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Abstract The paper approaches the task of handwritten text recognition (HTR) with at-

tentional encoder-decoder networks trained on sequences of characters, rather than words.

We experiment on lines of text from popular handwriting datasets and compare different

activation functions for the attention mechanism used for aligning image pixels and target

characters. We find that softmax attention focuses heavily on individual characters, while

sigmoid attention focuses on multiple characters at each step of the decoding. When the se-

quence alignment is one-to-one, softmax attention is able to learn a more precise alignment

at each step of the decoding, whereas the alignment generated by sigmoid attention is much

less precise. When a linear function is used to obtain attention weights, the model predicts

a character by looking at the entire sequence of characters and performs poorly because it

lacks a precise alignment between the source and target. Future research may explore HTR

in natural scene images, since the model is capable of transcribing handwritten text without

the need for producing segmentations or bounding boxes of text in images.

Keywords Attention; Convolutional Neural Networks; Handwritten Text Recognition;

Reccurent Neural Networks

1 Introduction

Handwritten text recognition (HTR) on character sequences is an open research problem

because it is harder to segment and recognize individual characters, rather words [1]. More-

over, transcription models must solve the problem of finding and classifying characters at

each time-step without knowing the alignment between the input sequence of image pixels

and the target sequence of characters [2].

Previous approaches to HTR include using a hidden Markov model (HMM), or HMM-

neural network hybrid, to match image features to character labels. The HMM approach
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is outperformed by models that combine a single recurrent neural network (RNN) with a

connectionist temporal classification (CTC) output layer [3–8]. The CTC-based models cal-

culate a probability distribution over all possible target sequences, conditional on the input

sequence. The CTC-based models assume strict monotonicity in input-target sequence align-

ments, and generally assume a target sequence length that is bounded by the input sequence

length.

In this work, we employ the encoder-decoder networks proposed by Deng et al. [9],

which extends the encoder-decoder RNNs of Vinyals et al. [10] and Bahdanau et al. [11]

for the problem of decompiling images into presentational markup. The encoder-decoder

model encodes a variable-length sequence of characters into a fixed-length vector and then

decodes the vector into a variable-length target label. Encoder-decoder RNNs are suitable for

handling long sequences of data and have become standard for neural machine translation,

speech recognition [12], and image captioning [13] tasks.

The model of Deng et al. consists of a convolutional neural network (CNN) that extracts

visual features from the images and arrange the features on a grid. An RNN encoder re-

encodes each row of the grid, learning additional features such as text directionality. Lastly,

an RNN decoder outputs a character sequence one step at a time, using an attention mech-

anism to emphasize the most important columns of re-encoded features at each decoding

step. The use of attention mechanism in the decoder relaxes the monotonicity assumption

of the CTC-based model, and improves the ability of the encoder-decoder networks to learn

the correct alignment between image pixels and target characters, and to extract the most rel-

evant information for each part of the output sequence [14]. Attention-based networks are

capable of modeling the language structures within the output sequence, rather than simply

mapping the input to the correct output [15].

Encoder-decoder RNNs have been previously employed for recognizing text in natural

images [16, 17], and more recently for HTR. Several recent papers propose a hybrid ar-

chitecture consisting of a CNN to encode the input image and an RNN decoder to predict

sequences of characters [18–26]. For example, Sueiras et al. [27] and Kang et al. [28] use

attentional encoder-decoder networks very similar to ours, but train their model to transcribe

words, rather than sequences of characters, and employ a word-based lexicon (i.e., a list of

words found in the training set) for decoding.

The main differentiator in our approach is that we employ a CNN to extract image fea-

tures and a separate RNN encoder to re-encode the features so that the encoder can learn new

features such as text directionality. Another difference is that we use an unidirectional RNN

decoder to predict the sequence of characters. Gui et al. [29] train character-aware attention

networks, but the architecture differs in that they use an attention-based bidirectional RNN

decoder and CTC output layer to convert predictions made by the decoder into a character

sequence.

There are recent developments towards architecture based entirely on CNNs or attention

mechanisms, bypassing any recurrence. Fully convolutional architectures have performed

well against encoder-decoder networks on neural machine translation tasks [30], handwrit-

ing generation [31, 32], and HTR tasks [33–38]. The entirely attention-based transformer

model initially proposed by Vaswani et al. [39] have outperformed encoder-decoder net-

works on several HTR tasks [40].

In this work, we focus on developing character-aware models for HTR. Character-aware

models view the input and output text lines as a sequence of characters rather than words,

and each character prediction is explicitly conditioned on the previous character. These mod-

els are capable of making inferences about unseen source words and also generating unseen
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target words. In addition, character-aware models do not require lexicons because only char-

acters are explicitly modeled [41].

Our primary contributions are applying character-aware attention networks to the task

of transcribing lines of unconstrained (i.e., cursive or overlapping) handwritten text and

comparing different activation functions for the attention mechanism. Section 2 describes

attention networks in the context of character-based HTR. Section 3 describes the bench-

mark datasets used for the experiments and provides details on the network architecture and

training. Section 4 describes the results on benchmark datsets, comparing the performance

of different attention mechanisms. Section 5 concludes and suggests directions for future

research.

2 Attention networks for character-based HTR

The character-based HTR problem is one of converting images to hand-transcribed sequences

of discrete characters. Following the notation of Deng et al., the input x ∈ X is an image

with height and width dimensions RH×W . The target y∈Y consists of a sequence of charac-

ters, y1,y2, . . . ,yT , where T is the sequence length and each character exists within a known

vocabulary, Σ . The supervised task is to learn a function that maps X → Y using training

example pairs (x, y).

The general architecture of the attention networks of Deng et al., which we extend for

HTR, is illustrated in Fig. 1. The CNN inputs x and arranges the visual features on a grid,

V with dimensions H ′ ×W ′ ×C, where C is the number of channels, and H ′ and W ′ are

reduced dimensions following max pooling operations.

The RNN encoder slides across each row of V, and at each time-step t, recursively

updates a hidden state ht using vt ∈ V as input:

ht = f (vt ,ht−1;θ), (1)

where f (·) is a nonlinear activation and θ is a learned parameter. The encoder outputs a

re-encoded feature grid Ṽh,w = RNN(Ṽh,w−1,Vh,w), for rows h ∈ {1, . . . ,H ′} and columns

w∈ {1, . . . ,W ′}. Encoding row-wise is useful for transcription tasks because the encoder can

learn sequential order information, such as text directionality. The networks capture column-

wise sequential information by learning a positional encoding in the form of an initial hidden

state, Ṽh,0, which is added to each row of Ṽ.

The decoder RNN learns a conditional language model to give the probability of the

next character given the history and re-encoded feature grid:

p(yt+1|y1, . . . ,yt , Ṽ) = softmax (W1ot) , (2)

where ot = f (W2[h
′
t ;ct ]). (3)

In the above equations, the matrices W1 and W2 are learned parameters of the model, and

the softmax activation function assigns probabilities over Σ . The hidden state of the RNN

decoder, h′
t , is updated recursively by

h′
t = f

(

h′
t−1,yt−1;θ ′

)

, (4)
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where θ ′ is a learned parameter. The context vector, ct , provides the most important elements

of the re-encoded feature grid at each t:

ct = ∑
h,w

α tṼh,w, (5)

where α t = softmax(a(h′
t , Ṽh,w)), (6)

and at,h,w = β⊤
f (W3h′

t +W4Ṽh,w), (7)

where the vector β and matrices W3 and W4 are learned parameters, and the attention mech-

anism a(·) approximates the vector α t of unnormalized attention weights.

The attention weights are distributed over columns of Ṽt so that each feature in the col-

umn is given identical weight, which is standard for typical character recognition tasks. This

approach differs from the attention mechanism used by Deng et al., which places attention

over rows and columns, so that attention weights vary for each element of Ṽt , which may be

more appropriate for complex images such as math formulas or tables. While the standard

attention of Bahdanau et al. uses the softmax activation for Eq. (6), we experiment with two

alternative activations to produce attention weights: sigmoid (i.e., Bernoulli) and linear (i.e.,

at = et).

Finally, the networks are trained end-to-end to minimize the cross-entropy loss:

L =
T

∑
t=1

− log p
(

yt+1 | y1, . . . ,yt , Ṽ
)

. (8)

Fig. 1: Attention networks architecture. Notes: ‘Conv’: convolution layer; ‘Pool’ max-pooling layer; ‘Bn’: batch normaliza-

tion.
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3 Experimental evaluation

We experiment on two widely-used HTR benchmark datasets, IAM (modern English) and

RIMES (modern French), and two historical datasets, Saint Gall (9th c. Latin) and Parzival

(13th c. German) [42–45]. The datasets, which are described in Table 1, consist of images

of handwritten text lines and their corresponding ground-truth transcriptions.

We follow the image preprocessing steps of Puigcerver et al. [19, 46], which includes

binarizing the images in a manner that preserves their original grayscale information [47],

rescaling the images, and converting the images to JPEG format. Fig. 2 provides an example

of a preprocessed image from each benchmark dataset.

Table 1: Training, validation, and test set splits and language characteristics for benchmark datasets.

Lines Maximum length Unique Characters

Dataset Train Val. Test Total Train Val. Test Train Val. Test

IAM 6,161 966 2,915 10,042 81 73 95 79 76 75

Parzival 2,237 912 1,328 4,477 70 71 66 57 56 55

RIMES 10,171 1,162 778 12,111 100 110 94 97 88 85

Saint Gall 468 235 707 1,410 74 69 73 47 46 47

Notes: unique characters include case-sensitive alphanumeric characters, punctuation, and

whitespace.

Fig. 2: Example preprocessed images from the benchmark datasets.

(a) IAM

(b) Parzival

(c) RIMES

(d) Saint Gall
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3.1 Evaluation

We measure the performance of the attention networks by comparing the estimated transcrip-

tion ŷ with the ground-truth y. Since the networks are trained on sequences of characters

rather than words, we measure the Character Error Rate (CER) instead of the Word Error

Rate. The CER is calculated as the edit distance normalized by the number of characters in

the ground truth:

CER = ∑
t

Edit Distance(yt , ŷt)

|yt |
, (9)

where the edit distance (or, Levenshtein distance), is the minimum number of insertions,

substitutions, and deletions required to alter the target yt to the prediction ŷt at each time-

step. We also measure the character perplexity (CPPL) of the character-based conditional

language model, which is the exponent of the cross-entropy loss defined in Eq. (8). Language

models with smaller perplexity generally perform better in predicting characters given the

history, and are thus strongly correlated with the CER [48, 49].

3.2 Implementation details

When training the networks, we fix the image height to 64 pixels while maintaining the as-

pect ratio, group images with similar widths, and pad with whitespace to facilitate batching.

We implement a biased importance sampling scheme to speed up training and decoding [50].

The CNN converts the text line images into a sequence of visual feature vectors. It

consists of seven convolutional layers, each followed by a Rectified Linear Unit (ReLU)

activation and then a max-pooling layer to reduce the spatial size of the representation. The

third, fifth, and seventh layers use batch normalization following the convolution in order

to speed up training. Dropout is applied to the output of the seventh convolutional layer in

order to prevent overfitting. Table 2 provides further detail on the CNN specifications.

Table 2: CNN specification.

Conv Pool

# filters Filter size Stride size Bn Pool size Stride size

64 (3,3) (1,1) (2,2) (2,2)

128 (3,3) (1,1) (2,2) (2,2)

256 (3,3) (1,1) X - -

256 (3,3) (1,1) (2,1) (2,1)

512 (3,3) (1,1) X - -

512 (3,3) (1,1) (2,1) (2,1)

512 (2,2) (1,1) X - -

Notes: the sizes are ordered (height, width). See notes to Fig. 1.

Stacked on the CNN is a single-layer, bidirectional Long Short-Term Memory (BLSTM)

encoder with 512 hidden units and a two-layer Gated Recurrent unit (GRU) decoder, each

with 256 hidden units. The bidirectional recurrent layers allow the encoder to compute a rep-

resentation that depends on both past and present characters in the sequence, and row-wise

encoding refines the feature representation to include horizontal context. The attentional

decoder interprets the feature representation, focusing on the most important columns of

re-encoded features.
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We train the networks for 200 epochs with a batch size of 8, stochastic gradient descent

to learn the parameter weights, and the Adam optimizer to adapt the learning rate. As a reg-

ularization strategy, we implement ℓ2 regularization loss and data augmentation by applying

random affine transformations to 20% of the training set images, including scaling, trans-

lating, rotating, and shearing. In addition, we employ gradient norm clipping and gradient

normalization in order to prevent exploding gradients.

4 Results

We train the attention networks without the assistance of any lexicon or explicit language

model and record their performance in terms of CER and CPPL on the validation and test in

Table 3. The networks perform comparatively well on the Parzival and Saint Gall datasets,

which have fewer training examples, and have shorter lines and vocabularies. The networks

perform less well on the IAM and RIMES datasets, which have longer lines, and a larger

vocabulary and number of training examples.

Table 3: Attention networks: evaluation metrics on benchmark datasets.

Val. Test

Dataset CER (%) CPPL CER (%) CPPL

IAM 14.3 71,075.2 16.6 exp(36.5)

Parzival 4.6 12.0 4.7 52.6

RIMES 11.1 811.9 12.1 92.4

Saint Gall 14.3 24.5 12.7 17,164.4

Notes: networks trained with softmax attention.

Table 4 compares the performance of the (softmax) attention networks on the IAM and

RIMES test set with models in the existing literature. The attention networks achieve a CER

of 16.6% on the IAM dataset, which outperforms CTC models that encode image features

using LSTMs or multidimensional LSTMs (MDLSTMs) [51], but does not approach the

current state-of-the-art model of Bluche and Messina [18], which combines convolutional

and recurrent layers for encoding with a CTC decoder.

A direct comparison against most of the models in the existing literature is not possible

because most of the existing models rely on domain-specific lexicons, and explicit language

models for decoding. Bluche [49], for example, uses a word-based lexicon and a word-

based language model. The model of Bluche [1], which combines a MDLSTM encoder

and a softmax attention-enhanced bidirectional LSTM decoder, inputs and outputs at the

character-level, although the decoder output is not conditioned on the previous character.

The aforementioned model is also trained with curriculum learning and with a slightly larger

training set. The state-of-the-art model of Bluche and Messina [18], in comparison, uses a

hybrid word and character-based language model. Gui et al. [29] also train character-aware

attention networks, but with a CTC output layer to perform the transcription. Michael et al.

[52] is the most comparable to our work because the authors train character-aware attention

networks without the use of a language model.
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Table 4: Benchmark comparison: test set CER on IAM and RIMES datasets.

Model Source LM CB IAM CER (%) RIMES CER (%)

CNN + BLSTM + CTC [18] X 3.2 1.9

MDLSTM + CTC [53] X 3.5 2.8

MDLSTM + MLP/HMM [54] X 3.6 -

MDLSTM + CTC [49] X 4.4 3.5

CNN + LSTM + CTC [19] X 4.4 2.3

MDLSTM + Attention [55] X 4.4 3.5

Transformer [40] 4.6 -

LSTM + HMM [56] X 4.7 4.3

LSTM + HMM [57] X 4.8 4.3

CNN + LSTM + Attention [52] X X 4.8 -

CNN + CTC [37] X 4.9 -

CNN + LSTM + Attention [58] X 4.9 -

LSTM + HMM [59] X 5.1 4.6

MDLSTM + CTC [60] X 5.1 3.3

CNN + BLSTM + Attention + CTC [29] 5.1 -

CNN + BLSTM [61] 5.7 5.0

CNN + BGRU + GRU + Attention [22] X 5.7 2.6

CNN + CTC [62] 6.1 3.4

MDLSTM + CTC [1] X 6.6 -

CNN + BGRU + GRU [28] 6.8 -

CNN + BLSTM + LSTM [20] 8.1 3.5

GMM/HMM [63] X 8.2 -

CNN + LSTM + Attention [27] 8.8 -

CNN + LSTM + CTC [64] 9.7 -

MLP/HMM [65] X 9.8 -

MDLSTM + CTC [66] X 11.1 8.29

MLP/HMM [67] X 12.4 -

CNN + BLSTM + GRU + Attention Ours X 16.6 12.1

MDLSTM + CTC [2] 17.0 -

BLSTM + CTC [6] X 18.2 -

CNN + LSTM + Attention [58] X - 3.1

CNN + BLSTM + Attention [68] X - 5.8

HMM/MLP [69] X - 7.2

BLSTM + CTC [70] - 7.6

Notes: ‘BGRU’: bi-directional GRU; ‘CB’: model is character-based; ‘GMM’: Gaussian mixture

model; ‘LM’: explicit language model used for decoding; ‘MLP’: multilayer perceptron.

4.1 Comparing attention distributions

In order to gain insight into how the attention mechanism learns alignment between the

source and target character, we plot in Fig. 3 a visualization of the source attention distribu-

tion for attention networks trained on the IAM dataset. Each row traces the attention weights

over the source line at each step of decoding. White values reflect intensity of attention while

absence of attention is black.

Softmax attention predicts a character by focusing heavily on single characters, whereas

the attention distribution for sigmoid focus on multiple characters at each time-step. Softmax

attention is able to learn a linear alignment whereas the alignment generated by sigmoid

attention is linear and less precise.1 When a linear function is used to obtain the attention

1Similarly, Kim et al. [71] find that softmax attention performs better than sigmoid attention on word-to-

word machine translation tasks.
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weights, the model predicts a character by looking at the entire sequence of characters, and

there is no clear structure in the alignment.

In order to determine how the model makes mistakes, we visualize attention on the input

image drawn from the IAM dataset. For example, the model tends to produce errors when

characters are skewed (Fig. 4 [b]), have long tails (Fig. 4 [a] and [c]), or written in uppercase

cursive (Fig. 4 [d]). Fig. 5, which provides examples of correct IAM transcriptions and vi-

sualized softmax attention, shows that the model can correctly predict illegible handwriting

(Fig. 5 [b]) because it leverages information from the entire input sequence.

(a) Linear (b) Sigmoid (c) Softmax

Fig. 3: Visualization of the source attention distribution over the input image (horizontal axis). The vertical axis is the

transcription. Each row traces the attention weights over the source line at each step of decoding, in grayscale (0: black, 1:

white).
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(a) Actual: say a word about it , Lester wants his;

Predicted: say a word about it , lester wants his

(b) Actual: booty , a new group of Lords might oust;

Predicted: booky , o new group of Lords might oust

(c) Actual: in the case of the single-sheet quire , an extra;

Predicted: in the case of the single-sheet quire , an extraa

(d) Actual: your substance on a complete stranger . Set;

Predicted: your subteance on a complete stranger , fut

Fig. 4: Incorrect IAM transcriptions and visualized softmax attention. White lines indicates the attended regions and under-

lines in the transcription indicate the corresponding character.

(a) Actual/predicted: to the man she had spent so much time

(b) Actual/predicted: away at a rate of knots .

(c) Actual/predicted: texts and the Gemara explains why these ,

(d) Actual/predicted: he was on the verge of a new chapter in

Fig. 5: Correct IAM transcriptions and visualized softmax attention. See footnotes to Fig. 4.

5 Conclusion and future directions

The paper approaches the task of handwritten text transcription with attention-based encoder-

decoder networks trained to handle sequences of characters rather than words. The attention

networks are domain and language-agnostic because they are trained without the aid of a

lexicon or explicit language model.

We train the model on lines of text from a popular handwriting dataset and experiment

with different activation functions for the attention mechanism. Our results show that soft-

max attention focuses heavily on individual characters, while sigmoid attention focuses on



Character-Based Handwritten Text Transcription with Attention Networks 11

multiple characters at each step of the decoding. When the sequence alignment is one-to-

one, softmax attention is able to learn a more precise alignment at each step of the decoding

whereas the alignment generated by sigmoid attention is much less precise. When the model

has linear attention, the model predicts a character by looking at the entire sequence of char-

acters and performs poorly because it lacks a precise alignment between the source and text

output.

Our primary contributions are applying character-aware attention networks to the task

of handwritten text line transcription and also comparing attention configurations for the

decoder. Future work might apply attention networks to the problem of HTR in natural scene

images [72]. Previous literature has focused on recognizing printed text in natural scene

images using standard methods in computer vision for segmentation [73]. The attention

networks used in this paper are capable of transcribing handwritten text without the need for

producing segmentations or bounding boxes of text in images, so the model can potentially

transcribe handwritten text in natural scene images without preprocessing.
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