generating

test data in other types of fuzzers such as network protocol fuzzers. In order

to produce more effective test data, we intend to add a feedback loop to IUST

DeepFuzz aimed at receiving the runtime information and fine tuning the learned

model. There are parts of code in SUT that handle user interactions. Fuzzers,

such as AFL [13] and IUST DeepFuzz, however, do not utilize user interaction

parts for fuzzing and does not support the execution of these parts of the

code. For the time being, we are planning to support the automation of user

interactions with SUT.

References

References

[1] B. P. Miller, L. Fredriksen, B. So, An empirical study of the reliability of Unix

utilities, Commun. ACM 33 (12) (1990) 32–44. doi:10.1145/96267.96279.

URL http://doi.acm.org/10.1145/96267.96279

38

http://doi.acm.org/10.1145/96267.96279
http://doi.acm.org/10.1145/96267.96279
http://dx.doi.org/10.1145/96267.96279
http://doi.acm.org/10.1145/96267.96279

[2] B. P. Miller, D. Koski, C. Pheow, L. V. Maganty, R. Murthy, A. Natarajan,

J. Steidl, Fuzz revisited: a re-examination of the reliability of Unix utilities

and services, Tech. rep., University of Wisconsin-Madison (1995).

[3] J. E. Forrester, B. P. Miller, An empirical study of the robustness of

Windows NT applications using random testing, in: Proceedings of the 4th

Conference on USENIX Windows Systems Symposium - Volume 4, WSS’00,

USENIX Association, Berkeley, CA, USA, 2000, pp. 6–6.

URL http://dl.acm.org/citation.cfm?id=1267102.1267108

[4] B. P. Miller, G. Cooksey, F. Moore, An empirical study of the robustness

of MacOS applications using random testing, in: Proceedings of the 1st

International Workshop on Random Testing, RT ’06, ACM, New York, NY,

USA, 2006, pp. 46–54. doi:10.1145/1145735.1145743.

URL http://doi.acm.org/10.1145/1145735.1145743

[5] M. Sutton, A. Greene, P. Amini, Fuzzing: brute force vulnerability discovery,

Addison-Wesley Professional, 2007, http://fuzzing.org/.

[6] N. Rathaus, G. Evron, Open source fuzzing tools, Syngress Publishing,

2007.

[7] V.-T. Pham, M. Böhme, A. Roychoudhury, Model-based whitebox fuzzing

for program binaries, in: Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering, ASE 2016, ACM, New

York, NY, USA, 2016, pp. 543–553. doi:10.1145/2970276.2970316.

URL http://doi.acm.org/10.1145/2970276.2970316

[8] P. Godefroid, H. Peleg, R. Singh, Learn&fuzz: machine learning for input

fuzzing, in: Proceedings of the 32Nd IEEE/ACM International Conference

on Automated Software Engineering, ASE 2017, IEEE Press, Piscataway,

NJ, USA, 2017, pp. 50–59.

URL http://dl.acm.org/citation.cfm?id=3155562.3155573

39

http://dl.acm.org/citation.cfm?id=1267102.1267108
http://dl.acm.org/citation.cfm?id=1267102.1267108
http://dl.acm.org/citation.cfm?id=1267102.1267108
http://doi.acm.org/10.1145/1145735.1145743
http://doi.acm.org/10.1145/1145735.1145743
http://dx.doi.org/10.1145/1145735.1145743
http://doi.acm.org/10.1145/1145735.1145743
http://fuzzing.org/
http://doi.acm.org/10.1145/2970276.2970316
http://doi.acm.org/10.1145/2970276.2970316
http://dx.doi.org/10.1145/2970276.2970316
http://doi.acm.org/10.1145/2970276.2970316
http://dl.acm.org/citation.cfm?id=3155562.3155573
http://dl.acm.org/citation.cfm?id=3155562.3155573
http://dl.acm.org/citation.cfm?id=3155562.3155573

[9] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, H. Bos, Vuzzer:

application-aware evolutionary fuzzing, in: Proceedings of the Network and

Distributed System Security Symposium (NDSS), 2017.

[10] Adobe Systems Inc., PDF reference, version 1.7, Available:

https://www.adobe.com/content/dam/acom/en/devnet/acrobat/

pdfs/pdf_reference_1-7.pdf (November 2006).

[11] Artifex Software Inc., MuPDF, [Online]. Available: https://mupdf.com/

([Accessed: 2018-07-25]).

[12] J. Wang, B. Chen, L. Wei, Y. Liu, Skyfire: Data-driven seed generation for

fuzzing, in: 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp.

579–594. doi:10.1109/SP.2017.23.

[13] M. Zalewsky, American fuzzy lop, [Online]. Available: http://lcamtuf.

coredump.cx/afl/ ([Accessed: 2017-10-11]).

[14] M. Rajpal, W. Blum, R. Singh, Not all bytes are equal: neural byte sieve

for fuzzing, CoRR abs/1711.04596. arXiv:1711.04596.

URL http://arxiv.org/abs/1711.04596

[15] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with

neural networks, in: Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,

K. Q. Weinberger (Eds.), Advances in Neural Information Processing

Systems 27, Curran Associates, Inc., 2014, pp. 3104–3112.

URL http://papers.nips.cc/paper/5346-sequence-to-sequence-

learning-with-neural-networks.pdf

[16] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, Y. Ben-

gio, Learning phrase representations using RNN encoder-decoder for statis-

tical machine translation, CoRR abs/1406.1078. arXiv:1406.1078.

URL http://arxiv.org/abs/1406.1078

[17] T. Mikolov, M. Karafit, L. Burget, J. Cernock, S. Khudanpur, Recurrent

neural network based language model, Vol. 2, 2010, pp. 1045–1048.

40

https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
https://mupdf.com/
http://dx.doi.org/10.1109/SP.2017.23
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://arxiv.org/abs/1711.04596
http://arxiv.org/abs/1711.04596
http://arxiv.org/abs/1711.04596
http://arxiv.org/abs/1711.04596
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078

[18] D. Jurafsky, J. H. Martin, Speech and language processing (3rd ed. draft),

2017, https://web.stanford.edu/~jurafsky/slp3/.

[19] M. T. Luong, Neural machine translation, Ph.D Thesis, Stanford university

(2016).

URL https://github.com/lmthang/thesis

[20] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, 2016,

http://www.deeplearningbook.org.

[21] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Compu-

tation 9 (8) (1997) 1735–1780. arXiv:https://doi.org/10.1162/neco.

1997.9.8.1735, doi:10.1162/neco.1997.9.8.1735.

URL https://doi.org/10.1162/neco.1997.9.8.1735

[22] A. Karpathy, The unreasonable effectiveness of recurrent neural net-

works, [Online]. Available: http://karpathy.github.io/2015/05/21/

rnn-effectiveness/ ([Accessed: 2017-10-21]).

[23] A. Takanen, J. DeMott, C. Miller, Fuzzing for software security testing and

quality assurance, 1st Edition, Artech House, Inc., Norwood, MA, USA,

2008.

[24] F. Chollet, et al., Keras, https://keras.io (2015).

[25] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-

rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg,

D. Mané, R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens,

B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Va-

sudevan, F. B. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,

Y. Yu, X. Zheng, Tensorflow: large-scale machine learning on heterogeneous

distributed systems, CoRR abs/1603.04467. arXiv:1603.04467.

URL http://arxiv.org/abs/1603.04467

41

https://web.stanford.edu/~jurafsky/slp3/
https://github.com/lmthang/thesis
https://github.com/lmthang/thesis
http://www.deeplearningbook.org
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://keras.io
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467

[26] D. P. Kingma, J. Ba, Adam: a method for stochastic optimization, CoRR

abs/1412.6980. arXiv:1412.6980.

URL http://arxiv.org/abs/1412.6980

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,

Dropout: a simple way to prevent neural networks from overfitting, Journal

of Machine Learning Research 15 (2014) 1929–1958.

URL http://jmlr.org/papers/v15/srivastava14a.html

[28] Microsoft, Application verifier (appverif.exe), [Online]. Available:

https://docs.microsoft.com/en-us/windows-hardware/drivers/

debugger/application-verifier ([Accessed: 2018-07-18]).

[29] Microsoft, VSPerfMon, [Online]. Available: https://docs.microsoft.

com/en-us/visualstudio/profiling/vsperfmon?view=vs-2017 ([Ac-

cessed: 2018-07-18]).

[30] T. Mikolov, Statistical language models based on neural networks, Ph.D.

Thesis, Brno University of Technology (2012).

[31] Mozilla Labs, PDF.js, [Online]. Available: https://github.com/mozilla/

pdf.js/tree/master/test/pdfs ([Accessed: 2017-10-15]).

[32] R. Mcnally, K. Yiu, D. Grove, Fuzzing: the state of the art, DSTO Defence

Science and Technology Organisation (2012) 55.

[33] C. Chen, B. Cui, J. Ma, R. Wu, J. Guo, W. Liu, A systematic review

of fuzzing techniques, Computers & Security 75 (2018) 118 – 137.

doi:https://doi.org/10.1016/j.cose.2018.02.002.

URL http://www.sciencedirect.com/science/article/pii/

S0167404818300658

[34] J. Li, B. Zhao, C. Zhang, Fuzzing: a survey, Cybersecurity 1 (1) (2018) 6.

doi:10.1186/s42400-018-0002-y.

URL https://doi.org/10.1186/s42400-018-0002-y

42

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/application-verifier
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/application-verifier
https://docs.microsoft.com/en-us/visualstudio/profiling/vsperfmon?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/profiling/vsperfmon?view=vs-2017
https://github.com/mozilla/pdf.js/tree/master/test/pdfs
https://github.com/mozilla/pdf.js/tree/master/test/pdfs
http://www.sciencedirect.com/science/article/pii/S0167404818300658
http://www.sciencedirect.com/science/article/pii/S0167404818300658
http://dx.doi.org/https://doi.org/10.1016/j.cose.2018.02.002
http://www.sciencedirect.com/science/article/pii/S0167404818300658
http://www.sciencedirect.com/science/article/pii/S0167404818300658
https://doi.org/10.1186/s42400-018-0002-y
http://dx.doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y

[35] C. Miller, Z. Peterson, Analysis of mutation and generation-based fuzzing,

White Paper, Independent Security Evaluators (2007) 1–7.

[36] P. Godefroid, M. Y. Levin, D. Molnar, Sage: whitebox fuzzing for security

testing, Queue 10 (1). doi:10.1145/2090147.2094081.

URL http://doi.acm.org/10.1145/2090147.2094081

[37] Peach Tech., Peach fuzzer, [Online]. Available: https://www.peach.tech/

([Accessed: 2018-10-14]).

[38] J. DeMott, R. Enbody, W. Punch, Revolutionizing the field of grey-box

attack surface testing with evolutionary fuzzing, Defcon 15.

URL http://www.intelligentexploit.com/articles/Evolutionary-

Fuzzing.pdf

[39] C. Cummins, P. Petoumenos, A. Murray, H. Leather, Compiler fuzzing

through deep learning, in: Proceedings of the 27th ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis, ISSTA 2018, ACM,

New York, NY, USA, 2018, pp. 95–105. doi:10.1145/3213846.3213848.

URL http://doi.acm.org/10.1145/3213846.3213848

[40] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, Y. Bengio, Generative adversarial nets, in: Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger (Eds.), Advances

in Neural Information Processing Systems 27, Curran Associates, Inc., 2014,

pp. 2672–2680.

URL http://papers.nips.cc/paper/5423-generative-adversarial-

nets.pdf

43

http://doi.acm.org/10.1145/2090147.2094081
http://doi.acm.org/10.1145/2090147.2094081
http://dx.doi.org/10.1145/2090147.2094081
http://doi.acm.org/10.1145/2090147.2094081
https://www.peach.tech/
http://www.intelligentexploit.com/articles/Evolutionary-Fuzzing.pdf
http://www.intelligentexploit.com/articles/Evolutionary-Fuzzing.pdf
http://www.intelligentexploit.com/articles/Evolutionary-Fuzzing.pdf
http://www.intelligentexploit.com/articles/Evolutionary-Fuzzing.pdf
http://doi.acm.org/10.1145/3213846.3213848
http://doi.acm.org/10.1145/3213846.3213848
http://dx.doi.org/10.1145/3213846.3213848
http://doi.acm.org/10.1145/3213846.3213848
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

	1 Introduction
	2 Language Model and Recurrent Neural Network
	3 Neural Fuzzing
	3.1 Overview
	3.2 Training the Model
	3.3 Generating New Test Data
	3.4 Fuzzing Test Data
	3.4.1 DataNeuralFuzz
	3.4.2 MetadataNeuralFuzz

	3.5 Implementation

	4 Experiments and Evaluations
	4.1 Evaluation Metrics
	4.2 Experiments Setup
	4.3 Dataset and Host Files
	4.4 Baselines for Code Coverage
	4.5 Model Evaluation
	4.6 Sampling Diversity and Code Coverage
	4.7 Comparison with the Sequence-to-Sequence Model
	4.8 Neural Fuzz Testing
	4.9 Faults and Vulnerabilities

	5 Related Works
	6 Conclusion

