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Abstract

The performance of support vector machines in non-linearly-separable

classification problems strongly relies on the kernel function. Towards an

automatic machine learning approach for this technique, many research

outputs have been produced dealing with the challenge of automatic learn-

ing of good-performing kernels for support vector machines. However,

these works have been carried out without a thorough analysis of the set

of components that influence the behavior of support vector machines and

their interaction with the kernel. These components are related in an in-

tricate way and it is di�cult to provide a comprehensible analysis of their

joint e↵ect. In this paper we try to fill this gap introducing the necessary

steps in order to understand these interactions and provide clues for the

research community to know where to place the emphasis. First of all, we

identify all the factors that a↵ect the final performance of support vector

machines in relation to the elicitation of kernels. Next, we analyze the

factors independently or in pairs and study the influence each component

has on the final classification performance, providing recommendations

and insights into the kernel setting for support vector machines.

Keywords: SVM, Kernel Learning, Genetic Programming and Auto-

matic Machine Learning
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1 Introduction

Support Vector Machines (SVMs) [52] have been, for a long time, the reference
paradigm in supervised classification and regression. Although the field is nowa-
days overwhelmed by the application of deep learning approaches, SVMs are still
one of the best alternatives when the requirements of deep neural networks are
not met. When applied to binary classification problems, SVMs separate sam-
ples from the two di↵erent classes by means of a hyperplane that maximizes the
gap to the nearest samples in order to ensure a proper generalization. SVMs
can even handle non-linearly-separable problems by means of a kernel function
[4], and when this kernel meets Mercer’s condition [33], the optimal hyperplane
can be found.

Although SVMs are a suitable tool to solve classification problems, they
involve several components that should be adjusted in order to obtain a good
performance. Among these, the choice of the kernel heavily influences the per-
formance of SVMs, and there is no rule of thumb to select it. While some
standard kernels proposed in the literature are straightforwardly used in sev-
eral applications, tailored kernels produce much better results as each problem
has specific characteristics [42, 43]. In order to achieve an automated machine
learning approach, several works in the literature pose the kernel selection as a
search problem in the space of kernels with no human intervention [25, 12, 28].

However, there are still some open questions that have not been answered in
the current kernel search literature regarding the search method, the space of
kernels where this search is carried out, and the interaction with other compo-
nents of SVMs. To start with, a search space which contains all (and only) the
Mercer kernels has not been described yet. Instead, previously proposed meth-
ods pose some sort of limitations in the search space of kernels, whether only
considering a subset of all the Mercer kernels or also including some which are
non-Mercer. Several challenges have to be dealt with in relation to this topic:
How does the selected search space of kernels influence the results of SVMs?
Which are the regions of the search space according to the characteristics of the
kernels on which the search e↵orts should focus?

Once the space of possible kernels has been defined, the next relevant ques-
tion is the selection of a strategy to carry out the search. Most of the works in
the literature have proposed various heuristic algorithms to solve this search
problem, Genetic Programming (GP) being one of the most used methods
[25, 12, 28]. However, there is a lack of knowledge about many aspects related to
the specific characteristics of the kernel function optimization problem, and in
particular, about how these characteristics relate to the way the GP search for
optimal solutions is accomplished. Furthermore, there is no clear understanding
of the relative performance of GP compared to other simpler search strategies,
since other optimization methods have rarely been applied to this problem. Rel-
evant questions in this area are: What is the relevance of the search method
with respect to the characteristics of the chosen search space? Which charac-
teristics should a search algorithm have in order to e�ciently explore the kernel
space?
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Apart from the choice of the kernel, there are other components of SVMs that
interact in a complex manner, which hinders the identification of the essential
elements that are necessary to obtain a good performance in the classification
task. However, in most of the previous works little attention has been paid to
the rationale behind the choice of those components of SVMs and how these
choices influence the dynamics and results of the kernel search.

The learning of the kernel itself is often divided into the kernel structure
search and the tuning of its hyperparameters. This tuning process is one of the
steps involved in the SVM learning, whose essential role is usually overlooked
in the literature. The key questions are: What is the relevance of finding the
right hyperparameters? Which is the best method for finding them? How much
computational e↵ort needs to be used to optimize the hyperparameters?

Beyond the setting of the kernel and its hyperparameters, the commonly
used flexible variant of SVMs has its own parameter (C), whose role is to deal
with the overfitting of the model. Although, the choice of C strongly influences
the e↵ectiveness of the final classifier, it is not clear in the literature what the
interactions of this parameter are with the rest of the components. For instance,
what is the contribution of the C parameter to the performance of SVMs with
a particular choice of the kernel? Which is the interplay between the kernel
hyperparameter setting and the C parameter setting?

Finally, for an automated kernel search, we not only need to assess the
quality of the solution on the training data but also to implicitly capture how
it will generalize to new data. If a wrong evaluation measure is chosen, then,
an apparently good solution (in terms of the measure) may overfit the data
and produce poor results at the prediction stage. The choice of the objective
function used to evaluate the quality of the kernel also has an impact on the
roughness of the kernel search space, and therefore on the performance of the
search methods. Most of the previous works in the literature have used the
classifier accuracy as the metric of choice. However, are there better metrics to
guide the search for optimal kernels?

Trying to shed some light on these issues, in this paper we analyze the com-
ponents involved in the structural learning of kernels. We start by considering
each component independently, and then, we proceed by addressing the way
they interact to influence the behavior of SVMs. In the study of these com-
ponents and their interactions, we introduce some guidelines to improve the
performance of SVMs.

The remainder of the paper is structured as follows: In the next section,
a background on SVM classification is provided, including the presentation of
standard kernel functions and an overview of the SVMmethod. Next, we present
our research regarding the di↵erent components that take part in the kernel
search. In Section 4, we analyze the questions regarding the kernel space, and
in Section 5, we address the influence of the search method. The interactions
between the hyperparameter tuning and C parameter setting are studied in Sec-
tion 6, and Section 7 focuses on the metrics used to measure the performance of
the SVMs. Finally, in Section 8, the conclusions and future work are presented.
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2 Support Vector Machine Classification

Support Vector Machines (SVMs) were introduced by Vapnik in 1963 [51] as
non-probabilistic linear classifiers to solve binary classification problems. Later,
probabilistic variants [40] of SVMs and extensions to multi-class problems [8]
were proposed.

In a supervised binary classification scenario, linear classifiers, such as SVMs,
classify these samples by means of a hyperplane. Nevertheless, there are many
ways to position this hyperplane. SVMs are characterized by the use of a hy-
perplane that maximizes the separation, or margin, between classes.

In the most trivial case, where the samples are linearly-separable, the hard-
margin formulation can be used. Then, the margin from the plane to the solu-
tions of each class is maximized to achieve a better generalization. Given some
data D = {xi, yi}ni=1 (n 2 N), where yi 2 {�1,+1} indicates the class xi 2 Rd

(d 2 N) belongs to, the maximal separating hyperplane can be found by solving
the following optimization problem:

min

✓
1

2
wwT

◆

subject to

yi(wxT

i
+ b) � 1, 8i 2 {1, 2, ..., n}

(1)

where w is the normal vector of the hyperplane, n refers to the number of
samples in the dataset and b corresponds to a special parameter in SVMs, often
called bias.

The label assigned to each new sample x⇤ is determined by the following
function:

y⇤ = sgn(wxT

⇤ + b) (2)

where sgn(a) returns +1 if a is positive, and �1 otherwise.
On the contrary, the soft-margin formulation allows linear SVMs to be

used with non-linearly-separable data by introducing the hinge loss function
(L(w, b) = max(0, 1� yi(wxT

i
+ b)) with the error variable ⇣i:

min

 
1

2
wwT + C

nX

i=1

⇣i

!

subject to

yi(wxT

i
+ b) � 1� ⇣i and

⇣i � 0, 8i 2 {1, 2, ..., n}

(3)

where C is the regularization parameter. If its value is large, having a small
hinge loss will be more important than having large margins. Therefore, SVMs
will reduce the margin of the hyperplane in order to classify correctly as many
training points as possible. On the other hand, if the value of C is small, increas-
ing margins will be more important than reducing the hinge loss. Thus, SVMs
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will assume some classification errors to have large margins. In the extreme
case, when C is tiny, SVMs will behave similarly to the hard-margin case.

Equation (3) can be simplified by solving its Lagrangian dual:

max

0

@
nX

i=1

↵i �
1

2

nX

i=1

nX

j=1

↵i↵jyiyjxix
T

j

1

A

subject to
nX

i=1

↵iyi = 0 and

C � ↵i � 0, 8i 2 {1, 2, ..., n}

(4)

In this dual formulation, ↵i can be found by means of quadratic programming
methods [27]. Then, w and b can be calculated as follows:

w =
nX

i=1

↵iyixi

b =yB �wxT

B

(5)

where xB and yB are the values for a sample on the boundary of the margin.

2.1 Kernel trick

When data is not linearly-separable in the original space, there might be some
feature space V where a hyperplane can classify the data. In [4] a mapping of
the data to a higher dimensional space was proposed, called the kernel trick.

A kernel function k can be defined as an inner product in some Hilbert
space k(xi,xj) = h�(xi),�(xj)iV , given a feature map � : Rd ! V. Thus,
replacing the dot product operations in Equation (4) with the kernel function
k is equivalent to mapping the data to the feature space V and computing the
SVM in such space, which allows non-linearly-separable classification problems
to be solved. In addition, the quadratic programming problem required to find
the optimal hyperplane is convex as long as the kernel function meets Mercer’s
condition [5]. To hold this condition, the kernel k : S ⇥ S ! R on the set S
must satisfy: Z

S

Z

S
g(x)k(x, x0)g(x0) dx dx0 � 0 (6)

for any square integrable function g(x).
If k satisfies Equation (6), then the matrix M , where mij = k(xi, xj),

8x1, ..., xn 2 S and 8n 2 N, is (i) symmetric, i.e., M = MT , and (ii) a Positive
semi-definite (PSD) matrix. A matrix is PSD if uMuT � 0 for all real vectors
u 2 Rn, which is equivalent to saying that all its eigenvalues are non-negative.
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2.2 Standard kernel functions

The kernel functions can be divided into two main families: stationary and
non-stationary kernels [20].

A stationary kernel is translation invariant. Among the stationary kernels,
we focus on isotropic kernels, as they are the most used kernel functions in the
literature. Such kernels can be defined by the following equation:

k(x,x0) = bk(r)

r =

����
x

✓l
� x0

✓l

����
(7)

where bk is a function that guarantees that the kernel satisfies Mercer’s condition
and ✓l is the lengthscale hyperparameter. The lengthscale hyperparameter can
be also a vector that expresses the relevance of each dimension d, as suggested
in Automatic Relevance Determination (ARD) approaches [32, 36].

On the contrary, in non-stationary kernels, the output of the kernel may
vary with translation transformations of the input space. Within this family,
the most common ones are those that depend on the dot product of the input
vectors, which are usually referred to as dot-product kernels:

k(x,x0) = bk(s)

s =

✓
x� ✓s1

✓l

◆✓
x0 � ✓s1

✓l

◆T (8)

where ✓l is again the lengthscale hyperparameter, ✓s is the shift hyperparameter
and 1 is a vector of ones.

Table 1 shows eleven standard kernels used in di↵erent applications of SVMs
[25, 28, 12]. The Radial Basis Function (RBF) kernel, also known as the Squared
Exponential kernel, is one of the most popular choices, and it is described as
kRBF in the table. This kernel is known to capture the smoothness property of
the data.

2.3 Kernel and parameter setting overview

As explained in the previous section, the application of SVMs requires optimiz-
ing the weights (w) and bias (b), as well as setting the C parameter. Apart
from these general parameters of SVMs, in kernel learning approaches, the ker-
nel structure and its hyperparameters (⇥) must also be searched for. All these
components are depicted in Figure 1.

In order to find the best kernel structure for a certain problem, all the
components must be properly set. In this work we discuss the di↵erent kernel
search methods and analyze the interplay between the SVM components.
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Kernel function expressions

Constant kCON (x,x0) = ✓0
White Noise kWN (x,x0) = ✓0 �(x,x0)
Exponential kE(r) = ✓20 exp (�r)
� exponential kE�(r) = ✓20 exp (�r�)
RBF kRBF (r) = ✓20 exp

�
� 1

2r
2
�

Matern12 kM12(r) = ✓20exp (�r)
Matern32 kM32(r) = ✓20

�
1 +

p
3r
�
exp

�
�
p
3r
�

Matern52 kM52(r) = ✓20
�
1 +

p
5r + 5

3r
2
�
exp

�
�
p
5r
�

Rat. Quadratic kRQ(r) = ✓20
�
1 + 1

2↵r
2
��↵

Periodic kPER(r) = ✓20 exp
⇣
� 2 sin2(⇡r)

✓2
p

⌘

Linear kLIN (s) = s

Table 1: Standard kernel functions. ✓0 and ✓p are the kernel hyperparameters,
called amplitude and period respectively. r is described in Equation (7), while
s is presented in Equation (8).

Data

SVM

Fitness
function

C

w, b

C setting

 setting

kernel
learningk

Figure 1: Kernel search diagram for SVMs. The elements that take part in
the kernel search are shown in rectangles, while the associated parameters are
displayed in circles.

3 Literature Review

An important choice in the SVM setting shown in Section 2.3 is the kernel func-
tion that will be used. In the early stages of SVM research, the standard kernel
functions introduced in Table 1 were applied [35]. Most of the studies used
expert knowledge to select the most suitable kernel among the standard ones,
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although some authors also proposed cross-validation techniques [26] or decision
trees [1] to carry out this selection. Once the kernel structure was selected, the
hyperparameters were optimized to find the most appropriate ones depending on
the characteristics of the problem [31], often using grid search techniques with
k-fold cross-validation. Alternatively, more advanced techniques to optimize the
lengthscale hyperparameter of the RBF kernel [30] or the C parameter [6] were
proposed, avoiding the need of evaluating the SVM. Recently, the hyperparame-
ter optimization problem has been analyzed from a multi-objective perspective,
proposing evolutionary algorithms to obtain the Pareto optimal selection of the
hyperparameters for Gaussian and polynomial kernel functions [38].

Then, methodological advances allowed the search for more complex kernel
structures beyond the standard kernels. First, problem-specific kernel functions
were manually developed. For example, in [54], an improved kernel function was
proposed, based on the Gaussian, polynomial and sigmoid kernels functions.
Later, automatic methods were proposed to compose, with no human interven-
tion, ad-hoc kernels for particular problems. Although other techniques, such as
deep-kernel-based architectures [7], have been proposed, Genetic Programming
(GP) [29] has been one of the most used approaches for learning new kernels for
SVMs. [25, 12, 28].

4 A key player: the kernel

Kernel design is usually done by combining basic modules, where a search proce-
dure looks for the best performing combination. The two aspects which must be
taken into account in this process are: (1) a grammar that includes the modules
to be used and the rules for combining them, and (2) a search algorithm that
defines the way the search is conducted. In this section we focus on the first
aspect (modules and rules), and Section 5 is be devoted to discussing some of
the search methods that have been used to find the best kernel in such spaces.

As previously mentioned, the search space can be described by a grammar
which specifies the building blocks of the kernels and the rules for combining
them. Ideally, it is desirable to obtain a Mercer kernel, so that convergence to
the optimal hyperplane is guaranteed. Nonetheless, defining a grammar which
satisfies that all the kernels are Mercer kernels is not an easy task and, in fact,
there is no proposal in the literature in this sense. The di↵erent grammars
proposed in the literature can be classified depending on how they deal with the
Mercer condition: kernel composition approaches and methods based on basic
mathematical expressions.

In kernel composition approaches, such as [12] and [48], the grammar is
usually composed of a set of kernels such as those shown in Table 1 together
with some Mercer-condition-preserving composition rules (operations). These
operations guarantee that, if the source kernel satisfies the Mercer’s condition,
the resulting kernels will also satisfy it [15, 14]. Although all the solutions
created by means of kernel composition have convergence guarantees in SVMs,
not all Mercer kernels can be explored through this method. Moreover, the
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search may end up with extremely complex structures that can be too cost-
intensive to evaluate depending on the application domain [48].

On the other hand, the second type of approaches are based on using basic
mathematical expressions as building blocks. An example is shown in Figure 2,
where a RBF kernel is represented as a mathematical expression tree. Note
that these grammars may also contain the hyperparameters of the kernel, which
allow the search to explore more flexible kernels, which are able to adapt to
di↵erent scenarios by means of modifying their hyperparameters.

multiply

square

exp

const

multiply

sq_dist x_div
x, x'

1

0

const 0.5negative

kRBF (r) = ✓20 exp

 
�1

2

����
x

✓1
� x0

✓1

����
2
!

(9)

Figure 2: RBF kernel represented as a basic mathematical expression tree.

These proposals are more flexible and potentially better because, in addi-
tion to allowing the design of the kernels that can be constructed by means of
kernel composition grammars, they allow a richer and wider set of kernels to be
explored, built from scratch, without any previous bias.

On the contrary, in approaches based on the use of basic mathematical ex-
pressions, the dimensionality of the search space is clearly higher than in ker-
nel composition approaches, which could make it more di�cult to find good-
performing kernels.

Another undesirable downside of being able to compose more compact and
flexible kernels is that these methods may generate non-Mercer kernels during
the search. The simplest method to deal with this problem is simply not to
guarantee that kernels meet Mercer’s condition [3, 24, 19, 49]. As a result, the
optimization algorithm used to find the optimal hyperplane for SVMs may not
converge. On the contrary, the authors of [28], [10] and [25] checked Mercer’s
condition for every kernel and those that do not meet this condition are penalized
or discarded. In [10] and [25], a method for penalizing (giving the worst possible
fitness value) the non-Mercer kernels at evaluation time is proposed. Besides,
in [28], if during the random generation a kernel does not meet this condition,
it is discarded and the process is repeated.
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4.1 Relevance of periodic elements

Depending on the classification problem that is being solved by means of SVMs,
some elements of the grammar might be crucial. The absence of certain elements
may limit the result. However, most of the kernel learning approaches do not
single out as relevant issues the grammar nor the choice of the elements that
compose it.

In order to illustrate the importance of including the appropriate elements in
the grammar, we compare the classic RBF kernel to the Periodic kernel (PER)
in a subset of well-known problems. The RBF kernel is known for capturing
the smoothness property of the data, as elements close to each other in terms
of Euclidean distance have a high kernel value and it smoothly decreases as the
distance increases. The elements needed to compose the RBF kernel are present
in most of the grammars reported in the kernel learning literature, regardless
of the grammar type choice, whether they use kernel composition or are based
on basic mathematical expressions. On the other hand, the Periodic kernel is
based on the RBF kernel but adds a spectral transformation to the space [23]
in order to model periodic patterns in the data. Periodic elements, such as the
spectral transformation, have been overlooked in the kernel search literature,
and only some approaches [3] include them in their grammars.

If the Periodic kernel obtains a better result than the RBF, it may indicate
that some periodic patterns are present in the data. If so, having the spectral
transformation in the grammar is essential to achieve good results.

Although some of the kernel search approaches have been used to solve
particular problems, most works in the literature test their proposals in the
UCI classification datasets [13], shown in Table 2, in order to compare their
results with those reported in previous works.

Classification problem Samples Variables Classes

pima 768 8 2
ionosphere 351 34 2
heart statlog 270 13 2
glass2 163 9 2
liver disorder 345 6 2
breast cancer Wisconsin 569 30 2

Table 2: Characteristics of the UCI problems studied in this work.

In these UCI datasets, the RBF kernel has a reasonably good performance,
close to the state-of-the-art kernels created by composition [12]. It might indi-
cate that modeling the smoothness property of the data is enough to achieve
good classification results [16].

To widen the scope of the analysis, we searched for other types of classifi-
cation problems, where new kernel properties, apart from smoothness, could be
necessary to obtain more accurate results. In a preliminary experiment, we used
the Penn Machine Learning Benchmarks (PMLB) [37] to find datasets where
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RBF does not perform so well, possibly indicating that other kernel properties
are needed.

After evaluating the SVMs with the RBF kernel in all the PMLB databases,
we selected the 8 problems where the lowest accuracy was obtained. The char-
acteristics of these datasets are shown in Table 3. In the non-binary PMLB
problems, the one-vs-one approach was used.

Classification problem Samples Variables Classes

calendarDOW 399 31 5
contraceptive 1473 9 3
GAMETES Epistasis 0.1H 1600 19 2
GAMETES Epistasis 0.4H 1600 19 2
GAMETES Heterogeneity 50 1600 19 2
GAMETES Heterogeneity 75 1600 19 2
parity5+5 1124 10 2
Hill Valley with noise 1212 100 2

Table 3: Characteristics of the PMLB problems for which the RBF kernel ob-
tained the worst accuracies.

In order to compare the results of the RBF kernel to the Periodic kernel, we
ran a second experiment with the Periodic and RBF kernels in the previously
shown UCI and PMLB databases.

The dataset was partitioned twice. A random fold of 20% of the data is
selected as the test set, and a 4-fold cross-validation was used to set C and
the hyperparameters for each kernel. The SVMs were fitted in each fold of
the training set for each combination of C (2�5 to 215, at powers of 22 as in
[47]) and the hyperparameters (2�5 to 24, at powers of 2), with a limit of 1000
evaluations. Then, the combination with the best average accuracy was selected
to be evaluated in the test set.

In Table 4 the results of this experimentation are shown. Although in the
UCI datasets the results of both kernels are similar, important performance
gains can be obtained in the GAMETES PMLB datasets when using the peri-
odic kernel instead of the RBF.

In spite of being very similar kernels, there are remarkable performance dif-
ferences between the RBF and Periodic kernels depending on the database. The
limited capacity of the RBF kernel to model the GAMETES databases restricts
the classification performance of the SVMs. This suggests that including the
elements of the Periodic kernel in the kernel search grammar might be crucial,
and highlights the importance of a careful selection of the elements that compose
the grammar.

4.2 Proposed grammar

In order to investigate the importance of the selected search space, and taking
into account the grammars proposed in the literature, we designed a grammar
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Classification problem RBF PER

U
C
I

pima 0.772 0.758
ionosphere 0.939 0.944
heart statlog 0.826 0.837
glass2 0.809 0.773
liver disorder 0.743 0.726
breast cancer Wisconsin 0.972 0.974

P
M
L
B

calendarDOW 0.621 0.624
contraceptive 0.547 0.548
GAMETES Epistasis 0.1H 0.562 0.668
GAMETES Epistasis 0.4H 0.709 0.797
GAMETES Heterogeneity 50 0.660 0.714
GAMETES Heterogeneity 75 0.669 0.701
parity5+5 0.931 0.905
Hill Valley with noise 0.815 0.801

Table 4: Mean accuracies in the test set for the RBF kernel and the Periodic
kernel in UCI and PMLB classification problems. The numbers in bold indicate
the best result for each problem. UCI databases are shown in the top 6 rows of
the table, while PBML problems are at the bottom of the table.

based on basic mathematical expressions by means of which all the kernels of
Table 1 can be composed. The production rules of this grammar are shown in
Table 5.

The scalar non-terminal is the start symbol of the grammar. It also includes
the +, ⇥, and ˆ arithmetic operators, with their usual meanings (addition,
product and power, respectively). Note that we only allow hyperparameters as
the exponent in the power operator. The same interpretation is given to the
unary operators. The power to the minus one is also added as an unary operator
in order to allow division operations. Then, the input vectors are converted
into scalars by means of the square distance and dot product non-terminals,
as described in Section 2.2. Similarly, constant and noise non-terminals, whose
values depend on the input hyperparameter, are included. The subtraction
and the division of an input vector by a hyperparameter are also incorporated.
In addition, the grammar also contains the spectral transformation, in order
to allow periodic kernels, as in [23]. Finally, (x,x0) (the input vectors of the
kernel) and ✓ (the hyperparameters) are the terminals of this grammar.

4.2.1 Random kernel generation

In order to randomly generate kernel expressions, we propose a strongly-typed
grow method based on the work presented in [29]. This approach creates kernels
from scratch, without any knowledge of previously proposed kernels. This is
achieved by a recursive process where, at each step, a random terminal or a
random operator is added.
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kernel : scalar start symbol
scalar :

| scalarhp power
| scalar + scalar add
| scalar ⇥ scalar multiply
| scalar�1 div
| escalar exp
|
p
scalar sqrt

| scalar2 square
| � scalar negative
| tanh(scalar) tanh

|
��invec� invec0

��2 sq distance
| invec.invec0T dot product
| hp constant
| hp⇥ �(x,x0) noise
;

(invec, invec0) :
| (
⇥
sin(invec) cos(invec)

⇤
,⇥

sin(invec0) cos(invec0)
⇤
) spectral

|
⇣

invec
hp

, invec0

hp

⌘
x div

| (invec� 1hp, invec0 � 1hp) x rest
| (x,x0) input
;

hp :
| 0.5 | 1 | 2 | 3 | 5
| ✓0 | ✓1 | ... | ✓t
;

Table 5: Proposed grammar for SVMs. t indicates the number of di↵erent
hyperparameters allowed in the grammar (in this work, it is set to t = 20).

When generating random solutions, some of the solutions may be too com-
plex in terms of the number of elements in the expression, and others too simple
or trivial. Thus, we propose a method to control the depth of the generated
expressions by setting a minimum (dmin) and a maximum depth (dmax). As
can be seen in Table 5, some of the non-terminals have the same symbol in
both sides of the production rule. These non-terminals guarantee that, once
selected, the iterative procedure can continue growing this branch, i.e., they are
recursive.

As can be seen in Algorithm 1, during the creation process, we select a
uniformly random production rule depending on the current symbol. If the
minimum depth has not been reached, only recursive non-terminals are used.
Then, until the maximum depth is reached, any non-terminal can be selected.
Finally, when the maximum depth is reached, only the terminals and the non-
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recursive non-terminals are used, limiting the depth of the expression.

Algorithm 1 Random Generation of expression trees

1: procedure TypedGrow(dmin, dmax, type)
2: termexprs = GetTerminalExprs(type)
3: nonrecexprs = GetNonRecursiveExprs(type)
4: recexprs = GetRecursiveExprs(type)
5: candexprs = ;
6: if dmin <= 2 then
7: candexprs = candexprs [ nonrecexprs [ termexprs
8: end if
9: if 2 <= dmax then

10: candexprs = candexprs [ recexprs
11: end if
12: if candexprs is ; then . No candidate expressions
13: candexprs = terms [ notnests [ nests
14: end if
15: expr = RandomChoice(candexprs)
16: inputtypes = GetInputTypes(expr)
17: if inputtypes is ; then . expr is terminal
18: return expr
19: end if
20: for inputtype in inputtypes do
21: subexpr = TypedGrow(dmin � 1, dmax � 1, inputtype)
22: expr = Append(expr, subexpr)
23: end for
24: return expr
25: end procedure

4.2.2 Dealing with non-Mercer kernels

In order to mitigate the evaluation of non-Mercer kernels, we followed the ap-
proach used the authors of [28]: check the positive definiteness of the matrix
generated by a kernel for some random data and attempt the generation of the
kernel again if this matrix is not PSD.

As mentioned in Section 2.1, any matrix generated by a Mercer kernel has
to be symmetric and also PSD. To identify non-Mercer kernels, we generate
w random uniformly distributed datasets X = (x1,x2, ...,xn) (where xi 2 Rd,
i 2 {1, ..., n} and n 2 N) and check the M matrix produced by the kernel
for each dataset. If any M matrix matches the following cases, the generation
process of the kernel is repeated:

• M 6= MT : As previously mentioned, the matrix given by a Mercer kernel
should be symmetric.
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• Any mii is negative: It has been proved [53] that, if any of the elements
in the main diagonal are negative, the matrix is not PSD.

• Any of the eigenvalues of M is negative: Similarly, all the eigenvalues of
the matrix should be non-negative.

With this method, and using the grammar shown in Table 5, 9 trials were
required on average in the experiments conducted in this work to create a kernel
that generates a PSD matrix. Note that meeting these conditions is not su�cient
for a kernel to be Mercer. Although some non-Mercer kernels may pass the
PSD check, it was not a problem during the experimentation, as the SVM
optimization did not converge to the global optimum only with 3.16% of the
kernels that passed the PSD check.

4.3 Increasing grammar experiment

Following the experiment introduced in Section 4.1, we conducted a more in-
depth experiment to observe the influence of the grammar in the search of the
best kernel for the SVM classification. Particularly, we wanted to measure the
e↵ect that the addition of certain elements to the grammar has in randomly
generated kernels and in the performance of the SVMs that uses these kernels.

In order to carry out this experiment we obtain a series of grammars that
are able to create kernels that can generate PSD matrices and each grammar in
the sequence comprises all the elements from the previous one. We start with
the minimum possible grammar, including the input vector and the dot product
operator from which only a simplified version of the Linear kernel can be created.
To create the next grammar, we add one random element to the first one, and
test whether a random kernel generated with this new grammar, which contains
this new element, passes the PSD check. dmin = 5 and dmax = 15 were set to
control the depth of the generated expressions. If the randomly generated kernel
fails the test, we try adding another element to the grammar. If after testing
all the elements, none of the new grammars is able to generate a random kernel
that passes the PSD check, we try to add pairs of elements to the grammar. On
the other hand, if the new grammar is able to generate random kernels that pass
the PSD check, this new grammar is added to the sequence, and the process
is repeated adding a new element to it. We repeat this experiment obtaining
10 series of 27 grammars for each UCI and PMLB database. Then, for each
grammar in the sequence, we randomly generate 18 kernels and evaluate them.
The evaluation of these kernels is carried out following the same setting used in
Section 4.1.

Figure 3 illustrates one of these experiments in the GAMETES Epistasis
0.4H database. It can be seen that, when including certain elements in the
grammar, the accuracy of SVMs increases. For example, when the spectral non-
terminal is included, in combination with the exponential, 60% accuracy can
be achieved. Moreover, in the 16th iteration, the inclusion of the multiplication
non-terminal improves the accuracy up to 74%. In the following iterations,
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the sq distance non-terminal slightly increases the performance when selected.
Overall, the performance of the best kernel of each iteration (created by means
of a richer grammar) shows an increasing trend.

To obtain a general view of the experiment, in Figure 4 the average accuracy
for each iteration and database is shown. In some problems, such as pima,
heart statlog and breast cancer Wisconsin the results of the first iteration, i.e.,
the simplified Linear kernel, can not be improved with the addition of new
elements. This is consistent with the results of Table 4 where the rest of the
standard kernels barely outperform the results of the Linear kernel. However,
for the rest of the problems, there is a clear increase in accuracy when new
elements are added to the grammar. This is especially visible in the glass2,
parity5+5 and GAMETES databases.

In summary, the increasing grammar experiment shows that including a
wide set of elements in the grammar is beneficial for any kernel structure search
attempt. Thus, our first recommendation would be to include as many ele-
ments described in the literature as possible. Particularly, we have observed
in the experiment of Section 4.1 that the spectral element is very important
for some particular problems. A possible drawback derived from a very rich
grammar would be a wider search space, which makes it more di�cult for a
search algorithm to find a good performing combination (kernel). However, as
it is discussed in Section 5, even a basic random search algorithm with a limited
budget is able to provide competitive results.

5 Kernel structure search

The main component in the SVM kernel search methods is the optimization
of the structure of the kernel itself. GP has been one of the most widely used
approaches when addressing these optimization tasks. GP is an evolutionary
algorithm designed to search in a predefined space of computer programs, i.e.,
kernel functions in our case. By means of this technique, kernels have been
obtained that produce better results in terms of accuracy than standard kernels
[24, 28].

However, there is a lack of knowledge on many aspects related to the specific
characteristics of the kernel function optimization problem, and in particular
about how these characteristics relate to the way the GP search for optimal
solutions is accomplished. Furthermore, there is not a clear understanding of
the relative performance of GP to other simpler search strategies since other
optimization methods have only rarely been applied to the kernel function op-
timization problem.

5.1 Kernel structure search experiment

Once the importance of the grammar and the search space has been introduced,
we then focus on the kernel structure search step. For this purpose, we designed
an experiment to compare the performance of GP with other kernel structure
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Figure 3: Increasing grammar experiment in the GAMETES Epistasis 0.4H
dataset. The figure at the bottom shows the elements present in the grammar
at each iteration. The lightest blue color indicates that an element is out of the
grammar, while the darker blue color expresses that this element is included.
If the best kernel of that iteration contains a certain element the darkest blue
color is shown. At the top, the accuracy on the test set of the best random
kernel (selected according to the training set) is plotted.
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Figure 4: Average accuracy on the test set of the best kernel (selected according
to the training set) at each iteration.

search approaches, including also the standard kernels shown in Table 1, for the
UCI and PMLB databases.

The GP method studied in this experiment is based on the mathematical
expression grammar introduced in Section 4.2. As shown in Algorithm 2, in
this approach, an initial population of N random kernels is generated with a
minimum (dmin) and a maximum depth (dmax), and evaluated. After select-
ing the S best individuals, the algorithm randomly chooses between a muta-
tion or a crossover operator (with probability pm and pcx respectively, where
pcx = 1 � pm) to generate an o↵spring population of N new individuals. Af-
ter evaluating all the individuals in this o↵spring population, the previously
selected individuals are added to generate the next population that consists of
N + S individuals. This procedure is repeated for G generations, until the last
population is evaluated and the best individual found during the whole process
is returned.
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Algorithm 2 GP algorithm for SVM kernel learning

1: procedure GP(N , G, S, pm, pcx, dmin, dmax)
2: pop = GenRandPop(N , dmin, dmax)
3: Evaluate(pop)
4: all = pop
5: i = 0
6: while i < G� 1 do
7: sel = Select(pop, S)
8: offspring = Variate(sel, N , pm, pcx)
9: Evaluate(offspring)

10: all = all [ offspring
11: pop = sel [ offspring
12: i = i+ 1
13: end while
14: best = Select(all, 1)
15: return best
16: end procedure

In order to assess the contribution that each component of the proposed GP
algorithm makes to the kernel search, we introduce three algorithms to be used
as a baseline in the experiments.

First, we describe a random search algorithm that generates N kernels fol-
lowing the method described in Section 4.2.1. Next, the best solution is chosen
according to the cross validated accuracy in the training set.

Secondly, in order to measure the gain produced by the crossover operator
in the GP setting, we propose a hill-climbing algorithm, which does not make
use of this operator. This procedure generates an initial kernel, from which a
second kernel is created by applying a random mutation. Then, the best kernel
in terms of accuracy is selected. This procedure is repeated for N evaluations.

Finally, we also introduce a GP variant, without the spectral element in
the grammar (sGP), in order to develop the results of the experiment shown in
Section 4.1.

All these algorithms were coded in Python, based on the EA softwareDEAP1

[17], and made publicly available in the Python Package Index2. The code
used to carry out the SVM classification with evolved kernels has been also
published3.

In all these approaches, before the evaluation of every kernel, the hyper-
parameters and C were optimized as in the experiment in Section 4.1. In the
kernel structure search approaches, the hyperparameters were set according to
the grammar shown in Section 4.2 and optimized in a grid of 2�5 to 24, at pow-
ers of 2, with a limit of 1000 evaluations. In order to find the hyperparameters

1https://deap.readthedocs.io
2https://pypi.org/project/evocov/
3https://pypi.org/project/ksvmlib/
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Classification problem LIN M32 M52 RBF PER
U
C
I

pima 0.779 0.781 0.782 0.783 0.785
ionosphere 0.889 0.956 0.957 0.956 0.958
heart-statlog 0.859 0.859 0.859 0.860 0.869
glass2 0.715 0.809 0.813 0.813 0.855
liver-disorder 0.697 0.737 0.742 0.743 0.747
breast-cancer-Wisconsin 0.981 0.984 0.984 0.983 0.984

P
M
L
B

calendarDOW 0.592 0.622 0.625 0.627 0.651
contraceptive 0.516 0.564 0.565 0.565 0.572
GAMETES Epistasi 0.1H 0.501 0.576 0.578 0.582 0.684
GAMETES Epistasis 0.4H 0.503 0.678 0.686 0.690 0.794
GAMETES Heterogeneity 50 0.502 0.641 0.647 0.650 0.716
GAMETES Heterogeneity 75 0.517 0.659 0.664 0.665 0.736
parity5+5 0.497 0.555 0.563 0.632 0.722
Hill Valley with noise 0.866 0.833 0.828 0.820 0.835

Table 6: Results of the Kernel search experiment in the training set for the
standard kernels. The mean accuracy achieved by each kernel is shown. The
numbers in bold indicate the best result for each problem while taking into
account the results of the structure search methods shown in Table 7.

of the standard kernels (Their descriptions can be found in the Table 1), we
used a more exhaustive grid search for a fair comparison: 2�5 to 24, at powers
of 20.1, with a limit of 486000 evaluations. In the GP approach, in each of the
G = 27 generations, N = 18 kernels were created and the best S = 4 kernels
were chosen as seeds for new individuals. The mutation and crossover proba-
bilities were set to pm = 0.4 and pcx = 0.6 respectively. Similarly, N = 486
evaluations were carried out in the random search and hill-climbing methods.
Each configuration was repeated 10 times.

As can be seen in tables 6 and 7, the GP approach improves the training
set results of the standard kernels in all the UCI and PMLB databases, except
in the GAMETES problems, where it is not able to achieve the same accuracy
as the Periodic kernel. Notable performance gains were achieved in the glass2,
parity5+5 and Hill Valley with noise problems by using the GP method. The
hill climbing and the random search methods obtain results similar to the best
standard kernel in most of the databases. Comparing GP to the random search
and the hill climbing methods, the best average accuracies are achieved by GP.

The results obtained in the training set by the di↵erent models, are used to
determine the best performing model in the test set. However, the performance
of the models changes when applied to the test set, probably due to the overfit-
ting e↵ect. Thus, in spite of obtaining good accuracy values in the training set,
the GP approach is not able to maintain those results in the test set. Tables
8 and 9 show that this issue is clearly visible in most databases where slight
di↵erences were observed in the training set between the GP and the best stan-
dard kernels. However, in other datasets, such as glass2, parity5+5 and Hill
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Classification problem Random HC sGP GP
U
C
I

pima 0.788 0.788 0.793 0.793
ionosphere 0.955 0.958 0.962 0.962
heart-statlog 0.876 0.878 0.878 0.878
glass2 0.860 0.862 0.836 0.909
liver-disorder 0.745 0.750 0.756 0.763
breast-cancer-Wisconsin 0.984 0.985 0.986 0.986

P
M
L
B

calendarDOW 0.651 0.660 0.642 0.665
contraceptive 0.569 0.570 0.569 0.573
GAMETES Epistasi 0.1H 0.679 0.680 0.596 0.681
GAMETES Epistasis 0.4H 0.791 0.793 0.700 0.793
GAMETES Heterogeneity 50 0.704 0.706 0.667 0.709
GAMETES Heterogeneity 75 0.725 0.732 0.673 0.733
parity5+5 0.957 0.938 0.990 0.999
Hill Valley with noise 0.796 0.817 0.886 0.905

Table 7: Results of the Kernel search experiment in the training set for the
kernel structure search methods. The mean accuracy achieved by each kernel
search method is shown. The numbers in bold indicate the best result for each
problem. sGP indicates the spectral-less GP approach.

Classification problem LIN M32 M52 RBF PER

U
C
I

pima 0.759 0.766 0.773 0.766 0.765
ionosphere 0.875 0.942 0.945 0.942 0.944
heart-statlog 0.830 0.820 0.824 0.820 0.815
glass2 0.710 0.818 0.800 0.794 0.800
liver-disorder 0.684 0.722 0.732 0.735 0.713
breast-cancer-Wisconsin 0.973 0.969 0.971 0.970 0.971

P
M
L
B

calendarDOW 0.577 0.620 0.621 0.623 0.619
contraceptive 0.521 0.555 0.553 0.550 0.548
GAMETES Epistasi 0.1H 0.467 0.561 0.562 0.559 0.675
GAMETES Epistasis 0.4H 0.489 0.697 0.708 0.717 0.797
GAMETES Heterogeneity 50 0.482 0.648 0.651 0.653 0.721
GAMETES Heterogeneity 75 0.488 0.665 0.670 0.668 0.720
parity5+5 0.474 0.542 0.718 0.892 0.865
Hill Valley with noise 0.819 0.849 0.841 0.825 0.837

Table 8: Results of the Kernel search experiment in the test set for the standard
kernels. The mean accuracy achieved by each kernel is shown. The numbers
in bold indicate the best result for each problem while taking into account the
results of the structure search methods shown in Table 9.

Valley with noise, the GP kernel learning method is clearly a better choice in
the training set, and these results are also visible in the test set.

GP achieves better average accuracy values in the test set than the other
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Classification problem Random HC sGP GP
U
C
I

pima 0.762 0.763 0.756 0.759
ionosphere 0.945 0.945 0.944 0.946
heart-statlog 0.806 0.811 0.815 0.802
glass2 0.773 0.803 0.776 0.836
liver-disorder 0.712 0.719 0.714 0.719
breast-cancer-Wisconsin 0.975 0.969 0.972 0.973

P
M
L
B

calendarDOW 0.626 0.619 0.609 0.616
contraceptive 0.547 0.547 0.553 0.552
GAMETES Epistasi 0.1H 0.676 0.675 0.560 0.675
GAMETES Epistasis 0.4H 0.796 0.796 0.722 0.796
GAMETES Heterogeneity 50 0.719 0.719 0.665 0.712
GAMETES Heterogeneity 75 0.714 0.713 0.672 0.708
parity5+5 0.985 0.965 0.998 1.000
Hill Valley with noise 0.786 0.818 0.865 0.910

Table 9: Results of the Kernel search experiment in the test set for the kernel
structure search methods. The mean accuracy achieved by each kernel search
method is shown. The numbers in bold indicate the best result for each problem.
sGP indicates the spectral-less GP approach.

kernel structure search methods, in the GAMETES Epistasis 0.4H and contra-
ceptive databases. In some other problems, such as pima, heart statlog, liver
disorder and GAMETES Epistasis 0.4H problems, the exploitation oriented
mutation operator of the hill climbing algorithm generates the best kernels for
the test set. On the other hand, the exploration oriented behavior of the random
search seems to be less prone to overfit, achieving the best results in the breast
cancer Wisconsin, calendarDOW and two GAMETES Heterogeneity problems.

Besides, the GP approach with the spectral element in the grammar shows
a better performance than the spectral-less variant in the training set in all the
problems, especially in the glass2, calendarDOW, Hill Valley with noise and
GAMETES problems. In tables 8 and 9, it can be seen that these di↵erences
are also notable in the test set. These problems probably include some periodic
patterns that can be better modeled when the spectral element is present.

We conducted a statistical test to assess the existence of significant dif-
ferences among the methods in the test set. For each database, we applied
Friedman’s test [18] and we found significant di↵erences (↵ = 0.05) in the iono-
sphere, glass2, contraceptive, parity5+5 and all GAMETES databases (p-values
can be seen in Figure 5). Then, for each configuration, we applied a post-hoc
test based on Friedman’s test as in [9], and adjusted the results with Sha↵er’s
correction [46]. The results are shown in Figure 5, and in Table 10, where a
summary of the statistical tests is presented.

Overall, the GP method is the best performing approach, obtaining signif-
icantly better results than the Linear and Matern kernels in some problems.
On the contrary, there are not many statistical di↵erences between the struc-
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Figure 5: Critical di↵erence diagrams in UCI and PMLB datasets. Search
methods are ordered following their rankings. The methods with no significant
di↵erences among them are matched with a straight line.
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LIN RBF M32 M52 sGP PER Hill Rand GP Worse

LIN 0 1 2 2 2 6 7 6 7 33
RBF 0 0 0 0 0 0 0 0 0 0
M32 0 0 0 0 1 1 1 2 2 7
M52 0 0 0 0 0 1 0 1 1 3
sGP 0 0 0 0 0 0 0 0 0 0
PER 0 0 0 0 0 0 0 0 0 0
Hill 0 0 0 0 0 0 0 0 0 0
Rand 0 0 0 0 0 0 0 0 0 0
GP 0 0 0 0 0 0 0 0 0 0
Better 0 1 2 2 3 8 8 9 10

Table 10: Summary table of the statistical testing. The number of databases
where the method in the column is significantly better than the method in the
row is shown.

ture search methods. Among the standard kernels, the periodic kernel shows
significantly better results than the linear kernel in 6 databases, and improves
the performance of Matern32 in GAMETES Epistasis 0.4H, and Matern52 in
GAMETES Heterogeneity 50.

Although the GP approach improves the results of the standard kernels
in the training set, and it has a better exploration-exploitation balance than
random search and hill climbing, these results cannot be transferred to the test
set, probably due to overfitting issues. In the test set, there are no significant
di↵erences between the GP approach and the simpler kernel structure search
methods. It is also important to notice that a single change in the grammar can
produce a greater impact in the results than the search method itself, as in the
GAMETES problems, where the average di↵erences between the results of the
GP with and without the spectral element are higher than the gap between the
hill climbing and the standard GP approach.

As a final note, we can question the importance of the kernel search method
compared to the importance of selecting an appropriate search space. Accord-
ing to the experiments, the GP method shows the best results. Nevertheless,
the absence of statistical di↵erences with the random search suggests that the
e↵orts of the practitioners should focus on the design of an adequate search
space rather than on the design of the best possible search algorithm. It is
also worth mentioning the small di↵erences we found between the training and
test results. Not having a measure of complexity of the models in the kernel
learning approaches has probably generated models that are too dependent on
the training set.
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6 Hyperparameter and C optimization

We have shown that in SVMs there are several variables to optimize apart from
the kernel structure, such as the kernel hyperparameters and the C parame-
ter. Hyperparameters, being part of the kernel, change the transformed space,
while C parameter balances the trade-o↵ between increasing the margin and
assuming greater hinge loss. In this section, we review the literature about the
C parameter and hyperparameter setting and investigate the interplay of these
variables for several kernels.

6.1 Hyperparameter setting

During the kernel learning process, kernel hyperparameters must be carefully
set. A change in the hyperparameters can be as relevant as a change in the
structure of the kernel. These hyperparameters clearly influence the results of
the kernel function, and therefore, the performance of SVMs.

In the initial kernel learning approaches, the hyperparameters were not even
included in the grammar [24, 25, 10, 49]. In other methods, random constants
were incorporated to the grammar, which can be interpreted as hyperparameters
that are learned together with the structure [48, 39, 21, 2, 19, 47]. Alternatively,
hyperparameters can be also learned apart from the structure in a secondary op-
timization procedure. The most common hyperparameter optimization method
is grid search [22, 12, 28, 34, 11], although more complex methods have been
also tried, such as particle swarm optimization [44]. As can be seen, choosing
the right hyperparameters for the kernel remains an open question.

6.2 C parameter setting

The value of C also influences the evaluation of the quality of the kernels gener-
ated during the learning process. The simplest approach to fairly compare the
kernels is to set a constant value for the C parameter (C = c) [10, 22]. However,
this approach also creates a bias in the kernel selection process to that constant
value of C.

The opposite approach is to run an exhaustive search in a reduced set of
values [28]. Here, a kernel-performance-maximizing C is selected for each of the
visited kernels, increasing the computational cost of the search. We can classify
these approaches depending on the method used to deal with the optimization of
C, along with the search of a kernel and its hyperparameters: (i) the approaches
that use a nested search procedure, where we optimize C for each kernel struc-
ture and hyperparameters visited in the search (ii) the methods that optimize
C together with the kernel hyperparameters [28] and (iii) the algorithms that
optimize C together with the kernel as a parameter of the kernel itself [47].

Finally, the C parameter can be selected based on the characteristics of the
evaluation of the kernel in the data as shown in [6]. For each kernel, a good
value of C is approximated while reducing the evaluation cost similar to the
fixed case.
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Analogous to the hyperparameter tuning problem, the C parameter setting
poses many questions when searching for the most suitable kernel. There is a
clear interplay between these parameters, and also a trade-o↵ between quality
and computational cost.

6.3 Interplay between optimization procedures

By means of the following experiment, we would like to investigate the inter-
action between the kernel hyperparameters and the C parameter. Particularly,
we analyze the performance and the overfitting of SVMs with di↵erent kernel
hyperparameters and C parameter values for several kernel structures in the
mentioned UCI and PMLB datasets.

We have selected some of the standard kernels shown in Table 1. For each
kernel, three hyperparameter configurations are tested: a set of default hyper-
parameters (✓i = 1), a random set of hyperparameters, and an optimized set of
hyperparameters according to a grid search (2�5 to 24, at powers of 2, with a
limit of 1000 evaluations) that maximizes the accuracy in the training set for
the C value proposed in [6]. Furthermore, for each kernel and hyperparameter
configuration, 20 values (2�5 to 215, at powers of 22) for C are tried apart from
the C value proposed in [6].

In Figures 6 and 7, the results of the experiment are shown. For each
database, the accuracy in the test set is represented by a heatmap. In the
X axis the di↵erent values of C are shown, while in the Y axis the di↵erent
kernels and their hyperparameters can be seen.

The best results are achieved with the optimized hyperparameters. This
can be clearly seen in the parity5+5 database, where the Periodic, RBF and
Matern52 kernels obtain their best results when optimizing their hyperparam-
eters. Regarding the influence of C, note that lower values of C show a lower
performance in almost every configuration. Although there are some databases,
such as breast cancer Wisconsin or contraceptive, where the C parameter has
very little influence, in the rest of the problems certain C values are required to
achieve the best possible performance. Also, it is worth mentioning that config-
urations with optimized hyperparameters show a more consistent performance
for di↵erent values of C. Finally, it can be seen that the C value suggested in
[6] shows good accuracy values overall.

On the whole, there is a clear influence of the kernel structure and hyper-
parameters in the results, but also the C parameter can drastically change the
quality of the prediction. In order to set the values of the hyperparameters
and the C parameter, a grid search is highly recommended due to their strong
interactions. Searching the hyperparameters on a grid and using the data based
approach shown in [6] to set the C parameter could be a good approximation
in the cases where the exhaustive search is not computationally a↵ordable.
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Figure 6: Accuracy in the test set for di↵erent values of C per kernel and
hyperparameter optimization methods for UCI datasets.Chapelle indicates the
C value suggested in [6]. def indicates the default set of hyperparameters, while
opt and rand refer to the optimized and random hyperparameters respectively.
The light gray areas indicate the C, kernel and hyperparameter combinations
for which the optimal hyperplane of the SVM could not be computed.

7 Metrics

Another important aspect of the kernel learning is the metric used to evaluate its
performance. The selected metric should be informative about the performance
of the kernels in the training set, but also needs to provide some clues as to the
generalization ability of the kernel. Furthermore, it has a direct influence on
the search method, as the roughness of the search landscape heavily depends on
this choice.

In the SVM kernel search literature, almost every proposal uses accuracy
[19, 24, 47, 34, 2, 48, 11, 44, 12, 49, 22] or classification error related metrics
[28, 25, 21] to measure the goodness of the kernel. As these metrics are discrete,
some of the approaches include tiebreakers to deal with the same results when
comparing similar kernels [25, 49]. There is very little knowledge about the
performance of other metrics. For example, in [50], the authors tried to estimate
the goodness of the matrix generated by the kernel measuring the intra/extra
class similarity ratio instead of evaluating the SVMs.

The accuracy may seem the best choice according to the literature, but it
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Figure 7: Accuracy in the test set for di↵erent values of C per kernel and hyper-
parameter optimization methods for PMLB datasets. Chapelle indicates the C
value suggested in [6]. def indicates the default set of hyperparameters, while
opt and rand refer to the optimized and random hyperparameters respectively.
The light gray areas indicate the C, kernel and hyperparameter combinations
for which the optimal hyperplane of the SVM could not be computed.

also has some drawbacks. As previously mentioned, this measure requires some
methods to deal with tie results. It produces a search landscape where we can
not directly obtain the gradient of this metric, disallowing the usage of many
search methods that exploit this feature to optimize the C parameter, the kernel
or its hyperparameters. On the other hand, the accuracy does not include any
information about the generalization ability of the model and requires some
k-fold cross-validation to mitigate overfitting, which is very computationally
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demanding.

7.1 Likelihood based metric for the SVM kernel selection

In order to provide a more robust measure to guide the kernel selection, we
propose a Bayesian Information Criterion (BIC) [45] based measure for SVMs,
SVMBIC. This measure uses Platt scaling [40] to obtain probabilistic predictions
of the SVM model and includes a complexity penalization according to the
number of hyperparameters. It can be described as follows:

SVMBIC(ki) = �2
nX

i=0

log p (yi|xi, ki,✓i,best) + q log n (10)

where q is the number of hyperparameters of the kernel and n is the number of
data points in X. ✓i,best is the best hyperparameter set for the kernel structure
ki.

Being a continuous measure, SVMBIC provides a smoother landscape than
the accuracy, as small changes in the SVM parameters produce little variations
in their values. Therefore, gradient based approaches can be used to optimize the
hyperparameters or C. Besides, it includes an explicit complexity penalization.

The following experimental scenario was designed as a test for this new mea-
sure against the commonly used accuracy metric. By using GP as described in
Section 5, we search for new kernels in the UCI datasets. In order to take advan-
tage of properties of the BIC measure, we have optimized the hyperparameters
based on a multi-start variation of Powell’s conjugate direction method [41] for
every kernel, while for the experimental setting with the accuracy measure, we
perform a grid search to find the best parameters. In both cases the same
amount of evaluations was allowed (1000). The C parameter was set following
a grid search as in the experiment described in Section 4.1.

The results of the experiment are summarized in Table 11. As expected, in
all the problems the kernel structures optimized with accuracy as metric achieve
better results in the training set than those learned by means of the SVMBIC
metric, particularly in the GAMETES Heterogeneity 50 problem. However,
when compared in the test set, the performance gap between these two methods
is undoubtedly lower for most of the problems. In fact, for heart statlog and
contraceptive problems, the SVMBIC method outperforms the results obtained
by using accuracy as the metric.

Moreover, in Table 11, the average number of hyperparameters of the best
kernels obtained in each search procedure is shown. As can be seen, the SVM-
BIC approach clearly penalizes the number of hyperparameters, showing a lower
average number of hyperparameters per kernel than the accuracy guided ap-
proach.

According to the results of our experimentation, SVMBIC can be used to
obtain simpler kernels than those obtained with accuracy, close to them in
terms of performance, even outperforming the latter in some of the runs. The
complexity penalization of the solutions, together with the continuous nature

29



Classification # of HPs Training set Test set
problem Ac. BIC Ac. BIC Ac. BIC

U
C
I

pima 4.2 0.1 0.793 0.770 0.759 0.758
ionosphere 4.8 0.4 0.962 0.939 0.946 0.942
heart statlog 3.4 0.0 0.878 0.847 0.802 0.820
glass2 4.8 0.7 0.909 0.835 0.836 0.803
liver disorder 5.4 0.3 0.763 0.727 0.719 0.712
breast-cancer-wisco. 4.6 0.0 0.986 0.978 0.973 0.973

P
M
L
B

calendarDOW 5.7 0.7 0.665 0.592 0.616 0.594
contraceptive 4.5 0.8 0.573 0.552 0.552 0.553
GAMETES Epistasis 0.1H 4.8 1.6 0.681 0.674 0.675 0.670
GAMETES Epistasis 0.4H 4.1 1.9 0.793 0.734 0.796 0.739
GAMETES Heterogeneity 50 4.4 1.1 0.709 0.576 0.712 0.576
GAMETES Heterogeneity 75 5.3 1.0 0.733 0.681 0.708 0.675
parity5+5 3.8 1.7 0.999 0.987 1.000 1.000
Hill Valley w. noise 4.0 1.8 0.905 0.863 0.910 0.884

Table 11: SVMBIC (BIC) measure compared to accuracy (Ac.). Average num-
ber of hyperparameters of the best kernels are shown on the left. The mean
accuracy achieved by each kernel search metric (in the training and test sets) is
shown in the right most columns. The numbers in bold indicate the best result
for each problem.

of the SVMBIC measure, can contribute to improving the performance of a
GP-like search.

8 Conclusions

Kernel functions are a key element of SVMs, as its performance strongly de-
pends on them. Although the previous works in automated kernel search for
SVMs have focused on the search algorithm itself, there are other components
of the method that influence and condition the performance of SVMs that have
not received the same attention. In this work, we have identified those compo-
nents and analyzed the interactions between them, with the aim of obtaining
a more general view about the kernel search for SVMs, making the following
contributions:

• Identification of the components that influence the performance of SVMs:
Apart from the weights of the hyperplane and the bias of the SVM, the
kernel structure, its hyperparameters and the C parameter are also im-
portant for the e�ciency of the method. The practitioner should consider
all these components as a whole, instead of focusing on just one of them.

• The intrinsic limitation of using a reduced set of databases to evaluate
kernel search strategies has been exposed: We have identified a number of
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datasets where the behavior of standard kernels is far from being optimal.
We highlight the need to extend the benchmark of datasets and increase
the variety of characteristics that the datasets exhibit.

• Analysis of the kernel space: The kernel space where the search is carried
out is a key element for the automated kernel search. We have proposed a
basic mathematical expression based grammar, and proved the influence
of including di↵erent elements in the performance of SVMs. All in all,
it is worth expanding the search space by adding new elements to the
grammar.

• Insights about the kernel structure search have been provided: Several
methods have been proposed to learn the structure of the kernel for SVMs.
We have compared the performance of the GP to other simpler search
methods, obtaining marginal gains over them. Including the right elements
in the grammar can be more important than the search method itself when
trying to find the best kernel structure.

• Study the interplay of the hyperparameter tuning and C parameter set-
ting: We have shown that the value of the hyperparameters and the value
of C can drastically change the behavior of SVMs. We have also provided
guidance on setting those parameters during the kernel search.

• A novel metric for the SVM kernel search has been proposed: Although
the accuracy has been the standard measure in the SVM classification
problems, it also presents some challenges. We propose a metric based on
the BIC measure, which can overcome these problems.

Further research on grammar definition is suggested, as performance gains
have been identified when additional elements are included. The addition of
new grammatical elements could allow the application of SVM to new fields.
We also propose to continue the work done in the study of the interplay of the
hyperparameters and C, since the kernel search strongly depends on the setting
of these parameters. On the other hand, we have seen that SVMBIC, in con-
trast to the traditional accuracy metric, is a continuous metric that introduces
an explicit complexity penalization. New methods for finding kernels and hy-
perparameters can be designed so that SVMBIC metric can take advantage of
these properties.
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