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Abstract Brain computer interface (BCI) is the current trend in technology expansion as it provides an easy 

interface between human brain and machine. The demand for BCI based applications is growing tremendously 

and efforts are in progress to deploy BCI devices for real world applications. One of the widely known 

applications of BCI technology is rehabilitation in which BCI devices can provide various types of assistance to 

specially-abled persons. In this paper the effect of hand actions on objects is analyzed for motor related mental 

task. The proposed approach analysis electroencephalogram (EEG) based brain activity which was captured for 

images shown with different gripping actions on objects. The EEG recordings are first pre-processed, followed 

by extraction of epochs and frequency bands using discrete wavelet transform (DWT), afterwards feature 

extraction followed by training and classification steps are performed for classifying the grip action into 

congruent (correct) and incongruent (incorrect) grip categories. The proposed work makes use of average power 

and relative wavelet energy as discriminating features which are then fed to train an artificial neural network for 

automatically classifying the incoming EEG patterns into correct or incorrect object hand grips. The performance 

evaluation of proposed system is done on real EEG data set obtained from 14 subjects. Experimental results have 

shown an accuracy of 75%. Also, to evaluate the effectiveness of our work, a comparison of our work with other 

state of art works reported by different authors is presented at the end. The results show the effectiveness of 

proposed approach and suggest further that the system can be used for analyse and train subjects having motor-

related disabilities for perceiving correct or incorrect hand grips on objects.  
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1 Introduction 
 

Brain Computer Interface (BCI) is an emerging field of study, which can be used as a communication medium 

between a human and the computer. There are numerous possibilities and application areas for BCI as they 

provide an easy interface to understand the functioning of human brain. BCI has applications in different fields 

such as medical, industrial, experimental psychology and neurorehabilitation to name a few [1]. The most 

effective way to understand the functioning of human brain is by analyzing electroencephalogram recordings, 

commonly known as EEG data. The EEG recordings contain cortical potentials, which occur during various 

mental processes [2]. These signals comprise of different frequency sub-bands: Delta (4 Hz), Theta (4-7 Hz), 

Alpha or mu (8-12 Hz), Beta (12-30), and Gamma (30-100 Hz) bands, to facilitate ease of analysis. Studies 

presented in [3,4] found out that mu and beta rhythms are more sensitive to correct and incorrect hand grips and 

respond strongly especially over motor and pre-motor cortex areas of brain. Particularly the event related 

desynchronization of mu and beta rhythms were found to be more profound for congruent grip on objects rather 

than for incongruent grip [4]. Here, we present a fully automated system capable of sensing the correctness of 

grip response over familiar objects by analyzing EEG data. The proposed system takes EEG data and applies pre-

processing over it which includes re-referencing of EEG data over left and right mastoid electrodes using 

EEGLAB software in MATLAB environment. After this, epoch extraction was performed on the re-referenced 

data and 89 epochs were obtained. The epoched EEG signals were then filtered using Discrete Wavelet Transform 

(DWT) to isolate Alpha and Beta rhythms. Finally, features were extracted from Alpha and Beta rhythms and 

passed on to a neural network classifier for training. The proposed system can be used for training purpose in 

neuro rehabilitation of especially abled persons and can be used to develop a variety of BCI devices to control 

limb movements in robotic and prosthetic settings as well [5]. Main contribution of our work can be summarized 

as follows: 

 

 There is a substantial difference between the perception of EEG patterns of different type of handgrip, i.e., correct 

and incorrect action on objects. Our work tries to establish the fact that these different perceptions can be captured 

in EEG patterns at different brain locations and certain band features can be used for developing a machine 

learning based approach for automatic classification of appropriate hand grip categories.  

 We also show that Relative Wavelet Energy is strong enough as a feature to be fed into a neural network to 

capture the essential differences in congruence of handgrip for object affordance. 

 Since, neural processing is a networked process where nearby neurons contribute equally in processing of 

different tasks, in proposed approach we made use of pooling nearby electrodes at three different brain regions 

to show which area(s) of brain activate more in terms of average energy content for object affordance tasks.   

 

2 Related Work 
 

In past years, EEG-based systems have shown significant contribution in the development of BCI-based 

devices and in facilitating neuro-rehabilitation processes [6,7].  Machine learning techniques have also 

proven their worth in various fields including medical domain. Some of the previous works which made use 

of machine learning approaches in the mentioned field are further discussed here. Use of neural networks 

for EEG based epilepsy analysis can be found in [8-13]. In [8], authors proposed an automated system for 

epilepsy detection using neural network approach. The system used statistical measure approximate entropy 

(ApEn) as input feature. The authors found that the value of the ApEn decreases suddenly during an epileptic 

seizure. Similarly, a K- nearest neighbor and multilayer perceptron neural network (MLPNN) based decision 

system was proposed by Umut et al. for epilepsy treatment [13]. Further, use of support vector machine 

(SVM) classifier for EEG-based automated analysis of epilepsy can be found in [9]. The method involved 

extraction of multi scale key points in EEG signals based on difference of Gaussian filtered signals followed 

by feature extraction using Local binary patterns (LBPs). Use of different classifiers for classifying preictal 

and ictal conditions from EEG signals is given in [10]. Investigation of autism and driver fatigue based on 

EEG signals and neural networks can also be seen in [14-17]. In [14] a new computer aided diagnosis (CAD) 

of autism based on EEG signals is proposed where authors have used discrete DWT, entropy (En), and artificial 

neural network (ANN) to classify person as autistic or healthy. A Bayesian neural network classifier based 

driver fatigue versus alert state system is proposed in [16], where source separation was done using entropy 



rate bound minimization- ICA (ERBM-ICA) and features were extraction by autoregressive(AR) modeling. 

In [17] online cognitive failures in driving was assessed from EEG signals. Visual attentiveness of driver was 

analyzed by classifying EEG signals into alert and non-alert states. A type-2 fuzzy set induced neural classifier 

was used to remove the uncertainty in classification of motor planning. In other literature, neural networks have 

also been used in classification of different mental tasks. In [18] a BCI-based system was presented in which 

five types of mental tasks, i.e., baseline, mental letter composing, geometric figure rotation, math and visual 

counting were classified. For this classification task wavelet transform (WT), Fast Fourier transform (FFT) 

and principal component analysis (PCA) based features were extracted and ANN and SVM based classification 

was done. Deep learning has also been proven to be useful for classifying EEG patterns for variety of tasks such 

as motor imagery, mental workload, emotion recognition, seizure detection, event-related potential detection to 

name a few [19,20]. In [12] and [13] authors have presented the analysis of grip-based actions on object 

recognition process by examining the modulations in mu rhythm during participant decisions to objects and non-

objects with congruent and incongruent grips. To analyze the response of neural excitation, event related de-

synchronization (ERD) is used as an index. It has been observed that mu frequency band has higher ERD activity 

over motor scalp regions while performing decisions related to objects with congruent and incongruent gripping. 

The work presented in this paper is extension of work done by Sanjay et al. in [3,4]. Here, we present a fully 

automated system capable of sensing the correctness of grip response over familiar objects by analyzing EEG 

data. Further, the proposed work presented in this paper is structured as: Section 3 presents the methodology of 

our work along with dataset description and computational procedure. Various results obtained at different steps 

are explained in Section 4. Major Key findings of proposed work are underlined in Section 5 and paper is 

concluded in Section 6 along future implications.    

3 Experimental Details 
 

EEG recordings contain cortical potentials which occur during various mental processes. EEG signals are 

generally divided into different frequency bands: Delta (4 Hz), Theta (4-7 Hz), Alpha or mu (8-12 Hz), Beta (12- 

30), and Gamma (30-100 Hz) bands, to facilitate ease of analysis. The present work features an automated model 

for analyzing changes in EEG responses corresponding to different objects gripped in hand with congruent and 

incongruent grips. The dataset and methodology used for the experimentation are discussed below:  

 

3.1 Dataset Description 

 

The proposed method is tested on real dataset presented in [3] and [4], which contains EEG recordings from a 

group of 14 people, out of which 3 were male and 11 were female. The participants were shown images of objects 

with congruent grip, objects with incongruent grip and no grip. Similarly, they were shown images of non-objects 

with congruent, incongruent and no grip. Sample images of stimuli for correct and incorrect grip on object are 

presented in Fig 1. 

Fig. 1 Experimental Images of Congruent and Incongruent Hand Grips on Real Objects [3,4] 

 

Participants have to respond quickly on stimuli to decide whether the object is real or not. The participants 

received a total of 180 stimuli of which 30 stimuli pertaining to objects and 30 were for non-object categories. 

Further, for each object and non-object category, three conditions were chosen: congruent grip, incongruent grip, 

and no handgrip. Before each task total 12 practice trials were shown to each participant, each trial started with 



fixation point for 1000ms followed by the target stimulus for 1000ms. Participants were asked to make a response 

within 4000ms after stimulus onset. For experimentation purpose, EEG data corresponding to congruent and 

incongruent grip on objects only is selected. The EEG data was recorded continuously with Ag/AgCl electrodes 

placed on 128 scalp locations as shown in Fig. 2. The electrodes were placed according to 10-5 electrode system. 

Extra electrodes were used as references and ground. The signals were amplified and sampled at a rate of 1024Hz 

using BioSemi Active-Two amplifiers. 

 

Fig. 2 Standard 128 Electrode Positions on Scalp 

3.2 Methodology 

 

The experimental procedure for analysis is presented in Fig. 3 and is explained below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Flow chart of Proposed Methodology 

 Data Pre-Processing: The recorded EEG continuous data was first preprocessed using EEGLAB.  This 

encompasses loading the data with reference to left and right mastoids respectively. The next step is to select 

first 128 channels from the EEG data as 129 to 134 channels are used for referencing and other purpose. After 

this step, the data is re-referenced at Cz electrode. This re-referencing step helps in subsidizing the noise 

content present in EEG signals. This noise reduction step is viable for correct identification of signal emitting 

area, i.e., the source of signal which in our case is the brain region [6]. The presence of  noise is due to many 

factors such as heartbeats, eye flickers etc. occurring while recording the data with EEG electrodes [7]. 
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The data contains 18 triggers associated with different events. First three triggers correspond to events 

associated with congruent, incongruent and no-grip responses over object category. While next three triggers 

are associated with congruent, incongruent and no grip responses over non-object category. The rest of the 

triggers are for reaction time responses. For this study, we have considered the first two triggers associated 

with object category only as our goal is to classify congruent and incongruent hand grip responses over 

objects for assessing object affordance from EEG signals. The data was then filtered between 3 - 40 Hz by 

using low pass and high pass filters available in EEGLAB. Next, notch filtering was done at 50 Hz to smooth 

out the sharp peaks in the signal. 

 Channel Selection: Not all channels contribute equally in deciding that the grip response is correct or 

incorrect for a gripped object. Studies have shown that different brain areas respond to different types of 

activities. Therefore, while analyzing the EEG data we only considered EEG data recorded from occipital, 

motor and parietal areas of brain as most of the motor related activities are controlled from these areas of 

brain [6]. For each frequency sub-band there is a set of electrodes that responds well to achieve better 

classification results and these electrodes are associated with specific brain regions. It is also found from 

preliminary analysis that only certain frequency sub-bands of an EEG signal are important for analyzing 

certain task. For handgrip responses, it has been found that, out of the five sub-bands only the Alpha and Beta 

band respond well for recognizing handgrip actions on objects. This initial investigation suggests several 

hints to improve the classification task. For studying the effects of congruent and incongruent handgrip, we 

have analyzed the left and right brain hemispheres respectively and selected 24 electrodes from each of the 

left and right hemisphere. The 24 electrodes pertaining to each left and right hemisphere were taken from 

frontal brain region, central frontal region, central region, central parietal region and parietal region of brain 

areas. 

Epochs with duration of 1000ms before target onset and 1000ms after target onset were extracted from 

continuous EEG signals. Activity for 1000ms pre-stimulus was taken as the reference interval.  Epochs were 

extracted with baseline from each left and right hemisphere. In our case a total of 28 epochs were generated. 

Epochs with values outside the range of -100µvolt to +100µ-volt were discarded. 

 Discrete Wavelet Transform based Rhythm Isolation: Band pass filtering of epochs in different frequency 

sub-bands is done for further analysis by using Discrete Wavelet Transform (DWT) [21]. Wavelet analysis 

was done to decompose the EEG signal into different frequency sub-bands. This transform is widely used for 

time frequency decomposition of acquired signals. Wavelet analysis falls into two categories:  Continuous 

Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT). CWT is useful for extracting event 

related potential (ERP) time-frequency features on nonstationary EEG signals and are suitable for effective 

feature se- lection which in turn results in significant classification accuracy. However, the drawback of using 

CWT is, it involves an excessive amount of calculations [22] [23. Therefore, from computational point of 

view DWT provides for faster calculation of constituting frequency bands.  

In current research, for analyzing the EEG signal at different resolution, successive convolution of signals with 

high pass (HP) and low pass (LP) filters are done to decompose it into various high and low frequencies 

components respectively. Further, scaling of signal is performed using down sampling operation, which is a process 

of reducing the sampling rate of the signal. For performing wavelet transformation Daubechies-eight (db8) mother 

wavelet is used after testing different wavelets from Daubechies wavelet family. Further, as EEG data used in this 

experiment is having 1024 sampling rate thus, decomposition level was set at 8 to decompose the signal into 

required frequency bands. At each level of decomposition DWT outputs approximate (Ai) and detailed coefficients 

(Di) using successive high pass and low pass filtering with down sampling rate of 2 [23] [24]. The approximation 

coefficients are then further decomposed as shown in Fig. 4 to extract localized information from the sub-band of 

detail coefficients. 

Fig. 4 EEG signal decomposition using 8-level DWT  



The motive behind extracting sub bands from an EEG band is because of the fact that specific rhythms show 

strong responses for specific type of events. It has been found that Alpha and Beta rhythms respond well for 

motor cortex activations. Therefore, Alpha and Beta bands were the focus of our study for hand grip actions. 

The frequency bands extracted from EEG signal using 8-level DWT are shown in Table 1. Each sub band, 

Delta (4 Hz), Theta (4-7 Hz), Alpha or mu (8-12 Hz), Beta (12-30), and Gamma (30-100 Hz) contributes 

to some specific characteristic of time series EEG signal. 

 
Table 1 Frequency Sub-bands corresponding to Wavelet Coefficients 

 
Frequency(Hz) EEG subband Wavelet Coefficient 
0-4 Delta A8 

4-7 Theta D8 

8-12 Alpha D7 

12-30 Beta D6 

30-100 Gamma D5 

Above 100 - D1-D4 

 

 Feature Extraction: Various features used for training the neural network are explained below: 

 

Relative Wavelet Energy: Previous studies suggest that a variety of features can be extracted from time series 

EEG signals viz. power, entropy and statistical features like mean, standard deviation, kurtosis etc. [25] [12]. 

Majority of previous studies have suggested the effectiveness of using entropy and power as major features 

for analyzing EEG signal data [10][13]. The fact that energy as a feature is strong enough for measuring 

complexity and regularity of time series data, makes it attractive to use for EEG data analysis. This motivated 

us to further investigate energy as a feature modality to analyze hand grip responses for object affordance. In 

our case, Relative Wavelet Energy (RWE) was chosen as a feature since it could help in selection of 

appropriate channel as not all channels have significant contribution in all type of activities. The relative 

wavelet energy was calculated using Equation (1). 

𝑅𝑊𝐸 =
𝐸𝐴𝑙𝑝ℎ𝑎

𝐸𝑇𝑜𝑡𝑎𝑙

              (1) 

Where EAlpha is the energy of Alpha band and ETotal is the total energy. Relative wavelet energy of Alpha band 

was computed for each of the 24 channels of left and right hemispheres respectively. A similar process was 

followed for beta band. Then the most promising channels (i.e. channels which were having high RWE 

difference) were selected. To help in the analysis process, we finally calculated the Baseline Normalized 

Features (F) using Equation 2, for normalizing the feature values w.r.t. the baseline signal [7]. 

 

𝐹 =
𝑅𝑊𝐸𝑏𝑎𝑠𝑒 − 𝑅𝑊𝐸𝑡𝑟𝑖𝑎𝑙

𝑅𝑊𝐸𝑏𝑎𝑠𝑒

        (2) 

 

Next, to show the effect of nearby electrodes of specific brain regions for congruent hand grip and incongruent 

hand grip, nearby electrodes were pooled in six groups: three pools in each of the left and right hemisphere 

as shown in Figs. 5 and 6. Therefore 3 RWE features were obtained from three pooled electrode positions in 

left hemisphere of brain and 3 RWE features corresponding  to the right hemisphere of brain. For our analysis, 

we have only considered the left brain hemisphere as all our participants were right handed. We have 

calculated RWE of Alpha and Beta Bands at 3 different positions of brain: 

 

Pooled Position1: F1 F3 F5 FC1 FC3 FCC1H FCC3H FFC1H FFC3H FFC5h (10 Electrodes) 

Pooled Position 2: C1 C3 C5 CP1 CP3 CP5 CCP1H CCP3H CCP5H CPP1H CPP3H CPP5H (12 

Electrodes) 

Pooled Position 3: CP1 CP3 CP5 CCP1H CCP3H CCP5H CPP1H CPP3H CPP5 (9 Electrodes) 

 



                                             

Fig. 5 Twenty Four electrodes in left hemisphere of brain 

 

Fig. 6 Twenty Four electrodes in right hemisphere of brain 

Power: Similarly, two more features were taken as the Alpha- and Beta- band’s average power of selected 

twelve electrodes (refer to result section). Therefore, a total of five features were taken into account for 

classification purpose.  The size of feature vector provided to the NN classifier was 5x56, where, five were 

the features and twenty eight were the epochs generated for each of the congruent and incongruent hand grip 

event, thereby making a 5x56 matrix, which was then fed to the neural network classifier. The next step after 

feature extraction was to classify EEG signal for congruent and incongruent grip on objects. For this, the 

feature vectors used to train an artificial neural network for classification purpose. 

 

 Artificial Neural Network based Classification: Artificial neural networks (ANNs) are a widely adopted 

approach in the biomedical domain for classifying data. An ANN is an information processing system 

which imitates human cognitive processing. An ANN is a connected network of several neural 

computational units called artificial neurons. Each artificial neuron is a standalone information 



processing unit capable of processing received stimuli in parallel much like its biological counterparts. 

These neurons are organized into pre-defined layers of ANN [11]. The general architecture of artificial 

neural network is shown in Fig. 7. The network can be summarized mathematically using Equations 3 

and 4: 

𝑦 = 𝑥1 . 𝑤1 + 𝑥2. 𝑤2 + 𝑥3 . 𝑤3 … … + 𝑥𝑛 . 𝑤𝑛               (3) 

or 

𝑦 = ∑ 𝑥𝑖 . 𝑤𝑖

𝑛

𝑖=1

+ 𝑏                                      (4) 

where, 𝑥𝑖  are input to the network and 𝑤𝑖  are the corresponding weights. Here, b is the bias factor which 

determines how likely the network will output a one. The net output y is the sum of products of input 

matrix and weight matrix plus the bias. This net output is then fed to an activation function φ(.) to get 

the final output Y. 

The final output is a function of y as given in Equation 5: 

 

𝑌 = φ(y)                             (5) 

 

Variety of activation functions are available in literature and the most widely used are the sigmoid 

function also called logistic sigmoid function and softmax functions. The logistic sigmoid function is 

very useful for binary classification and is used in hidden layers of proposed neural network. It can be 

expressed using Equation 6: 

𝑓(𝑥) =  𝑠𝑖𝑔𝑚(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)
                           (6) 

 

The softmax function is generally used in last layer of an ANN, we also have used this function in the 

output layer of our ANN. The softmax function takes the form using Equation 7: 

 

𝑓(𝑥)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑛
𝑗=1

                    (7) 

 

For j=1….n and 𝑧𝑗 is the input vector. This function normalizes the input so that the output sums up to 

1. The first layer is the input layer while last layer of ANN is the output layer. In between these two layers 

are a number of connected hidden layers that act like a series of transformation functions, which slowly 

maps input to the output of system. We have designed an ANN with four layers: one input layer, two hidden 

layers and an output layer. Each hidden layer contains five nodes and log sigmoid transfer function while 

output layer is designed to have two nodes with soft max transfer function as shown in Fig.7. The next 

section focuses on interpretation of results obtained during and after the experiment. 

 

 

 

Fig. 7 Architecture of Artificial Neural Network 



4 Results and Discussion 
 

Experimental results have shown that motor imagery-based perception of congruent and incongruent hand grips on 

different categories of objects produce substantial modulations in Alpha and Beta band rhythms which can be captured 

by a trained ANN and can further be classified into appropriate categories. Figs. 8 and 9 show the frequency spectrum 

of different bands obtained by DWT for congruent and incongruent hand grips respectively. By analyzing these spectra, 

we can easily conclude that there is a significant difference between the frequency values of Alpha and Beta band on 

congruence of hand grip. 

 

              Fig. 8 Different frequency Sub-bands for Congruent Hand Grip 

 

 

                            
 

                Fig. 9 Different frequency Sub-bands for Incongruent Hand Grip 

 



Features for ANN based classification were selected after Alpha and Beta power based analysis at pooled electrodes 

was done for each band respectively (Table 2). For power based analysis we have pooled the following twelve electrodes: 

CP1 CP3 CP5 CCP1H CCP3H CCP5H CPP1H CPP3H CPP5H C1 C3 and C5. 

 
Table 2 Averaged Baseline Normalized Power (in %) of Alpha and Beta bands for Congruent and Incongruent Grips 

 
Average Baseline 

Normalized Power 

Incongruent 

Grip 

Congruent Grip 

Alpha Power 43.34 23.45 

Beta Power 14.83 32.31 

 

 
The graphs presented in Figs. 10 and 11 present the difference between average power of congruent and incongruent 

grips for Alpha and Beta bands for all epochs. 

 
 

 
 

Fig. 10 Power Difference between Congruent and Incongruent Hand Grips for Alpha-band 

        
   

Fig.  11 Power Difference between Congruent and Incongruent Hand Grips for Beta-band 

 

Three RWE features were obtained from three pooled electrode positions in left hemisphere of brain. For analysis 

purpose, we have only considered the left brain hemisphere. We have calculated RWE of Alpha and Beta Bands at three 

different positions of brain. Table 3 summarizes the difference between relative wavelet energy of Alpha and Beta 

bands for congruent and incongruent hand grips at three different brain locations in left hemisphere of brain. 



 

Table 3 Relative Wavelet  Energy of Alpha and Beta bands for Congruent and Incongruent Grips  at three locations 

 

Pooled Electrodes 

RWE at Alpha Band 

 

Congruent Grip 
Incongruent 

Grip 

F1,F3,F5,FC1,FC3,FCC1H,FCC3H,FFC1H,FFC3H,FFC5h 34.53 
 

17.42 

 

C1,C3,C5,CP1,CP3,CP5,CCP1H,CCP3H,CCP5H,CPP1H,CP

P3H,CPP5H 
20.81 

33.68 

 

 RWE at Beta Band 

CP1,CP3,CP5,CCP1H,CCP3H,CCP5H,CPP1H,CPP3H,CPP5 31.11 8.4 

 

The graphs presented in Figs. 12, 13 and 14 show the effect of hand grips at three different pooled locations of left 

hemisphere of brain. First and second graph presents the difference in effect for two pooled locations corresponding to 

the Alpha-band. The third graph corresponds to the relative power difference for Beta-band. 

 
 

Fig. 12 Relative Wavelet Power Difference between Congruent and Incongruent Hand Grips for pooled location-1 (Alpha-band) 

 

                              
Fig. 13 Relative Wavelet Power Difference between Congruent and Incongruent Hand Grips for pooled location-2 (Alpha -

band) 



 

 

 
Fig. 14 Relative Wavelet Power Difference between Congruent and Incongruent Hand Grips for pooled location-3 (Beta-

band) 

 
These graphs show the comparison of relative power of all epochs related to both events. These results clearly show 

that there is a significant deflection in the power of Alpha and Beta band waves with respect to the type of handgrip. 

This deflection is due to the differences in the power spectrum corresponding to EEG signal associated with each 

event. For analysis purpose, average power and relative power of Alpha and Beta bands were calculated for each event 

across all epochs and used as a feature of interest for classification purpose. These features are then fed to an ANN for 

classifying the event as congruent handgrip or incongruent handgrip. For the presented dataset, an accuracy of 75% 

was obtained by ANN for classifying EEG signals related to congruent and incongruent hand grips which is better 

than achieved by many authors. 

Table 4 Comparison with different authors’ work on Hand grasp task 

 

Authors Classifier Used Accuracy 

Lange G. et. al. [26] 
linear discriminant 

analysis (LDA) 
73.0% 

Cho. J.H. et. al. [27] 
linear discriminant 

analysis (LDA) 
46.96 % (±15.30) 

Ramadhan M.M. et. al. [28] 
Probabilistic Neural 

Network (PNN) 
61.96% 

Proposed Work 
Artificial Neural 

Network (ANN) 
75.0% 

 

 

Table 4 presents a thorough comparison of performance of proposed approach with latest research works reported 

recently by different authors across the globe. Even though, these works made use of different types of hand grip data 

pertaining to imagined and executed hand grasp actions, these are inherently different in classification outcome, in our 

case, we simply training a classifier to identify whether the presented EEG recording represents a correctly gripped 

object or not. This comparison is to validate the effectiveness of our approach and suggests that achieving 75% 

accuracy is a good figure to start with, since, there are only minor differences in the energy contents of both types of 

signal. 

 

5 Key Findings 
 

https://www.sciencedirect.com/science/article/pii/S2212017316303954#!


The analysis presented in this paper successfully establishes the relationship between EEG patterns and object 

perception with different affordances. In this section, key findings of the proposed research are underlined: 

  

 We presented that Alpha and Beta frequency waves have high deflection for two different gripping conditions 

over the motor cortex area of brain.     

 We established that the neural processing is a networked process by analyzing the values of RWE and Average 

power of Alpha and Beta bands at three pooled electrode positions (see Tables 2 and 3). We found differential 

modulation of Alpha and Beta bands over the central-parietal motor area of the brain for appropriateness of grip 

processing. 

 Then, using this analysis, we developed an ANN based automated model for classification of correct and incorrect 

hand grip on objects using EEG responses. Results presented also indicate that relative wavelet energy is a robust 

feature for developing correct/incorrect handgrip classification systems using EEG data. 

6 Conclusion 
 

In this paper, a novel analysis and automated method has been proposed to establish the relationship 

between EEG responses and object perception with different affordances. Though, a lot of work has been 

reported in literature for object affordance in the field of robotics, but only a little has been explored for 

developing systems that can help train persons with disabilities related to motor cortex area, specially having 

difficulties in perceiving the correctness of grip on objects. This work is a step forward in this direction and 

propose a classification system for determining correctness of grip from EEG signals. For analysis, EEG 

recordings of 14 subjects were taken while showing the images of objects with correct and incorrect grips. 

A series of operations, as presented in Section 3, were performed on EEG data including pre-processing, 

feature extraction, and classification. To find distinguishable features, average power and relative wavelet 

energy were analyzed thoroughly for each band and channel over different motor areas. We presented a 

rigorous analysis in section 4, which suggested that Alpha and Beta bands have shown substantial 

modulations over the central parietal motor area of the brain for different grips related to object perception. 

A set of specific features were extracted based on this analysis to propose an ANN based system for 

automatic classification of hand grip actions using EEG signals. Results suggests a robust neural correlate 

with object affordances during object perception and recognition process. The accuracy of proposed system 

was found to be 75%, which will further motivate the researchers in field of neuro-rehabilitation to develop 

BCI based devices for assisting persons with impairment in using daily life objects ( e.g., in individuals 

with apraxia following stroke). 
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