arXiv:2006.00408v1 [eessAS] 31 May 2020

Introducing Latent Timbre Synthesis

Kivang Tatar Daniel Bisig
Simon Fraser University Zurich University of the Arts
Vancouver, B.C., Canada Zurich, Switzerland
ktatar@sfu.ca daniel.bisig@zhdk.ch

Philippe Pasquier
Simon Fraser University
Vancouver, B.C., Canada

pasquier@sfu.ca

June 2, 2020

Abstract

We present the Latent Timbre Synthesis (LTS), a new audio synthesis
method using Deep Learning. The synthesis method allows composers
and sound designers to interpolate and extrapolate between the timbre
of multiple sounds using the latent space of audio frames. We provide
the details of two Variational Autoencoder architectures for LTS, and
compare their advantages and drawbacks. The implementation includes
a fully working application with graphical user interface, called interpo-
late_two, which enables practitioners to explore the timbre between two
audio excerpts of their selection using interpolation and extrapolation in
the latent space of audio frames. Our implementation is open-source, and
we aim to improve the accessibility of this technology by providing a guide
for users with any technical background.

1 Introduction

Promising new research of Deep Learning (DL) for the musical applications of
audio transformation and sound synthesis has recently emerged in academia;
in conjunction with the increasing popularity of Deep Learning architectures
[2]. Musical applications of these technologies have yet to become accessible
for composers and musicians who lack expertise in Machine Learning (ML) and
Artificial Intelligence (AI). Although Deep Learning has been applied to many
musical tasks [2], the research on incorporating Deep Learning architectures for
sound design applications in experimental electronic music is still in its early
stages.

This project focuses on the integration of modern ML and AT techniques into
tools for computer-assisted sound design and their applications within compo-
sition practices. We concentrate on the fields of experimental electronic music
and sound art, which takes sound qualities, listening modalities and experiences
[38], and organized sound theories [28] into the center [36]. We specifically focus

mailto:ktatar@sfu.ca
mailto:daniel.bisig@zhdk.ch
mailto:pasquier@sfu.ca

on audio corpus-based sound synthesis approaches that rely on large libraries of
audio excerpts.

Latent Timbre Synthesis (LTS) aims to help composers by utilizing an ab-
stract latent timbre space that is generated by training unsupervised Deep
Learning (DL) models with a set of audio recordings. These new DL tools
allow composers to synthesize sounds using a latent space of audio that is con-
strained to the timbre space of the audio recordings in the training set. Our
development of ML and Al tools for computer-assisted sound design and their
subsequent evaluation within composition practice serve to highlight the ben-
efits and shortcomings of the selected machine learning algorithms for creative
ideation and discovery.

In 1940s, physicist Dennis Gabor proposed [7] that a sound is composed of
acoustical quanta that is bounded by time and frequency. We are inspired by
this idea while applying this approach to digital audio, and asking,

e What would be the latent space of audio frames?
e Can we regenerate original audio recordings using that latent space?

e Can we create new audio synthesis methods using the latent space for
sound design applications and composition practices?

e Can a DL-based model be used to provide professional grade sound syn-
thesis tools?

e How can an audio synthesis architecture using a Deep Learning model
provide the user the flexibility to generate sounds of any duration?

We are also inspired by the definition of music as “nothing but organized
sound” [39] involving sound objects [29] that situate on multiple layers [32],
where any sound can be used to produce music [19, 39], and strong connections
exist between pitch, noise, timbre, and rhythm [32] [3T], 27, 28]. In that sense,
the Latent Timbre Synthesis project builds on our previous work titled Musical
Agents based on Self-Organizing Maps (MASOM) [35] [37]. MASOM combines
organizing sound samples in latent audio space with statistical sequence models
for musical structure. The latent audio space in MASOM is generated by a
Self-Organizing Map that organizes a set of audio excerpts. In LTS, we move
further by aiming for an audio synthesis framework where we can synthesize
sounds that do not exist in the training set.

Following the research questions and directions above, our contributions pre-
sented in this paper include two Variational Auto-encoders (VAEs) to generate
a latent space of audio frames. Unlike other Deep Learning architectures such
as Generative Adversarial Networks (GANs), VAEs are beneficial for our ap-
plications because these architectures can encode an existing audio frame to a
latent space, as well as synthesize audio frames from latent vectors. VAEs also
allow audio synthesis through interpolation and extrapolation of timbres, by
using the latent vectors of audio frames.

Latent Timbre Synthesis differs from the previous works such as Granma
MagNet[I] because we prioritize the flexibility to generate audio with any du-
ration, in comparison to outputting audio excerpts of fixed-duration. We think
that the flexibility of changing the duration of the generated audio is crucial

for our applications, which stands out as another contribution of LTS. Our ap-
proach focus on creating a latent space of audio frames, where we can represent
an audio recording with any length as a time-series sequence of latent vectors.
The LTS framework consists of three main modules, calculation of wavelet
transform based spectrogram representation, latent audio frame space gener-
ation using two specific Variational Auto-encoders and inverse synthesis using
wavelet-based magnitude spectrogram generated by the decoder of the VAE. We
compare the advantages and drawback of two VAE architectures for designing
a synthesis tool for composition practices and sound design applications. In ad-
dition, we present and share a fully working application, called interpolate_two
with a Graphical User Interface (GUI) that allows composers to synthesize audio
using timbre interpolation and extrapolation with multiple sounds. In compari-
son to high computational complexity of previous works mentioned in Section 2]
the low computational complexity of interpolate_two allows the incorporation of
the sound design tool within composition practices and real-time applications.
The documentation of the setup of interpolate_two is detailed to guide prac-
titioners of all backgrounds. Our implementation is open—sourceﬂ and sound
examples are availableﬂ We encourage our readers to dive into the code and
experiment with the framework for further audio synthesis possibilities.

2 Related Works

We limit this section to the previous works that utilize audio spectrogram as
an input for the Deep Learning architecture, with the exception of WaveNet.
We situate the Latent Timbre Synthesis project within the raw-audio generation
applications of Deep Learning, and WaveNet is one of the state of the art systems
in the area. We also omit Deep Learning systems for speech synthesis or vocoder
applications, such as MelGAN [16], while mentioning in Section [5| how we plan
to incorporate them in LTS as a next step in our research.

WaveNet is a Deep Learning architecture that uses an audio corpus for the
tasks of music composition, multi-speaker speech and text to speech generation,
and speech recognition [24]. WaveNet applies Convolutional Neural Networks
(CNNs) with two strategies to handle temporality of raw audio data: causal
convolution and dilation. Causal convolutions ensure that the output only de-
pends on the past observations. Dilated causal convolutions skips a number
of inputs on each layer. The number of inputs that are skipped exponentially
increases with each layer; hence, the receptive field of the network also increases
exponentially [41]. Note that, the receptive field is the number of neurons that
affect a single neuron in deep networks. Oord et al. [24] tested WaveNet on two
audio corpora: the MagnaTagATune dataset and the YouTube piano dataset.
The authors point out that “Even with a receptive field of several seconds,
the models did not enforce long-range consistency which resulted in second-to-
second variations in genre, instrumentation, volume and sound quality.” That
is, WaveNet struggled to generate long-term variations like in the case of interac-
tive music systems that apply Markov Models [36] Section 6.1]. There has been
follow-up research on the WaveNet architecture, where the authors stack mul-

1The source code is available at https://www.gitlab.com/ktatar/
latent-timbre-synthesis,
“We provide sound examples at https://kivanctatar.com/Latent-Timbre-Synthesis.

https://www.gitlab.com/ktatar/latent-timbre-synthesis
https://www.gitlab.com/ktatar/latent-timbre-synthesis
https://kivanctatar.com/Latent-Timbre-Synthesis

tiple WaveNet architecture on top of each other [25], or they combine WaveNet
with Vector Quantized Variational Autoencoders [4]. The main drawback of all
WaveNet systems are their computational complexity and high-usage of GPU
memory [3]. The technology requirements of WaveNet compromise its usage
in compositional practices, where composers do not necessarily have access to
computers with the state of the art GPUs.

Differentiable Digital Signal Processing (DDSP) is a toolbox made by the
Google for researching Digital Signal Processing (DSP) applications of Deep
Learning [5]. The authors describe the DDSP Autoencoder, which is a VAE ar-
chitecture where the input are the Mel-Frequency Cepstral Coefficients (MFCCs)
of an audio excerpt. We mention a comparison of using MFCCs and other
audio features as the representation of timbre for audio synthesis with VAEs
in Section [3.1] The architecture employs three autoencoders for fundamen-
tal frequency (f-encoder), loudness (Il-encoder), and the latent space of timbre
(z-encoder). The fundamental frequency and the loudness encoders use the
CREPE architecture that is originally presented as a pitch detector [I0]. The z-
encoder architecture is inspired by the ResNet architecture in Computer Vision
research [I1]. The decoder, on the other hand, controls the input parameters
of an additive synthesis module, a subtractive synthesis module, and a reverb.
These three synthesis modules generate the final audio. The loss function com-
pares the generated audio with the original one, using a specific function called
Multi-Scale Spectrogram Loss, which is similar to comparing the spectrograms
of original and generated audio.

Generative Timbre Spaces project [6] is perhaps one of the most similar
previous study to the Latent Timbre Synthesis project. The application of
Generative Timbre Synthesis focuses on generating a latent timbre space of
conventional musical instruments. This model uses a VAE where the encoder
is a 3-layer feed-forward network with 2000 units in each layer. The latent
space has 64 dimensions. The authors introduce a new regularization item in
the cost function. The additional regularization loss tries to force the network
to satisfy perceptual similarity ratings of conventional musical instruments in
Western Classical Music. These perceptual ratings are proposed in previous
studies [8), 15}, 12, 20, [17]. The training dataset of Generative Timbre Spaces
is audio recordings of conventional musical instruments where each file is an
instrument playing a note. The authors takes one frame from each audio file to
train the VAE model. Hence, the architecture aims to capture the generalized
timbre of a conventional musical instrument instead of the regeneration of an
arbitrary audio excerpt. Likewise, the cost function is not suitable to regenerate
a dataset with arbitrary audio recordings because there are no perceptual ratings
available. We further discuss the issues related to the hyper-parameters of VAE
in Generative Timbre Spaces in Section

The DDSP Autoencoder as well as the Generative Timbre Spaces aims for
the synthesis applications of conventional music where the model is conditioned
to output an audio with a fundamental frequency constraint. In sound design,
experimental electronic music, and Sound Art applications, having a fundamen-
tal frequency of a sound gesture is rather limiting. The music theory of the
contemporary electronic music emphasizes the continuum between noise, pitch,
and rhythm [32, [T9] BT, 27, 28]. Hence, in LTS, we aim for a model that could
generate any audio so that the composers and practitioners are free to explore
the full potential of digital audio synthesis.

Table 1: A previous study provided a comparison of audio frame reconstruc-
tion losses with Variational Autoencoders using spectrograms with fixed-length
windows and wavelet transform based spectrograms [6].

Spectrogram logp(z) ||z — Z||?

. . STFT -1.9237 0.2412
Fixed Window DCT 4.3415 2.2629
CQT 2.8723 0.1610

Wavelet Transform NSGT-MEL -2.9184 0.1602
NSGT-ERB -2.9212 0.1511

3 System Design

The Latent Timbre Synthesis framework consists of three main parts, spectro-
gram calculation using a type of wavelet transform, audio frame latent space
generation using Variational Autoencoders, and inverse synthesis of audio using
the magnitude spectrogram generated by the decoder of VAE (Figure .

3.1 Wavelet Transform based Spectrograms

The audio feature extraction module generates spectrogram frames using a type
of wavelet transform for audio, called Constant-Q Transform (CQT) [30], which
gained popularity in Music Information Retrieval (MIR) research in the recent
years. CQT, as well as its variant Non-stationary Gabor Transform (NSGT) [40],
have been compared to the other audio features such as Mel-Frequency Cepstral
Coefficients (MFCC); and previous studies showed that CQT and NSGT could
perform better in MIR applications such as segmentation and musical structure
analysis [23]. Naturally, segmentation and musical structure analysis tasks re-
quire computing the audio similarity [22]; thus, they are suited to create a latent
space of audio frames.

A previous work [6] compared spectrograms computed with fixed windows
and wavelet transform based spectrograms for applications of latent audio frame
space generation using Deep Learning (DL). This comparison included Short-
Time Fourier Transform, Discrete Cosine Transform, Constant-Q Transform
(CQT), and Non-Stationary Gabor Transform (NSGT') variations using different
frequency scales. The wavelet based transforms in this previous study were
CQT and NSGT variants. The authors [6] found that wavelet transform based
spectrogram representations perform better than the spectrograms calculated
using fixed-length windows in regards to the log-likelihood and mean quality of
the audio frame reconstructions, as shown in Table [I} while the audio frame
reconstructions of wavelet transform based spectrograms gave similar results.
We utilize CQT in comparison to other wavelet-based spectrograms in Table
because a python library for audio analysis, titled Librosaﬁ [21], includes a
CQT and inverse CQT implementation [30] combined with a Fast-Griffin-Lim
phase estimation [26] that we explain in Section We aimed that the LTS
framework would be available for composers and sound designers of all technical

Shttps://librosa.github.io/librosa/

https://librosa.github.io/librosa/

Wavelet transform-based

Latent audio frame

Inverse synthesis

spectrogram

space

Input Waveform

CQT-Spectrogram

Encoder

Variational

PR
[std) [mean] [N(O’”] Autoencoder
A

Decoder

CQT-Spectrogram
[Phase ' } Fast Griffin-Lim
Reconstruction
n
Output Waveform

Figure 1: Latent Timbre Synthesis framework

levels. Hence, we prioritized the options that simplify the installation of the LTS
framework.

We delve into the details of Constant-Q Transform in the following. We can
calculate the CQT of an audio recording [30], a discrete time domain signal
z(n), using the following formula:

n+| Ny /2]
XChyn)= Y a(f)ap(j—n+Ny/2) (1)
j=n—[Nk/2]

where k represents the CQT frequency bins with a range of [1, K], and X“%(k, n)
is the CQT transform. Ny is the window length of a CQT bin, that is inversely
proportional to fi that we define in equation [3| Notice that, |-] is the rounding
towards negative infinity. aj is the negative conjugate of the basis function
ar(n) and,

= Nikw(]\%)exp[—i%m%] (2)
where w(t) is the window function, f is the center frequency of bin k, and f is
the sampling rate. CQT requires a fundamental frequency parameter f;, which
is the center frequency of the lowest bin. The center frequencies of remaining
bins are calculated using,

ax(n)

fo= h2°F (3)

where B is the number of bins per octave.

CQT is a wavelet-based transform because the window size is inversely pro-
portional to the f; while ensuring the same Q-factor for all bins k. We can
calculate the Q-factor using,

qfs
fe(2F = 1)
where ¢ is scaling factor with the range [0,1] and equals to 1 as the default
setting. We direct our readers to the original publication for the specific details
of the CQT [30], which also proposed a fast algorithm to compute CQT and
inverse CQT (i-CQT), given in Figure

All experiments in this paper used the same audio feature extraction config-
urations. We tried several parameters to find the configuration that could give
the least amount of audio artifacts with the pipeline of calculating the CQT
spectrogram and then reconstructing the audio back using the magnitude spec-
trogram of CQT combined with the phase estimation algorithm. Notice that
these artifacts would appear even with an ideal DL model because the inverse
audio synthesis introduces these artifacts to the LTS. We used 16-bit and 44.1
kHz stereo or mono audio recordings. We converted the stereo files to mono
first, and then calculated the CQT spectrograms using a hop-size of 128 sam-
ples. The f; parameter was 32.7 Hz that corresponds to the musical note, C1.
q value in equation M| was equal to 1, and the window function was “hann”
CQT included 48 bins per octave for a total range of 8 octaves; which sums up

Q= (4)

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.
hann.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.hann.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.hann.html

CQT over | x5°

x(n) Xo(n)
one octave
C
Lowpass Downsampling x1(n) CQT over | X e
fiter by factor 2 one octave
- xce
Lowpass Downsampling| x,(n) CQT over 2
fiter by factor 2 one octave
(a) Constant-Q Transform
xce | i-CQT over | yom ~ ()
one octave ¥
X@ | i-CQT over | yi(w - Upsampling Lowpass
one octave T by factor 2 filter
X5 | i-CQT over | »() Upsampling Lowpass
one octave by factor 2 filter

(b) Inverse Constant-Q Transform

Figure 2: A fast algorithm to compute CQT and i-CQT, described in [30] and
implemented in Librosa [21].

to a 384 bins in total. Hence, the input of the DL models are vectors with 384
dimensions. These parameters resulted in the least amount of artifacts in our
experiments. Our source code is flexible to change these parameters, and we
encourage our readers to try different parameter configurations.

3.2 Deep Learning in Latent Timbre Synthesis
3.2.1 Autoencoders and Variational Autoencoders

Autoencoders are Deep Learning architectures for generative modelling. The
architecture consists of two main modules: an encoder and a decoder (Figure
and . The encoder maps the input data z € R™ to a latent vector z € RM
where z = encoder(z), and M < L. The decoder aims to convert a latent vector
back to the original data, and ideally, decoder(encoder(x)) = x. The vanilla
Autoencoder architecture encodes the input data vector to a single point, that is
the latent vector. In comparison, Variational Autoencoder (VAE) is an improved
version of the Autoencoder architecture that converts the input data vector to
a stochastic distribution over the latent space. This difference is also referred
as the “reparametrization trick” [I3] 14} 33].

In VAE, the encoder tries to generate a latent space by approximating p(z|z)
while the decoder tries to capture the true posterior p(z|z). The vanilla VAE
approximates p(z|x) using ¢(z|x) € Q with the assumption that p(z|x) is in the
form of a Gaussian distribution N (0,). This approximation is referred in the
literature as Variational Inference [13]. Specifically, the encoder outputs the
mean py; and the co-variance oy as the inputs of the Gaussian distribution
function N (z;upr,03,1) over a latent space with M number of dimensions.
Hence, the encoder approximates p(z|r) using ¢*(z|x) = N(z; f(x),g(z)*I)
where puyr = f(x), f € F, opr = g(x), and g € G. The decoder’s input, the la-
tent vector z is sampled from the latent distribution q(z) = N(z; f(z), g(z)*I).
Hence, the loss function consists of the reconstruction loss and the regularization
term of Kullback-Leibler divergence between ¢*(z|z) and p*(z),

Lig = Eq:(x)llogp™(z]2)] — a - Drr[q" (z|2)[|p"(2)] ()

We direct our readers to the original VAE publication [13] for the mathemat-
ical induction of the loss function in equation [5([I4]. Note that, some previous
works introduced additional regularization terms to the loss function to condi-
tion the VAE further, such as the introduction of perceptual ratings of musical
instruments in [6].

The LTS framework focuses on Variational Autoencoders in comparison to
Generative Adversarial Networks because we aim for audio synthesis by inter-
polation and extrapolation in the latent space of audio frames (see Section .
The input vectors of the VAE model are CQT vectors calculated from one audio
frame where the window size varies with the frequency bins. We aim to generate
a latent space of audio frames so that we can synthesize audio with any dura-
tion. Previous systems such as Grannma MagNet [I] utilizes audio excerpts
with fixed-duration, where the training input vectors of deep learning model
are 2D audio spectrograms with time along the x-axis and frequency along the
y-axis. This design choice constraints these DL models to limited applications
such as generating a fixed-length audio excerpt. Our approach differs from the
previous systems because the training observation of DL model in LTS is one

audio-spectrum vector that is calculated from one audio-frame. This allows LTS
to generate audio with any duration in sound design applications.

We focus on two Deep Learning (DL) architectures in the current version of
the Latent Timbre Synthesis framework. Both models are Variational Autoen-
coders (VAE); however, the layers and model parameters differ. In the first VAE
model, we were inspired by the previous work [6] where the authors trained a
Variational Autoencoder to generate conventional musical instrument timbres
with digital audio synthesis.

We initially tried the VAE architecture with the same hyper-parameter set-
tings that were used in the Generative Timbre Spaces project. The setting
of Generative Timbre Spaces [6] were unsuccessful in our experiments. The
model could not learn to regenerate the audio recordings in the training dataset,
and could only generate noise. Upon further investigation, we found that the
Kullback-Leibler Divergence regularization term multiplier caused the issue. In
Generative Timbre Spaces, the authors increase the multiplier from 0 to 2 dur-
ing the first 100 epochs of the training, following the warm-up procedure [33].
We suspect that the KLD multiplier range of [0, 2] is specific to the application
of Generative Timbre Spaces where the training dataset consists of audio files
with distinct harmonic content and low noisiness in the spectrum. Furthermore,
the training dataset size of Generative Timbre Spaces is rather small, less than
100 MB, whereas we work with GBs of audio to train the LTS models. For
example, the erokia dataset that we provide with our source code includes 2
GBs of audio that corresponds to 3,084,591 audio frames as training data for
LTS models, using a hop-size of 128 samples for the CQT calculation.

We found that the range of [0, 2] for KLD multiplier was too high for our
application and prohibited the VAE to learn. In addition, the warm-up pro-
cedure had adverse effects on the learning. We further investigated this issue
using the MNIST dataset [I§]. MNIST gave us a visual understanding of the
effect of KLD multiplier. The images in MNIST are 28 % 28 pixels, adding up
to a total of 784 pixels. This is similar to LTS where the input of the VAE is a
vector of 384 dimensions.

Like in the case of our tests with audio spectrograms, we obtained similar
results with the MNIST data. Higher KL-divergence values as well as the warm-
up procedure significantly deteriorated the reconstructions of the trained model.

Figure [3a] and [3b] show the effect of KLD multiplier on the training of the
Variational Autoencoder. We used the same architecture depicted in Figure
[[] and only changed the input and output dimensions to 784 that corresponds
the flattened vector of 28228 images in the MNIST dataset. In addition, we
tested the warm-up procedure and the reverse settings of the warm-up proce-
dure; however, both were detrimental to the training in our experiments. We
proceeded our experiments with KLD values around le — 5, given the success
of this setting with the MNIST dataset.

All VAE architectures in LTS use decoder networks that are the reversed
replicas of the encoder networks, as in most cases of VAEs. The first VAE
model in LTS is a feed-forward network with two Dense layers including 2048
neurons, The dense, dense_1, and dense_2 layers in Figure [] apply Rectified
Linear Units (ReLU) as the neuron activation functions.

We train the network for 2000 epochs, while the improvements after epoch

10

KL Beta : le-5 KL Beta : 5e-1 KL Beta : 5e-1 - 5e-6 KL Beta : 5e-6 - 5e-1

HHHH [s]s|s]s]s]s]|s|s|s|s R s|s]s]s]s]s]s]s[s|s R s|s]s]s]s]s]s]s]s]s]
HHHH [s]s]s]s]s[s[s[s|s[s R s]s]s]s]s]s[s[s|s|s I s[s]s]s s s]s]s]s]s]
H [s]s]s]s]s[s[s[s|s[s R s]s]s]s]s]cls[s|s|s I s[s]s]s s s]s]s]s]s]
Ooooooooogl BOooooopooog ooooooon
[s]s]s]s]s]s[s[s|s|s R s]s]s[s]s]s|s[s|s|s I s|s]s]s s s]s]s]s]s]
€] [s]s]s]s]s[s[s[s|s[s R s]s]s[s]s]ss[s|s|s R s[s]s]s s s]s]s]s]s]
BEEHE [s]s]s]s]s]s[s[s|s{s R sls]s]s]s]cls[s]ss R sls]s]s s s]s]ss]s]
a [s]s]s]s]ss[s[s|s|s R s]s]s]s]s]s|s[s|s|s R s|s]s]s]s]s]s]s]s]s]
[c]o] [s]s]s]s]s]s[s[s|s[s R s]s]s]s]s]s[s[s|s|s I s[s]s]s s s]s]s]s]s]
AiEEEaGGAAEl OO0O00O000000 bDO0O0O0Obooo0o0d BbOOoooooooon
(a) The effect of the KLD multiplier on the reconstructions
KL Beta : 1e-5

0016

0014

0012

o 50 100 150 20 250 30 350 400 450 500
KL Beta : 5e-1
oors

0072

0068
0086
0064

0062

0 50 100 150 200 250 300 30 00 450 500

KL Beta : 5e-1 - 5e-6

007
0076
0074

0072

0068
0066
0064

0062

50 100 150 200 250 00 50 a0 450 500

o
KL Beta : 5e-6 - 5e-1

0 50 100 150 200 250 300 30 400 450 500

(b) The loss values during training where x-axis is the training epoch and y-axis is the
loss value

Figure 3: The effect of the KLD multiplier in the loss function on Variational
Autoencoder training

11

-encoder input: | [(2, 384)]
. output: | [(?, 384)]

input: (?,384)
output: | (?, 2048)

N

mput: | (?,2048) mput: | (?, 2048)
z_mean: Dense z log var: Dense
output: | (?, 256) output: | (?, 256)

dense: Dense

mput: | ((?, 256), (7, 256))
output: (7, 256)

input: | [(?, 256)]
output: | [(?, 256)]

z_sampling: InputLayer

'

|

|
: |
| |
| |

|
|

|
|

|
: |

|
| input: | (2, 256) |
|

|
: |
| I

|
|

|
|

I
: |

I
! |

dense 1: Dense
output: | (?, 2048)

input: | (7, 2048)
output: | (?, 384)

dense 2: Dense

Figure 4: The first Deep Learning architecture available in Latent Timbre Syn-
thesis

12

. encoder . input: | [(?, 384)]
- encoder_input: InputLayer
output: | [(?, 384)]

4
input: (?,384)

output: | (2,24, 16, 1)

reshape: Reshape

nput: | (2,24, 16, 1)
output: | (7,12, 8, 32)

conv2d: Conv2D

mput: | (7,12, 8,32)
output: (?7,3072)

flatten: Flatten

mput: | (7, 3072)
output: | (?, 2048)

dense: Dense

A 4

mput: | (2, 2048)

dense_1: Dense
output: | (?, 1024)

mput: | (?, 1024)
output: [(?,512)

N

p mput: | (2, 512) mput: | (2,512)
[z_mean: Dense z_log_var: Dense
h output: 2, 8) output: (2. 8)

dense_2: Dense

input: | ((2, 8). (7, 8))
output: (2, 8)

input: | [(2, 8)]
output: | [(2, 8)]

z_sampling: InputLayer

A 4

input: ?,98)

dense_3: Dense —
output: | (?,512)

4

input: (2,512)

dense_4: Dense
- output: | (?, 1024)

A 4

input: | (7, 1024)
output: | (?,2048)

dense 5: Dense

4

input: | (?, 2048)
output: | (?,3072)

dense_6: Dense

A 4

nput: (7, 3072)
output: | (2,12, 8, 32)

reshape_1: Reshape

A 4

input: | (2,12, 8, 32)
output: | (7,24, 16, 1)

conv2d_transpose: Conv2DTranspose

13
input: | (2,24, 16, 1)
output: (7. 384)

flatten_1: Flatten

Figure 5: The second Variational Autoencoder architecture available in Latent
Timbre Synthesis

50 are rather in the exploitatioﬂﬂ phase of the learning, and help to minimize
the floor noise in the generated CQT magnitude spectrogram. The learning
rate is 1le~* and the KLD multiplier in the cost function is 5¢e~*. The learning
rate and the KLLD multiplier parameters are dependent on the training dataset.
We recommend the readers who would be interested to try their own dataset
to start with the hyper-parameter settings above, and change the parameters
when needed.

The latent space of our first VAE model consists of 256 dimensions. This
number is still acceptable given that the previous work [0] used a 64 dimensional
latent space to cluster a much smaller range of conventional musical instrument
timbres. Yet, we explored the possibility to find a deeper network that could
generate a latent space with a smaller number of dimensions.

The second VAE network that we present in this paper aimed to decrease
the number of latent space dimensions of the first network using a deeper ar-
chitecture, shown in Figure 5] We pursued an iterative design procedure where
we tried to decrease the number of dimensions of the latent space while main-
taining the reconstruction quality and trying to achieve lower final loss values
in the training runs. Our experiments aimed for a 8 dimensional latent space,
and we first tested increasing the number of dense layers. Our experiments
found an optimum of 4 dense layers where the number of neurons is changing
by two-folds each layer (Figure |5). In addition to the Dense layers, we also
tried adding convolutional layers on top of the Dense layers. We imagined that
the convolutional layers could grasp the relationships between frequency bins
of a given CQT vector, such as harmonics. The convolutional layer generates a
2-dimensional vector with size 24x16, which is in relation to 48 bins per octave
for 8 octaves while trying to remain as close as to a square. Notice that, each
row in the 2D vector generated by the convolutional layer corresponds to half
of an octave. We imagined that this could further help the network to capture
the harmonic content in the CQT vectors. Our experiments found an optimum
of one additional convolutional layer with 32 filters and a kernel size of 3 and a
stride size of 2 on top of the dense layers, shown in Figure[5] The final second
network could decrease the number of latent space dimensions while giving a low
final loss value. However, the network introduced a consistent floor noise sound
in the reconstructions. The introduction of normalization techniques such as
batch, instance, or layer normalization could not eliminate the floor noise in the
reconstructions. Our findings suggest a balance between the number of latent
space dimensions and the floor noise in the reconstructions where increasing the
number of latent space dimensions is the solution to eliminate the noise.

Given that audio quality is of great importance in composition tasks, we fo-
cused on using and disseminating the first network given in Figure[d Addition-
ally, the low computational complexity of the first network can be an advantage
when we combine the VAE with Deep Learning models for time-series sequence
generation in our future work, detailed in Section

3.3 Inverse Synthesis and Audio Reconstruction

This version of LTS uses the Fast Griffin-Lim [26] phase estimation algorithm
(GLA) for generating audio from CQT magnitude spectrograms that the VAE

5Exploration and exploitation are two search strategies in optimization applications [34]
Section 5.3].

14

decoder outputs. Briefly, the GLA estimates the phase component of a magni-
tude spectrogram by iterating the inverse synthesis and the spectrogram calcu-
lation multiple times, initially proposed in [9] and shown in Algorithm [1] [26].
Given an an audio signal z(n) and its frequency transform X (i),

Algorithm 1 Griffin-Lim Algorithm

Set: /Xo(7)
Initialize: X(i) = | X (i) - e/4X0(®)
forn=1,2,...,N do

Xn(l) = T(IT(|X(@)| . ejéXn—1(i)))
end for
#(n) = IT(X ()

where N is the total number of GLA iterations, T and IT is the frequency
transform and inverse frequency transform function respectively; such as Short-
Fourier Transform, or Constant-Q Transform in our case. Note that, the space
of audio spectrograms is a subset of the complex number space. The iterative
process of Griffin-Lim moves the complex spectrogram of the estimated signal
Z(n) towards the complex number space of audio signals in each iteration, as
proven in [9].

The Fast Griffin-Lim algorithm (F-GLA) [26] is a revision of the original
Griffin-Lim algorithm.

Algorithm 2 Fast Griffin-Lim Algorithm

Set: ZX()(?,)
Initialize: X(i) = |X (i) - e/4X0(®)
Initialize: Yy(i) = T(IT(| X (i)] - €74 X0 ()
forn=1,2,...,N do
Yo (i) = TUT(|X ()] - e74%0-10))
Xn@) = Yn(z) + O‘(Yn(z) - Yn—1<.))
end for
#(n) = IT(Xn (i)

where o is a constant. A previous study [26] showed that the F-GLA revision
significantly improves signal-to-noise ratio (SNR) compared to the GLA, where
the setting o = 1 resulted in the highest SNR value.

The F-GLA module has the highest computation time in the LTS frame-
work. We are aware that a revision of this module using another Deep Learning
architecture for vocoder applications can improve the computational complexity
of LTS while making LTS more lightweight within real-time applications. We
further address this in the Section [

This concludes the explanation of the LTS architecture, where we covered
our specific choice of Constant-Q Transform, two Variational Autoencoder ar-
chitectures, and the inverse synthesis using the GLA phase estimation. In the
following, we introduce the interpolate_two algorithm.

15

g‘ | ' J - Fite: WEEE oA Zoom T2 Ton o

Interpolate Two

D)

Dataset

c)

B
D)rnp Dataset Folder ’ Drop Run Folder

U /my_workspace/dataset, erokia vy Taset/eroiia fune- o1

Interpolation Curve

Fi11 Duration by hand (s)-> %%

Figure 6: The Max GUI of the interpolate_two application

4 Interpolation and Extrapolation in Latent Tim-
bre Space

The first sound design application of Latent Timbre Synthesis is the interpo-
late_two framework that allows composers to synthesize sounds using interpo-
lation and extrapolation with two sounds. The framework requires a trained
model to generate sounds using the latent audio frame space. The user can
select the duration of the generated sound, and can choose an excerpt from two
audio files. These two excerpts have the same duration. The algorithm uses
these two excerpts for synthesis with interpolation and extrapolation in the
timbre space. The interpolation amount sets how much of the latent vector is
copied from one of the audio excerpts. For example, 30% interpolation is adding
30% of the latent vectors of the first audio and 70% of the latent vectors of the
second audio. The percentages above 100 or below 0 corresponds to extrapo-
lations. For instance, 120% is moving 20% away from the second audio in the
direction the latent vector that points from audio 1 to audio 2. The algorithm
synthesizes the audio by calculating every audio frame using inverse synthesis
from a generated spectrogram. Hence, the user sets interpolation amounts for
each latent vector that corresponds to one audio frame. The user can draw
an interpolation curve to change the interpolation percentage in time using the
LTS framework.

The application, interpolate_two consists of two components: Max GUI and
the python engine. The Max GUI handles user interactions while the python
engine reacts to OSC messages coming from Max. The python engine runs the
deep learning model and audio feature extraction (CQT calculations), as well
as inverse synthesis that generates audio from CQT magnitude spectrogram
combined with Fast Griffin-Lim phase estimation.

16

The framework of interpolate_two is compatible with all variations of the
VAE architectures given in Figure [d] and [f} The B an C regions in the GUI in
Figure [6] load the datasets and models that are produced within a particular
run with the dataset. Using the regions D and E, the user can select two au-
dio files from a dataset to choose excerpts. The file dropdown menu allows to
select an audio file from the dataset. ”Zoom to selection” sets the view to the
selection area. Clicking ctrl (or emd on macos) and then dragging the mouse
up & down on the waveform views applies zoom in & out. The waveform in the
region F sets apply interpolation (or extrapolation) amounts per frame, where
x-axis is the time and y-axis sets the interpolation percentage for a frame. When
both waveform views are zoomed to the selection, the x-axis of the interpolation
curve corresponds to the x-axis of the waveform. The interpolation curve view
is a [waveform~] object. The ”Vertical Zoom” parameter in the inspector of this
Max object sets the maximum interpolation/extrapolation amount. The default
maximum is 1.3; hence, [1.0,1.3] and [-1.0, -1.3] are the extrapolation regions.
It is possible to extrapolate even more by changing the vertical zoom param-
eter; however, the higher amounts are likely to give audible distortions. The
normalize toggle in region H allows the user to normalize the generated audio
to prevent audio distortions or extremely high audio volumes while exploring
extrapolation possibilities.

The section H send messages to the python engine to handle output gen-
eration. ”Generate & Play” initiates the python engine to synthesize a sound
using the current interpolation curve and the audio selections. ”Play Again”
plays the previous generated sound, without going through the deep learning
calculation. ”STOP” immediately stops the audio coming out of the python
engine. Phase iterations sets the number of iterations of the Fast Griffin-Lim
algorithm. Higher number of iterations (max. 64) gives better results; however,
the calculation takes significantly longer. The phase estimation algorithm is the
bottleneck of computational complexity of this framework. Still, the calcula-
tion of the audio takes 50% of the audio duration with phase iteration set to 1.
That is, calculating a 2-second sound takes around 1-second on a laptop with
NVIDIA RTX 2080 Max-Q GPU and 2.20 GHz Intel i7-8750H CPU.

5 Future Work

We are currently finalizing our VAE model analysis where we visualize the latent
audio frame space. In addition, we are conducting a qualitative study where
composers and practitioners used the LTS framework for sound design appli-
cations. We aim to obtain a better understanding of the creative potential of
these algorithms by evaluating them in real-world application scenarios within
composition practices. Our future work includes a publication where we plan to
include the DL model analysis and the qualitative study, as well as a compilation
album release.

Acknowledgements

This research has been supported by the Swiss National Science Foundation,
Natural Sciences and Engineering Research Council of Canada, Social Sciences

17

http://www.snf.ch/en/Pages/default.aspx
https://www.nserc-crsng.gc.ca/NSERC-CRSNG/Council-Conseil/index_eng.asp
https://www.sshrc-crsh.gc.ca/home-accueil-eng.aspx

and Humanities Research Council of Canadal and Compute Canada.

References

[1]

2]

Akten, M.: Grannma MagNet (2018). URL https://www.memo.tv/works/
grannma-magnet/. Library Catalog: www.memo.tv

Briot, J.P., Pachet, F.: Deep learning for music generation: challenges and
directions. Neural Computing and Applications 32(4), 981-993 (2020).
DOT 10.1007/s00521-018-3813-6. URL http://link.springer.com/10.
1007/s00521-018-3813-6

Dieleman, S.: Sander Dieleman: Generating music in the raw audio do-
main. URL https://www.youtube.com/watch?v=y8m0ZSJA7Bc

Dieleman, S., Oord, A.v.d., Simonyan, K.: The challenge of realistic music
generation: modelling raw audio at scale. In: Proceedings of the 32nd Con-
ference on Neural Information Processing Systems (NeurIPS 2018), p. 11.
Montreal QC, Canada (2018)

Engel, J., Hantrakul, L.H., Gu, C., Roberts, A.: DDSP: Differentiable
Digital Signal Processing (2019). URL https://openreview.net/forum?
id=Blx1ma4tDr

Esling, P., Chemla-Romeu-Santos, A., Bitton, A.: Generative timbre
spaces: regularizing variational auto-encoders with perceptual metrics.
arXiv:1805.08501 [cs, eess] (2018). URL http://arxiv.org/abs/1805.
08501. ArXiv: 1805.08501

Gabor, D.: Acoustical Quanta and the Theory of Hearing. Nature
159(4044), 591-594 (1947). DOI 10.1038/159591a0. URL http://www.
nature.com/articles/159591a0

Grey, J.M.: Multidimensional perceptual scaling of musical timbres. The
Journal of the Acoustical Society of America 61(5), 1270-1277 (1977).
DOIT 10.1121/1.381428. URL http://asa.scitation.org/doi/10.1121/
1.381428

Griffin, D.W., Lim, J.S.: Signal estimation from modified short-time
Fourier transform. IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing 32(2), 236-243 (1984). DOT 10.1109/TASSP.1984.1164317.
URL http://ieeexplore.ieee.org/document/1164317/

Hantrakul, L., Engel, J., Roberts, A., Gu, C.: Fast and Flexible Neural
Audio Synthesis. In: Proceedings of the 20th International Society for
Music Information Retrieval Conference (ISMIR 2019), p. 7 (2019)

He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Im-
age Recognition. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770-778. IEEE, Las Vegas, NV, USA
(2016). DOI 10.1109/CVPR.2016.90. URL http://ieeexplore.ieee.
org/document/7780459/

18

https://www.sshrc-crsh.gc.ca/home-accueil-eng.aspx
https://www.computecanada.ca/home/
https://www.memo.tv/works/grannma-magnet/
https://www.memo.tv/works/grannma-magnet/
http://link.springer.com/10.1007/s00521-018-3813-6
http://link.springer.com/10.1007/s00521-018-3813-6
https://www.youtube.com/watch?v=y8mOZSJA7Bc
https://openreview.net/forum?id=B1x1ma4tDr
https://openreview.net/forum?id=B1x1ma4tDr
http://arxiv.org/abs/1805.08501
http://arxiv.org/abs/1805.08501
http://www.nature.com/articles/159591a0
http://www.nature.com/articles/159591a0
http://asa.scitation.org/doi/10.1121/1.381428
http://asa.scitation.org/doi/10.1121/1.381428
http://ieeexplore.ieee.org/document/1164317/
http://ieeexplore.ieee.org/document/7780459/
http://ieeexplore.ieee.org/document/7780459/

[12]

[15]

[16]

[24]

Iverson, P., Krumhansl, C.L.: Isolating the dynamic attributes of musical
timbrea. The Journal of the Acoustical Society of America 94(5), 2595—
2603 (1993). Publisher: Acoustical Society of America

Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes.
arXiv:1312.6114 [cs, stat] (2014). URL http://arxiv.org/abs/1312.
6114, ArXiv: 1312.6114

Kingma, D.P., Welling, M.: An Introduction to Variational Autoencoders.
Foundations and Trends in Machine Learning 12(4), 307-392 (2019). DOI
10.1561/2200000056. URL http://arxiv.org/abs/1906.02691. ArXiv:
1906.02691

Krumhansl, C.L.: Why is musical timbre so hard to understand. Structure
and perception of electroacoustic sound and music 9, 43-53 (1989)

Kumar, K., Kumar, R., de Boissiere, T., Gestin, L., Teoh, W.Z., Sotelo, J.,
de Brebisson, A., Bengio, Y., Courville, A.: MelGAN: Generative Adver-
sarial Networks for Conditional Waveform Synthesis. In: Proceedings of
the 33rd Conference on Neural Information Processing Systems (NeurIPS
2019), p. 12. Vancouver, BC, Canada (2019)

Lakatos, S.: A common perceptual space for harmonic and percussive tim-
bres. Perception & psychophysics 62(7), 1426-1439 (2000). Publisher:
Springer

LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database.
URL http://yann.lecun.com/exdb/mnist/

Luigi, R.: The Art of Noise. A Great Bear Pamphlet (1967)

McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J.:
Perceptual scaling of synthesized musical timbres: Common dimensions,
specificities, and latent subject classes. Psychological research 58(3), 177-
192 (1995). Publisher: Springer

McFee, B., Raffel, C., Liang, D., Ellis, D.P., McVicar, M., Battenberg, E.,
Nieto, O.: librosa: Audio and Music Signal Analysis in Python. In: Pro-
ceedings of The 14th Python in Science Conference (SCIPY 2015) (2015)

Miiller, M.: Fundamentals of Music Processing. Springer International
Publishing, Cham (2015). URL http://link.springer.com/10.1007/
978-3-319-21945-5

Nieto, O., Bello, J.P.: Systematic Exploration Of Computational Music
Structure Research. In: Proceedings of the 17th International Society for
Music Information Retrieval Conference (ISMIR 2016), p. 7. New York,
NY, USA (2016)

Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves,
A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

19

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1906.02691
http://yann.lecun.com/exdb/mnist/
http://link.springer.com/10.1007/978-3-319-21945-5
http://link.springer.com/10.1007/978-3-319-21945-5

[25]

[26]

[32]

[33]

[35]

[36]

Oord, A.v.d., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O.,
Kavukcuoglu, K., Driessche, G.v.d., Lockhart, E., Cobo, L.C., Stim-
berg, F., Casagrande, N., Grewe, D., Noury, S., Dieleman, S., Elsen,
E., Kalchbrenner, N., Zen, H., Graves, A., King, H., Walters, T., Belov,
D., Hassabis, D.: Parallel WaveNet: Fast High-Fidelity Speech Synthesis.
arXiv:1711.10433 [cs] (2017). URL http://arxiv.org/abs/1711.10433.
ArXiv: 1711.10433

Perraudin, N., Balazs, P., Sondergaard, P.L.: A fast Griffin-Lim algorithm.
In: 2013 IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, pp. 1-4. IEEE, New Paltz, NY (2013). DOI 10.1109/WASPAA.
2013.6701851. URL http://ieeexplore.ieee.org/document/6701851/

Roads, C.: Microsound. The MIT Press, Cambridge, Mass. (2004)

Roads, C.: Composing electronic music: a new aesthetic. Oxford University
Press, Oxford (2015)

Schaeffer, P.: Trait des objets musicaux, nouv. edn. Seuil (1964)

Schrkhuber, C., Klapuri, A.: Constant-Q Transform Toolbox For Music
Processing. In: Proceedings of the 7th Sound and Music Computing Con-
ference (SMC 2010), p. 8. Barcelona, Spain (2010)

Smalley, D.: Spectromorphology: explaining sound-shapes. Organised
Sound 2(02), 107-126 (1997). DOI 10.1017/S1355771897009059. URL
http://journals.cambridge.org/article_S1355771897009059

Stockhausen, K.: Four Criteria of Electronic Music with Exam-
ples from Kontakte (1972). URL https://www.youtube.com/watch?v=
7xyGtITKKIY&1ist=PLRBdTyZ761vAFOtZvocP jpRVTL6htJzoP

Snderby, C.K., Raiko, T., Maale, L., Snderby, S.K., Winther, O.: How to
Train Deep Variational Autoencoders and Probabilistic Ladder Networks.
In: Proceedings of the 23rd international conference on Machine learning
(ICML 2016). ACM Press, Pittsburgh, Pennsylvania (2016)

Tatar, K., Macret, M., Pasquier, P.: Automatic Synthesizer Preset Gen-
eration with PresetGen. Journal of New Music Research 45(2), 124-144
(2016). DOT 10.1080/09298215.2016.1175481. URL http://dx.doi.org/
10.1080/09298215.2016.1175481

Tatar, K., Pasquier, P.. MASOM: A Musical Agent Architecture based on
Self Organizing Maps, Affective Computing, and Variable Markov Models.
In: Proceedings of the 5th International Workshop on Musical Metacreation
(MUME 2017). Atlanta, Georgia, USA (2017)

Tatar, K., Pasquier, P.: Musical agents: A typology and state of the art
towards Musical Metacreation. Journal of New Music Research 48(1),
56-105 (2019). DOI 10.1080/09298215.2018.1511736. URL https://www.
tandfonline.com/doi/full/10.1080/09298215.2018.1511736

20

http://arxiv.org/abs/1711.10433
http://ieeexplore.ieee.org/document/6701851/
http://journals.cambridge.org/article_S1355771897009059
https://www.youtube.com/watch?v=7xyGtI7KKIY&list=PLRBdTyZ76lvAFOtZvocPjpRVTL6htJzoP
https://www.youtube.com/watch?v=7xyGtI7KKIY&list=PLRBdTyZ76lvAFOtZvocPjpRVTL6htJzoP
http://dx.doi.org/10.1080/09298215.2016.1175481
http://dx.doi.org/10.1080/09298215.2016.1175481
https://www.tandfonline.com/doi/full/10.1080/09298215.2018.1511736
https://www.tandfonline.com/doi/full/10.1080/09298215.2018.1511736

[37]

[39]

[40]

Tatar, K., Pasquier, P., Siu, R.: Audio-based Musical Artificial Intelligence
and Audio-Reactive Visual Agents in Revive. In: Proceedings of the joint
International Computer Music Conference and New York City Electroa-
coustic Music Festival 2019 (ICMC-NYCEMF 2019), p. 8. International
Computer Music Association, New York City, NY, USA (2019)

Tuuri, K., Eerola, T.: Formulating a Revised Taxonomy for Modes of Lis-
tening. Journal of New Music Research 41(2), 137-152 (2012). DOI 10.
1080/09298215.2011.614951. URL http://www.tandfonline.com/doi/
abs/10.1080/09298215.2011.614951

Varese, E., Wen-chung, C.: The liberation of Sound. Perspectives of
New Music 5(1), 11-19 (1966). URL https://www.jstor.org/stable/
83238570rigin=JSTOR-pdf&seq=1#page_scan_tab_contents

Velasco, G.A., Holighaus, N., Drer, M., Grill, T.: Constructing An In-
vertible Constant-Q Transform With Nonstationary Gabor Frames. In:
Proceedings of the 14th International Conference on Digital Audio Effects
(DAFx-11)), p. 7. Paris, France (2011)

Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions.
arXiv preprint arXiv:1511.07122 (2015)

21

http://www.tandfonline.com/doi/abs/10.1080/09298215.2011.614951
http://www.tandfonline.com/doi/abs/10.1080/09298215.2011.614951
https://www.jstor.org/stable/832385?origin=JSTOR-pdf&seq=1#page_scan_tab_contents
https://www.jstor.org/stable/832385?origin=JSTOR-pdf&seq=1#page_scan_tab_contents

	1 Introduction
	2 Related Works
	3 System Design
	3.1 Wavelet Transform based Spectrograms
	3.2 Deep Learning in Latent Timbre Synthesis
	3.2.1 Autoencoders and Variational Autoencoders

	3.3 Inverse Synthesis and Audio Reconstruction

	4 Interpolation and Extrapolation in Latent Timbre Space
	5 Future Work

