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Abstract
Source localization with a network of low-cost motes with limited processing, memory, and energy resources is considered

in this paper. The state-of-the-art methods are mostly based on complicated signal processing approaches in which motes

send their (processed) data to a fusion center (FC) wherein the source is localized. These methods are resource-demanding

and mostly do not meet the limitations of motes and network. In this paper, we consider distributed detection where each

mote performs a binary hypothesis test to detect locally the existence of a desired source and sends its (potentially

erroneous) decision to FC during just one bit (1 indicates source existence and 0 otherwise). Hence, both processing and

bandwidth constraints are met. We propose to use an artificial neural network (ANN) to correct erroneous local decisions.

After error correction, the region affected by the source is specified by nodes with decision 1. Moreover, we propose to

localize the source by deep learning in FC which converts the network of decisions 1 and 0 to a black and white image with

white pixels in the locations of motes with decision 1. The proposed schemes of error correction by ANN (ECANN) and

source localization with deep learning (SoLDeL) were evaluated in a fire detection application. We showed that SoLDeL

performs appropriately and scales well into large networks. Moreover, the applicability of ECANN in delineation of farm

management zones was illustrated.

Keywords Artificial neural network (ANN) � Decentralized detection � Deep learning � Error type I � Error type II �
Internet of things (IoT) � Source localization � Target tracking � Wireless sensor networks (WSN)

1 Introduction

The applications of the networks of wireless smart motes

with sensing, processing, and communication capabilities

are expanding. These wireless sensor networks (WSNs) are

the basis of the emerging technology of internet of things

(IoT) and specifically fit very well in surveillance appli-

cations [15, 16] where detecting an event source in a region

of interest (ROI) and tracking it are important challenges.

For event detection and localization in a region, nodes1

send their either raw or processed observations to a fusion

center (FC) where the final assessments are carried out.

Due to the network bandwidth and the nodes’ power lim-

itations, it is desirable for nodes to send as less data as

possible. The extreme case is decentralized detection [21]

where each node decides locally about the event occur-

rence and sends its decision to FC using just one bit.

The state-of-the-art solutions to source localization are

mostly based on information theoretic approaches. In [54],

an initial coarse estimation of the source location is

obtained based on the data of pre-specified anchor nodes.

Then, a set of non-anchor nodes with maximum mutual

information (MI) between the source location and their

measurements are activated. The source location is tuned

after several iterations. The complexity of the MI-based

method grows exponentially in the network size. To
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alleviate the scalability problem, another sensor selection

scheme for source localization based on conditional pos-

terior Cramer-Rao Lower Bound (PCRLB) was proposed

by [22, 37, 55].

Another approach to source localization is to track it

during time, i.e., tracking. To that end, statistical filters

with cumbersome computations are exploited. These

computationally heavy algorithms should be run by each

network node with severe limitations of processing power,

memory, and communication. The nodes’ estimations of

the source track are transmitted to FC which obtains a

tuned estimation of the track by resorting to an appropriate

fusion rule. Some of existing fusion rules are: independent

likelihood pool (ILP) [36], covariance intersection (CI)

fusion [30], information graph [11], track-to-track fusion

[10], and consensus-based fusion (distributed MTT–

DMTT) [6].

In this paper, the goal is to develop machine learning-

based methods for tackling the source localization problem

over WSNs. In any WSN, we encounter distributed agents

gathering data for a specific task. Since the size of data

collected by WSNs is usually enormous, learning methods

may be applied to solve the related problems. Instances of

applying learning methods on different aspects of WSNs—

such as node localization, channel allocation, and rout-

ing—have been reviewed in [4].

A simple learning-based source localization method is

the fault recognition (FR) method [34] in which the deci-

sion of each node is adjusted according to the decision

taken by a majority of the node’s neighbors. FR attempts to

correct possibly wrong decisions of nodes by a data

exchange among them. Then, the region of event may be

obtained by nodes with decision 1 (indicating event

occurrence). The centroid of this region may be considered

as the source location.

Javadi et. al. in [24] have used the support vector

machine (SVM) [33] learning method for source localiza-

tion. In their method, referred to as Red-S, the locations of

the network nodes and their decisions are used as the

training data and their labels, respectively, based on which

the SVM parameters are trained. Finally, the decision of

each node is corrected by applying its location to the SVM

classifier. The nodes with decision 1 depict the region of

the event whose centroid is considered as the source

location. To improve the accuracy of Red-S, it has been

proposed in [24] to apply twin SVM (TWSVM) [29] to the

resultant of Red-S.

In this paper, we propose two source localization

methods based on ANN and deep learning. The contribu-

tions presented by this paper are as follows:

• Decision fusion and machine learning algorithms are

exploited collaboratively in order to: i. detect event

occurrence; ii. estimate the event location; and iii. to

specify the region affected by the event;

• We show that the erroneous decisions of sensors—

which are due to their observation noise—can be

corrected by using an artificial neural network (ANN).

By error correction by ANN (ECANN), the region of

the event is specified by sensors with decision 1. Then,

the centroid of the event region is considered as an

estimation of event location;

• Source localization with deep learning (SoLDeL) is

proposed by considering the network layout as a block

and white image with white pixels in locations of nodes

with decision 1. We show that SoLDeL is scalable to

any network size and works appropriately in both

source localization and tracking;

• The performance of ECANN and SoLDeL is evaluated

in a fire detection application in different network sizes

with different noise and false alarm rates. To that end, a

fire ignition model is presented which can be adopted

for assessment of any IoT-based fire detection

implementation.

• We examine the ECANN application in a real scenario

of delineation of a farm into two management zones.

For this purpose, the soil calcium of different locations

of a farm is used and the whole farm is classified into

low-calcium and high-calcium zones using ECANN.

The remaining of this paper is organized as follows. The

models and assumptions used throughout this manuscript

are discussed in Sect. 2. Section 3 provides the required

background knowledge. Section 4 presents the proposed

source localization methods using ANNs [5, 18, 45, 39]

and deep learning (SoLDeL). The performances of the

proposed methods are evaluated in Sect. 5. Finally, the

paper is concluded in Sect. 6.

Notations: Lower-case bold letters denote vectors with ai
representing the ith element of a. The 2-norm of vector a

will be denoted by kak, Nðl;RÞ denotes a normal distri-

bution with mean vector l and covariance matrix R, and

Uða; bÞ denotes a uniform distribution with support [a, b].

Finally, the symbol � means ‘‘distributed as.’’

2 System model and assumptions

For source localization, the system model shown in Fig. 1

is used throughout this paper. In what follows, this model is

discussed in detail.

2.1 Node model

A network of K randomly deployed wireless smart motes

(referred to as ‘‘nodes’’) is considered that are programmed
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for collaborative detection of a desired event occurrence.

The nodes decide about either event occurrence (denoted

by hypothesis H1) or the normal condition in which no

event has occurred (denoted by hypothesis H0). More

specifically, node i 2 1; . . .;Kf g observes its local region

for detection of possible appearance of a desired scalar

parameter h xsð Þ originating from the source location xs.

The observation model of node i is given by:

zi ¼
gðh xsð ÞÞ þ mi; H1

mi; H0

�
ð1Þ

where mi is a zero-mean additive white Gaussian noise

(AWGN) with variance r2 (i.e., mi �N 0; r2ð Þ), and g(.) is a

mapping function (e.g., a function indicating the attenua-

tion of an acoustic signal originating from position xs). The

noises of network nodes are assumed to be spatially and

temporally independent.

Node i takes decision ui regarding event occurrence

using a decision rule—later discussed in Sect. 3.3.1—and

sends it to FC (as shown in Fig. 1). Note that the scalar

observation model (1) has been adopted just for simplicity

in our discussions. If the desired parameter (signal) is

multi-dimensional, just the decision rule would change.

Nevertheless, we adopt the scalar observation model since

detection is not the focus of this study.

2.2 Network model

The location of node i 2 1; . . .;Kf g is denoted by xi and is

assumed to be known by FC. The positions may be

obtained by using an appropriate node localization method

such as those presented in [20, 35].

The parallel configuration has been adopted for data

communication between nodes and FC, as shown in Fig. 1.

This is the most popular configuration in the literature of

WSNs. However, nodes may transmit their decisions to FC

indirectly through intermediate nodes in a hop-by-hop

manner (since their communication range is usually lim-

ited). This configuration can be represented by the parallel

configuration as well if the communication channels are

assumed to be error-free [25, 51, 52].

2.3 Communication channel model

The communication channels between nodes and FC are

assumed to be ideal and error-free. In practical imple-

mentations of decentralized detection over WSNs, there are

two sources of error: (1) erroneous local decisions, which

are due to either local false alarms or misses of nodes, and

(2) erroneous received decisions due to the faulty nature of

wireless channels. We integrate both error sources into just

the first type and ignore the communication error rate since

it does not affect the implementation and evaluation of the

proposed algorithms.

2.4 Problem statement

After the event occurrence is detected by FC, the problem

is to estimate the location of event by having the nodes’

locations and their one-bit decisions. Specifically, defining

X , x1; . . .; xKf g and U , u1; . . .; uKf g as the sets of the

nodes’ locations and their decisions, respectively, the goal

is to estimate the location of the source, x̂s so that the mean

squared error is minimized, i.e.,

x̂s ¼ arg min MSE xs;X ;Uð Þ ; ð2Þ

where xs is the true location of the source.

3 Background

In this section, the required backgrounds are briefly

reviewed.

3.1 Artificial neural network (ANN)

There are problems that machines, despite humans, are not

capable of solving by resorting to classical algorithms.

Instead, inspired by the structure of the brain, a connection

of artificial neurons may be used by machines [7]. Similar

to the brain of human being, the ANNs must be trained in

order to be able to accomplish a specific task.

As shown in Fig. 2a, an artificial neuron is simply a

function of the biased weighted sum of its inputs. The

Fig. 1 Model adopted in this paper for source localization with deep

learning (SoLDeL)
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function a(.), referred to as the activation function, may be

either of sigmoid (gðxÞ ¼ 1=ð1þ eð�xÞÞ), rectified linear

(ReLU) (gðxÞ ¼ maxð0; xÞ), or any other function based on

the application for which the ANN is used. After a con-

figuration is adopted for the ANN (i.e., the number of its

layers as well as the number of neurons in each layer, as

shown in Fig. 2b), it should be trained (i.e., its parameters

should be set) by minimizing a loss function with regard to

a given training dataset:

½wj� ¼ arg min
XK
i¼1

lðyðiÞ; ŷðiÞÞ ; ð3Þ

in which wj indicates the jth parameter of the ANN, yðiÞ is
the ith, i 2 f1; . . .;Kg label of the dataset with the ANN

estimate denoted by ŷðiÞ, K is the size of the training set,

and l(.) is a loss function.

3.2 Deep learning

The basis of deep learning is to first extract simple and

complex features of high-dimensional input data and then

to apply them to an ANN, so that the artificial network is

deepened and would be capable of accomplishing com-

plicated tasks.

One method of feature extracting is convolutional neural

networks (CNNs) [19]. A CNN basically consists of several

convolutional layers each of them usually followed by a

pooling layer. In each convolutional layer, some features of

the input image are extracted by scanning it with appro-

priate filters (e.g., 3� 3 matrices). In fact, convolutional

layers facilitate deep learning by mitigating fully connec-

tion of neurons as well as using shared weights among the

edges. The output of each convolutional layer is given by

að
P

i aizi þ bÞ, where zi denotes the ith input to the con-

volutional filter with ai as its corresponding weight, b is a

bias, and a(.) is an activation filter. Pooling layers are used

for decreasing the dimensions of the output of convolu-

tional layers (Fig. 3).

The deep network is trained (i.e., its parameters,

including the weights and biases the ANN and the filters of

the convolutional layers, are set) by using a sufficiently

large dataset in order to minimize an appropriate loss

function.

3.3 Decentralized detection

In detection applications of WSNs, a final decision about

either an event occurrence (labeled as ‘‘hypothesis H1’’) or

the normal condition (denoted by ‘‘hypothesis H0’’) must

be taken by FC using an appropriate data fusion

scheme [21, 28].

Each node transmits either raw or processed observa-

tions to FC. In order to save bandwidth and energy, the

nodes are usually programmed to decide locally and inform

FC about their decision by sending just one bit. To

implement this practically popular scheme—known as

‘‘decentralized detection’’—, two types of decision making

rules must be designed: a local decision rule for each node

and a decision fusion rule for FC. These two kinds of

decision rules are discussed in what follows.

3.3.1 Local decision rule

Network nodes observe a desired signal h according to

model (1). In practical scenarios, the source signal is not

known (e.g., there is no information about the location and

the strength of the acoustic signal), and hence, reaching an

optimum local detector is not tractable [32]. Nevertheless,

a good sub-optimal rule would be the generalized likeli-

hood ratio test (GLRT) if the statistical information of the

sensing noise (mi in (1)) is available [32]. Accordingly, the

decision rule for node i with observation model (1) is given

by [32]:

ui ¼
0; z2i\si
1; z2i [ si

(
ð4Þ

with ui ¼ 0 (ui ¼ 1) indicating H0 (H1), and si being the

detection threshold given based on a local false alarm rate

(i.e., Pr ui ¼ 1jH0ð Þ).

3.3.2 Fusion rule

The decisions of nodes are transmitted to FC where a

decision fusion rule should be implemented for taking a

final decision. Assuming independence among the deci-

sions of the nodes conditioned on each hypothesis, the

optimal fusion rule needs local detection performances [9].

When local detection performances are not known at FC,

an alternative is the counting rule (CR) [41] in which the

sum of received decisions is simply compared against a

threshold:

Fig. 2 a Structure of an artificial neuron. b Artificial neural network

(ANN) as a connection of artificial neurons
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K,

XK
i¼1

ui?
H0

H1

T ; ð5Þ

where K indicates the network size and T is the detection

threshold which is obtained according to a desired network

false alarm rate. Under a common threshold for sensors and

the same noise statistics (i.e., in homogeneous WSNs), K
under H0 (i.e., KjH0) is binomial-distributed while it fol-

lows a Poisson-binomial distribution in more general cases

[13]. Threshold T is computed according to this

distribution.

While simple, CR maintains robustness [12, 14] and can

reach almost the optimum detection performance in large

network sizes [21] (i.e., in sufficiently large values of K),

the overall detection performance of the counting rule is

improved in its modifications such as LVDF [31] and WDF

[28, 26]. Each node in LVDF modifies its decision based

on the majority of the decisions of its neighbors. In WDF,

the decision of each node is weighted based on the node’s

sensed signal-to-noise ratio (SNR), and then, the weighted

decisions are counted. Moreover, the network’s detection

performance can be more improved by considering the

existing correlation among the nodes’ decisions [23, 27].

4 Learning-based source localization

In this section, we propose two source localization methods

based on machine learning.

4.1 Correction of errors type I and II with ANN

Error type I and error type II for node i are, respectively,

defined as:

pfa;i , Pr ui ¼ 1jH0ð Þ ; ð6Þ

pm;i , Pr ui ¼ 0jH1ð Þ : ð7Þ

In this section, the error correction using an ANN (referred

to as ECANN) is proposed with the aim to classify network

nodes into two categories: 1. in-event-region and 2. not-in-

event-region. After errors are corrected, the region of event

is obtained by nodes with decision 1 whose centroid can be

considered as an estimation of the event location.

Correction of errors type I and II is performed as

follows:

1. As shown in Fig. 1, the nodes send their decisions to

FC. Upon event detection by FC, source localization

procedure is initiated.

2. A fully connected ANN (with a predefined structure) is

trained by using nodes’ locations and their decisions as

the training set. More specifically, the training set will

be:

X ¼ x1; . . .; xKf g ;

U ¼ u1; . . .; uKf g ;
ð8Þ

with X and U being the training sets of input samples

and their labels, respectively.

3. After the ANN is trained, it gives the corrected

decision ûi of node i by applying the node’s location

into the input of the ANN. The outputs of the ANN for

all nodes are collected in the set of the corrected

decisions:

Û ¼ û1; . . .; ûKf g : ð9Þ

4. Denoting the set of the nodes with corrected decisions

1 by Û1, the estimation of source location x̂s is given

by:

Fig. 3 Structure of a convolutional neural network (CNN) [2]
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x̂s ¼
1

jÛ1j
X
i2Û1

xi ; ð10Þ

where |.| denotes the cardinality.

4.1.1 Discussion

The ANN attempts to classify nodes according to their

decisions (labels) (see Fig. 4). However, it cannot perform

classification because of existing errors type I and II. As if

the ANN understands that something is wrong with the

training set, it attempts to correct the wrong decisions.

As an illustrative example, a 300-node network intended

for fire detection in an environment is shown in Fig. 4 with

a fire occurrence in the center of the field center. The nodes

have been observing a fire ignition with model (11) and

standard normally distributed measurement noises. They

have been set up with local false alarm probability of 0.1.

As shown, there are errors type I and II throughout the

network upon fire ignition.

In this example, a two-layer ANN with 7 and 3 neurons

in, respectively, the first and second hidden layers were

exploited. ReLu was used as the activation function of the

two hidden layers, while the sigmoid function was con-

sidered for the output neuron. As shown, this ANN was

successful in correcting errors with an accurate estimate of

the source location.

4.1.2 Advantages

The advantages of ECANN are listed as follows:

• The errors type I and II are corrected appropriately.

Therefore, ECANN is applicable for any problem

including decision errors. Such problems include diag-

nosing a special disease based on blood tests, recruiting

in companies, crime cases, etc. In these examples, a

collection of n-dimensional (instead of the two-

dimensional nodes’ locations in our case) data together

with their labels are encountered.

• In many applications, detection of the event region is

crucial. For example in fire detection in forests and

detection of poisonous gas in a company, it is vital to

detect exactly the event region in order to necessary

actions to be taken. ECANN is capable of detection of

the event region in addition to source localization.

4.1.3 Disadvantages

The disadvantages are:

• The main drawback is that the ANN must be trained

whenever an event is detected. Training the ANN needs

a lot of epochs and is time-consuming. As an instance,

the ANN used in Fig. 4 was being trained by 250,000

epochs. Therefore, ECANN does not satisfy real-time

applications.

• ECANN localization is not accurate enough when the

event is occurred at the network edges since the

centroid of nodes with corrected decisions 1 is never

located at edges.

4.2 Source localization with deep learning
(SoLDeL)

In this subsection, source localization with deep learning

(SoLDeL) is proposed. As discussed in the previous sub-

section, using ANN for source localization needs much

time during which the source location may vary. Therefore,

it is not suitable for source localization and tracking in a

field. Instead, the network may be trained to localize the

source if it appears in any place in the field. The procedure

is as follows:

1. As shown in Fig. 1, the network nodes observe their

local environment for source detection using decision

rule (4) and send their decisions to FC. FC takes the

Fig. 4 Correction of errors type

I and type II with an ANN

(ECANN)
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final decision by an appropriate fusion rule such as the

counting rule (5). It is assumed that the network size is

sufficiently large so that the overall detection perfor-

mance of the network is optimum [32, 43] (i.e., there is

neither a false alarm nor a miss in network level).

2. Upon source detection (i.e., if u0 ¼ 1), FC localizes the

source by running SoLDeL as follows:

(a) Network nodes with different decisions establish

a network layout in which the locations of nodes

with decision 1 (hot nodes) are highlighted (see

Fig. 5).

(b) The network layout is converted to a grayscale

image with a predefined size whose all pixels are

black except the locations of hot nodes that are

denoted by white.

(c) Applying the image to a CNN followed by a

fully connected ANN (FCN), the source location

is estimated.

For more discussion about the above steps, note to Fig. 5.

When an event occurs, a network layout is established

accordingly. The network layout is converted to an image

with the pixels related to the hot nodes in white. The image

is applied to the deep network input. The features of the

image are extracted by the CNN. Finally, the source

location is estimated by the FCN. The example of Fig. 5 is

elaborated in Sect. 5.

4.2.1 Training deep network

A sufficiently large dataset is required for training the deep

learning network. To this end, different network layouts are

built based on known source locations and the information

related to the network, source signal propagation model,

and the statistical measurement model of nodes as well as

their settings. The network layouts are converted to images

with a specific size. Each image is labeled by its specific

source location. The obtained images together with their

labels are used for training the deep network. Training is

needed just once before the network is going to be used,

and the obtained parameters for the deep network will stay

stationary unless the information that the network has been

already trained based on them changes.

4.2.2 Advantages

The advantages of SoLDeL are as follows:

• Despite ECANN, SoLDeL needs training just once, and

hence, it performs source localization in real-time.

• It performs uniformly throughout the network field,

even at the edges.

• Despite the Red-S method [24] whose complexity

grows with the cubed network size, SoLDeL scales very

well to larger network sizes. In fact, the performance of

source localization is improved in larger network sizes

with no more computational burden.

4.2.3 Disadvantage

The main drawback of SoLDeL is that its performance

degrades if the situation of either of network, nodes, or the

source signal deviates from what was considered in

training.

5 Evaluation

In this section, we first evaluate and compare the perfor-

mance of the proposed localization methods. Then, the

performance of SoLDeL is examined in a tracking appli-

cation. Finally, we apply ECANN in a real scenario of

farming where the farm is categorized into two manage-

ment zones.

Fig. 5 Source localization based on deep learning (SoLDeL). The location is estimated by the fully connected network (FCN) at the latest stage
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5.1 Performance evaluation in fire detection

5.1.1 Setup

Immediate detection of fire occurrence and its region is an

important applications of WSNs, and it is crucial for pro-

tecting forests and natural resources. Accordingly, we

present here a fire ignition model that can be adopted for

cost and performance assessment of any WSN implemen-

tation for fire detection.

Fire ignition impacts its environment temperature

according to the following model [44, 46]:

hi disð Þ ¼ 1

4
hf

hf lf

2pdis
2

� �1=4

ð11Þ

where hi dð Þ is the temperature at the location of sensor

i with distance dis from the flame in Kelvin, hf is the flame

temperature in Kelvin, hf and lf are the height and the

length of the flame, respectively. Model (11) is obtained

using the Stefan-Boltzmann law [17, 44, 46] in

equilibrium.

The temperature is contaminated by a measurement

noise when reported by sensor i:

zi ¼ hi þ vi : ð12Þ

in which vi is the measurement noise which is assumed to

be temporally independent and distributed according to the

normal distribution, i.e., vi �Nð0; r2Þ. The normal

assumption holds in many commercial-off-the-shelf

(COTS) temperature sensors [3, 38, 48]. These sensors can

be connected to LoRaWAN [1] modules, such as [49] with

the unit price less than 100€, which send their local deci-

sions to a gateway.

We consider a network of K wireless temperature sen-

sors randomly deployed over a 100m� 100m region in

order to detect any fire occurrence. ECANN and SoLDeL

were evaluated during 1000 Monte Carlo runs. In each run,

random values of hf �Uð1:5; 1:8Þ, lf �Uð0:9; 1Þ, and

hf �Uð1800; 2100Þ were used. These values are similar to

those used in [44]; however, random values were adopted

in order to assess different situations.

To implement ECANN for fire detection, an ANN with

two hidden layers, each consisting of seven and three

neurons, respectively, was used. ReLu and sigmoid were

used as the activation functions of the hidden layers and the

output neuron, respectively. The ANN was trained during

250,000 epochs in each scenario. An instance of ECANN

application in estimation of the fire occurrence and its

region is shown in Fig. 4.

In order to evaluate SoLDeL, a CNN followed by a fully

connected network (FCN) was used for estimating the

source location. As shown in Fig. 5, the network layout is

converted to a 100� 100-pixel image, i.e., one pixel for

each 1m� 1m area. The image is used as the input of the

CNN. In the CNN, three layers of convolution together

with pooling were used. The sizes of the convolution filters

as well as the pooling layers were chosen such that no

padding was needed. At the end of the CNN, the obtained

features are flattened into a 147-dimensional vector. This

vector is applied to a two-layer FCN including 35 and 20

neurons in the first and the second hidden layers, respec-

tively. This structure of deep network was obtained after

several rounds of try and error.

For training the structure of Fig. 5, 600,000 samples of

random network layouts were generated and converted into

images. In order to train the CNN structure for different

situations, network sizes between 300 and 500 and false

alarm rates between 0.08 and 0.22 were used in database

generation. The obtained dataset was broken into batches

of size 100 and learned the deep network during 20 epochs.

The performances of ECANN and SoLDeL are com-

pared in different scenarios against that of Red-S [24]. Red-

S uses the SVM classifier for detection of the region of the

event. The parameters of SVM are trained by the locations

of nodes as the training data and their decisions as their

classes. After having the SVM classifier computed, the

locations of nodes are applied to it in order to obtain their

corrected decisions.

Evaluation and comparison of the methods have been

carried out in terms of mean squared error (MSE)

[5, 18, 45, 39] defined by:

MSE ¼ E xs � x̂sk k2
� �

; ð13Þ

where xs and x̂s are, respectively, the exact and the esti-

mated source location, and Eð:Þ denotes the statistical

expectation. The MSEs of the methods were obtained

through 1000 Monte Carlo runs in different scenarios. The

results are depicted in Fig. 6. In each Monte Carlo run of

SoLDeL, the fire location was considered as random.

However, it was assumed to be located at the center of the

field in the ECANN and Red-S evaluations since their

performance degrades significantly if the fire occurs in the

network edges.

5.1.2 Results and discussion

Figure 6a shows that ECANN and SoLDeL presented a

stable performance in different network sizes while the

Red-S performance improves in larger networks. The per-

formance of SoLDeL degraded in larger network sizes

because the CNN was trained for network sizes between

300 and 500, and any deviation from that situation may

worsen its performance. Though the evaluation result

conveys that ECANN outperforms SoLDeL, however,
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ECANN does not perform well in network edges wherein

the SoLDeL accuracy is not affected. Note that the edge

effect was neglected in obtaining the performance curves

of ECANN and Red-S.

The performance of the localization methods in different

values of noise power, r2, is compared in Fig. 6b. As

shown, ECANN and SoLDeL, with a relatively stable ac-

curacy, outperformed Red-S. Red-S presented more sen-

sitivity to the noise than the other two methods. The reason

is that noisier network layouts makes the classification

more difficult by SVM with a linear nature. Moreover, as

shown in Fig. 6b, SoLDeL also lost performance in higher

noise power values. The reason is that learning the location

by the deep network is much harder in images with more

noise. In fact, the deep network should be learned with

much more samples when the situation turns noisier while

its training procedures were the same as in the high SNRs

in the presented simulations.

The learning-based localization methods have been

compared in different settings of local false alarm proba-

bilities in Fig. 6c. As seen, the SoLDeL MSE has risen in

Pfa ¼ 0:25 since it is outside the range that was used for its

training.

5.2 SoLDeL application in tracking

In addition to the fire detection application, we were

interested to examine the performance of the proposed

localization methods in tracking a moving target. To that

end, we considered an acoustic source with the isotropic

model moving from the lowest left corner of the network

field to its highest right in a constant speed. Sensor i within

the sensing range of the source observes zi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0=ð1þ dcsiÞ

p
þ vi with P0 and c being the strength of the

source in 1m distance from the target and an attenuation

coefficient, respectively. This model has been extensively

adopted in the literature [24, 42] As shown in Fig. 7,

SoLDeL performs appropriately in target tracking, espe-

cially since it can estimate source locations in network

edges.

5.3 ECANN application in farming

Precision agriculture (PA) uses technology for site-specific

application of farm production inputs (e.g., fertilizers,

pesticides, and seeds) to maximize yield and optimize

nutrient use efficiency [8]. In PA applications, regions with

relatively homogeneous combination of yield-limiting

factors are delineated for which a single rate of a specific

input is optimal to maximize the output. These regions are

referred to as management zones (MZ) [53]. Proximal soil

sensors facilitate the assessment of key soil properties at

high sampling resolution to quantify the within-field spatial

Fig. 6 Comparison of mean squared error (MSE) of the learning-

based localization methods. The nodes are deployed randomly in a

100m� 100m field for detection of a fire with a random temperature,

height, and length of hf �Uð1800; 2100Þ K, hf �Uð1:5; 1:8Þ m, and
lf �Uð0:9; 1Þ m, respectively. a Local false alarm rate Pfa ¼ 0:1 with

the standard normal distributed observation noise. b Network size

K ¼ 500 with Pfa ¼ 0:1. (c) K ¼ 500 with the standard normal

distributed observation noise

Fig. 7 Comparison of the performance of different learning-based

methods in tracking a source that moves in a constant speed from the

lowest left corner to the highest right. A 500-node network with a

random deployment over a 100m� 100m field with P0 ¼ 1000 and

local false alarm rate of 0.1 has been used. The observation noise of

the nodes has been assumed to follow the standard normal distribution
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and temporal variability [50] that MZ delineation requires.

Among proximal soil sensors, diffuse reflectance spec-

troscopy techniques are highly used to assess macro and

micro-nutrients in the soil [47].

In this subsection, our goal is to examine the applica-

bility of ECANN in MZ delineation. To this end, the

estimated calcium (Ca) values of Kouter field were used.

This commercial field is located in a farm in Huldenberg

(50�48038.100N4�34046.900E)in Flanders, Belgium. It has an

area of 13 hectares, a loam to light loam soil texture, and

annual crop rotation of wheat, barley, potato, and sugar

beet with a short duration autumn cover crop. This field

was scanned with an online multisensor platform designed

and developed by [41]. The platform consists of a sub-

soiler, which penetrates the soil, creating a ditch at 15 to 25

cm depth range. Attached to the heal of the subsoiler chisel,

an optical probe connected to a visible and near-infrared

(vis-NIR) spectroscopy sensor (Tec5 Technology for

Spectroscopy, Germany) with a measurement range of

305�1700 nm is used to collect soil spectra in diffuse

reflectance mode. Additionally, the multisensor platform

included a differential global positioning system (DGPS)

(version CFX-750, Trimble, USA) and a semi-rugged

laptop computer (Toughbook, Panasonic, Belgium) to store

the collected soil spectra and DGPS readings at 1 Hz, using

MultiSpec pro-II software (Tec5 Technology for spec-

troscopy, Germany).

The location-based values of the soil calcium can be

considered as a sensor network, as shown in Fig. 8. The

decision rule (4) with threshold 55000 was used for

detection of high calcium regions. Figure 8a shows the

obtained network layout in which there exists several

sparse high-calcium zones which might be due to the

measurement noise. After applying this network layout to

the same ECANN structure explained in Sect. 5.1.1, the

whole farm was well classified into high-calcium and low-

calcium zones, as depicted in Fig. 8b. Note that there exists

no event occurrence here and ECANN was applied just in a

binary classification of the whole region of interest.

6 Conclusions and future directions

In this paper, two source localization methods based on

decentralized detection and learning-based approaches

were proposed. Nodes of a wireless sensor network (WSN)

send their decisions about an event occurrence to a fusion

center (FC). FC takes the final decision about the event

occurrence by using an appropriate decision fusion rule. If

the event occurrence is detected, FC localizes it by

resorting to a deep learning structure. To that end, the

situation of the WSN is converted to a gray-scale image in

which the locations of nodes that have already detected the

event occurrence are denoted by white pixels. The deep

network yields an estimation of the current source location.

It was shown through simulations that SoLDeL performs

appropriately while its computational complexity does not

grow with network size.

Moreover, we proposed using an ANN for specifying

the region affected by the event source. To that end, the

wrong decisions (errors type I and type II) of network

nodes are corrected by the ANN. After having the event

region specified, its centroid is considered as an estimation

of the source location. The drawback of this method was

that the ANN need to be trained each time an event

occurrence is detected.

In this paper, localization of a single source was studied

and two approaches were proposed and examined in two

prominent applications including fire detection and a real

scenario of smart farming. Localization and tracking of

multiple sources by using the k-means clustering method or

its extension—Bayesian non-parametric models—can be

considered as an interesting future study.
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S, Balcazar R, Garcia E, Juarez C (2020) Hessian with mini-

batches for electrical demand prediction. Appl Sci 10:2036

19. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT

Press, Cambridge

20. Gustafsson F, Gunnarsson F, Lindgren D (2012) Sensor models

and localization algorithms for sensor networks based on received

signal strength. EURASIP J Wirel Commun Netw 2012(1):1–13

21. Javadi SH (2016) Detection over sensor networks: a tutorial.

IEEE Aerosp Electron Syst Mag 31(3):2–18

22. Javadi SH, Farina A (2020) Radar networks: a review of features

and challenges. Inf Fusion 61:48–55. https://doi.org/10.1016/j.

inffus.2020.03.005

23. Javadi SH, Mohammadi A, Farina A (2019) Hierarchical copula-

based distributed detection. Sig Process 158:100–106

24. Javadi S, Moosaei H, Ciuonzo D (2019) Learning wireless sensor

networks for source localization. Sensors 19(3):635

25. Javadi SH, Peiravi A (2012) Reliable distributed detection in

multi-hop clustered wireless sensor networks. IET Signal Process

6(8):743–750

26. Javadi SH, Peiravi A (2015) Fusion of weighted decisions in

wireless sensor networks. IET Wirel Sensor Syst 5(2):97–105

27. Javadi SH, Mohammadi A, Farina A (2019) Serial Plackett fusion

for decision making. IEEE Trans Aerosp Electron Syst (in press)

(2019)

28. Javadi SH, Peiravi A (2013) Weighted decision fusion vs.

counting rule over wireless sensor networks: a realistic compar-

ison. In: 2013 21st Iranian conf. electr. eng. (ICEE), pp 1–6

29. Jayadeva, Khemchandani R Chandra S (2007) Twin support

vector machines for pattern classification. IEEE Trans Pattern

Anal Mach Intell 29(5:905–910

30. Julier SJ (2008) Fusion without independence. In: IET seminar on

target tracking and data fusion: algorithms and applications

31. Katenka N, Levina E, Michailidis G (2008) Local vote decision

fusion for target detection in wireless sensor networks. IEEE

Trans Signal Process 56(1):329–338

32. Kay SM (1998) Fundamentals of statistical signal processing,

volume 2: detection theory. Prentice Hall, Upper Saddle River

33. Ketabchi S, Moosaei H, Razzaghi M, Pardalos PM (2019) An

improvement on parametric -support vector algorithm for clas-

sification. Ann Oper Res 276:155-168

34. Krishnamachari B, Iyengar S (2004) Distributed Bayesian algo-

rithms for fault-tolerant event region detection in wireless sensor

networks. IEEE Trans Comput 53(3):241–250

35. Liu C, Fang D, Yang Z, Jiang H, Chen X, Wang W, Xing T, Cai

L (2016) RSS distribution-based passive localization and its

application in sensor networks. IEEE Trans Wirel Commun

15(4):2883–2895

36. Manyika J, Durrant-Whyte H (1994) Data fusion and sensor

management: a decentralized information-theoretic approach.

Ellis Horwood, Hempstead

37. Masazade E, Niu R, Varshney PK, Keskinoz M (2010) Energy

aware iterative source localization for wireless sensor networks.

IEEE Trans Signal Process 58(9):4824–4835

38. Maxim Integrated: SOT temperature sensors with period/fre-

quency output (2014). Rev. 1

39. Meda-Campana JA (2018) On the estimation and control of

nonlinear systems with parametric uncertainties and noisy out-

puts. IEEE Access 6:31968–31973

40. Mouazen AM (2006) Soil Survey Device. International publica-

tion published under the patent cooperation treaty (PCT). World

Intellectual Property Organization, International Bureau. Inter-

national Publication Number: WO2006/015463; PCT/BE2005/

000129; IPC: G01N21/00; G01N21/0

41. Niu R, Varshney PK (2005) Distributed detection and fusion in a

large wireless sensor network of random size. EURASIP J Wirel

Commun Netw 2005(4):462–472

42. Niu R, Varshney PK (2008) Performance analysis of distributed

detection in a random sensor field. IEEE Trans Signal Process

56(1):339–349

43. Niu R, Varshney PK, Cheng Q (2006) Distributed detection in a

large wireless sensor network. Inf Fusion 7(4):380–394

44. Rossia JL, Chetehounab K, Collinc A, Morettia B, Balbia JH

(2010) Simplified flame models and prediction of the thermal

radiation emitted by a flame front in an outdoor fire. Combust Sci

Technol 182(10):1457–1477

45. Rubio dJ (2009) Sofmls: online self-organizing fuzzy modified

least-squares network. IEEE Trans Fuzzy Syst 17(6):1296–1309

Neural Computing and Applications (2021) 33:4217–4228 4227

123

https://lora-alliance.org/about-lorawan
https://lora-alliance.org/about-lorawan
https://doi.org/10.1023/B:PRAG.0000040806.39604.aa
https://doi.org/10.1023/B:PRAG.0000040806.39604.aa
https://doi.org/10.1016/j.inffus.2020.03.005
https://doi.org/10.1016/j.inffus.2020.03.005


46. Rybicki GB, Lightman AP (1979) Radiative processes in astro-

physics. Wiley-Interscience, New York

47. Stenberg B, Viscarra Rossel RA, Mouazen AM, Wetterlind J

(2010) Visible and near infrared spectroscopy in soil science.

Adv Agron 107(C):163–215. https://doi.org/10.1016/S0065-

2113(10)07005-7

48. Texas Instruments: analog temperature sensor, RTD and preci-

sion NTC Thermistor IC (2015)

49. Uc11-n1 lorawan sensor node. https://www.ursalink.com/en/n1-

lorawan-sensor-node/

50. Viscarra Rossel RA, Adamchuk VI, Sudduth KA, McKenzie NJ,

Lobsey C (2011) Proximal soil sensing. An effective approach for

soil measurements in space and time, vol 113. Elsevier Inc,

Amsterdam. https://doi.org/10.1016/B978-0-12-386473-4.00010-

5

51. Viswanathan R, Thomopoulos SCA, Tumuluri R (1988) Optimal

serial distributed decision fusion. IEEE Trans Aerosp Electron

Syst 24(4):366–376

52. Viswanathan R, Varshney PK (1997) Distributed detection with

multiple sensors: part Ifundamentals. Proc IEEE 85(1):54–63

53. Vrindts E, Mouazen AM, Reyniers M, Maertens K, Maleki MR,

Ramon H, De Baerdemaeker J (2005) Management zones based

on correlation between soil compaction, yield and crop data.

Biosyst Eng 92(4):419–428. https://doi.org/10.1016/j.biosys

temseng.2005.08.010

54. Williams JL, Fisher JW, Willsky AS (2007) Approximate

dynamic programming for communication-constrained sensor

network management. IEEE Trans Signal Process

55(8):4300–4311

55. Zuo L, Niu R, Varshney PK (2011) Conditional posterior Cramer

Rao lower bounds for nonlinear sequential Bayesian estimation.

IEEE Trans Signal Process 59(1):1–14

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

4228 Neural Computing and Applications (2021) 33:4217–4228

123

https://doi.org/10.1016/S0065-2113(10)07005-7
https://doi.org/10.1016/S0065-2113(10)07005-7
https://www.ursalink.com/en/n1-lorawan-sensor-node/
https://www.ursalink.com/en/n1-lorawan-sensor-node/
https://doi.org/10.1016/B978-0-12-386473-4.00010-5
https://doi.org/10.1016/B978-0-12-386473-4.00010-5
https://doi.org/10.1016/j.biosystemseng.2005.08.010
https://doi.org/10.1016/j.biosystemseng.2005.08.010

	Source localization in resource-constrained sensor networks based on deep learning
	Abstract
	Introduction
	System model and assumptions
	Node model
	Network model
	Communication channel model
	Problem statement

	Background
	Artificial neural network (ANN)
	Deep learning
	Decentralized detection
	Local decision rule
	Fusion rule


	Learning-based source localization
	Correction of errors type I and II with ANN
	Discussion
	Advantages
	Disadvantages

	Source localization with deep learning (SoLDeL)
	Training deep network
	Advantages
	Disadvantage


	Evaluation
	Performance evaluation in fire detection
	Setup
	Results and discussion

	SoLDeL application in tracking
	ECANN application in farming

	Conclusions and future directions
	Acknowledgements
	References




